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Abstract—We present an analytical framework to investigate
the interplay between a communication graph and an overlay
of social relationships. Particularly, we focus on geographical
distance as the key element that interrelates the concept of
routing in a communication network with interaction patterns
on the social graph. Through this regime, we attempt to identify
classes of social relationships that let the ensuing system scale,
i.e., accommodate a large number of users given only finite
amount of resources. We establish that stochastically localized
communication patterns are indispensable to network scalability.

Keywords—random geometric graph, social network, scalability

I. INTRODUCTION

Computer networks can be conceptually organized into
several distinct layers that, though logically separate, are opera-
tionally interconnected. Within this framework, such constructs
are often referred to as composite (or complex) networks
in which a communication network represents the physical
communication infrastructure, computing servers, and clients,
while a social network defines the communication patterns
among end users collaborating with one another through
applications running in end systems (host computers). An
information network captures the distribution and relationships
among information objects throughout the network.

Due to the involved intricacies, previous work has pri-
marily studied the performance of networks from unidimen-
sional viewpoints of communication, social, or information,
while the reciprocal interactions among these layers have
largely remained overlooked. Examples of studies of com-
munication networks neglecting the latent social relationships
are [1]-[4]. In contrast, several interaction patterns and social
paradigms [5]-[7] are independently studied while the restric-
tions imposed by realistic underlying communication networks
are neglected.

The interactions among the communication, social, and
information components of composite networks have an unde-
niable impact on their behavior. Neglecting such an important
aspect results in overly simplified models with implications
that, though strong in context, are limited in scope and may
hardly be extended to more sophisticated real-world scenarios.

We present an analytical framework to help improve the
understanding of the relationships between the communication
and social networks. We study how the spatial diversity of
social connections can affect the scalability of a wireless
network. To that end, we focus on the generic family of
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proximity-based social models according to which social rela-
tions are established with respect to the geographical vicinity
of nodes. Based on this model, nodes are socially inclined
to communicate with parties that are geographically closer to
them more often than with the ones at farther distances. The
relevance of this model to real-world social behaviors of people
has been widely studied and verified in both online and offline
domains [8]-[10].

The ultimate objective of this analysis is to identify classes
of social relationships that allow the underlying communica-
tion network to scale. For this purpose, we classify social
models in terms of their clustering degrees (the parameter
«a in our model) such that nodes show higher tendency to
communicate within their proximal neighborhood with a larger
clustering degree. According to our findings, stochastically
localized social interactions (i.e., « > 3) are indispensable
to scalability of both extended and dense networks.

Section II provides a formal description of our model
and the key assumptions. Sections III and IV discuss a
framework for characterizing routing dynamics in random
networks. Section V uses the resulting model to examine
scalability conditions. Finally, Section VI concludes the paper
and discusses some avenues for future research.

II. PROBLEM DEFINITION AND ASSUMPTIONS

The term scalable usually refers to systems capable of han-
dling a large number of users without incurring significant loss
in performance. Here, we present a more objective definition
of scalability. We introduce a cost measure that reflects the
average amount of resources needed to accommodate a user.
In the context of communication networks, a reasonable cost
measure is the average number of times a packet needs to be
transmitted until it is delivered to its intended destination.

We identify three key types of factors that can influence this
measure. Topological factors specify the physical connectivity
among nodes, e.g., the number of hops separating a source-
destination pair on the communication graph. Social factors
determine the patterns according to which nodes interact with
one another, e.g., how a source node chooses its destinations.
Unrestrained factors, which are related to such physical-layer
effects as interference, fading, noise, congestion, and others,
which may result in packet losses and incur re-transmissions.
Among these factors, the first two can be modeled under a
minimal and general set of assumptions, which we discuss
below. We do not address unrestrained factors in this paper.



A. The Connectivity Graph Model

We assume a Random Geometric Graph (RGG) as the
model for the network topology. Thanks to their simplicity
and generality, RGG’s have become a de facto standard in
the research community to represent the underlying topology
of wireless networks. A definition of RGG is provided in the
following for future reference.

Definition 1. G(X';7) represents a random geometric graph
in which X is a point process on RF that describes the
distribution of nodes. Further, an undirected edge connects
every pair u and v iff || Xy, — Xy|| < v for a given r € RT.

Here, ||.|| is a norm of choice on R¥. For simplicity, we
choose to use the Euclidean norm in this paper. We consider
a Poisson point process (P.P.P.), X, to describe the nodes’
geographical distribution in the network. Further, the physical
connectivity between nodes is defined according to a Boolean
model that assumes nodes as being connected if and only if
they are within a distance r from one another.

Two distinct models are commonly used when studying
asymptotic behaviors of RGG’s.

1)  Extended model, in which the node density is fixed,
and the network dimensions go to infinity.

2)  Dense model, in which the network dimensions are
fixed, and the node density goes to infinity.

We construct a general framework that can be used to analyze
the scaling properties of these two network models.

B. The Social Communications Model

The social model describes the quality and frequency
of inter-node communications in the network, i.e., how
sources choose their destinations. In this paper, we consider
a proximity-based social model which is defined as follows.

Definition 2. A communication network follows a proximity-
based social model if the probability of every node u and v
communicating with each other is inversely proportional to
| X, — X,||* for some arbitrary but fixed exponent o € R.

Definition 2 implies a social model that is power-law dis-
tributed with distance. Several studies [8]-[10] have recently
verified the relevance of this model to the actual patterns of
social interactions in real networks. According to this defini-
tion, for a specific realization of the network, the probability
of node u choosing v as destination, P, (v), is obtained as
follows:

d(u,v)™*
Zw;ﬁu d(u7 w)—a ’

where d(u,v) = ||X,, — Xy||- The denominator of (1) is in fact
a normalizing constant.

Pu(v) = ey

According to Equation (1), the geographically closer two
nodes are, the more likely they are to communicate. The
exception is the case of a = 0, which results in a uniform
communication model in which a source node is equally likely
to choose any other node as its destination, irrespective of their
distance. At the other extreme, when o« — ©0, every node

communicates with its closest neighbor almost surely. In fact,
different ranges of « correspond to distinct classes of social
relationships with identical scaling behaviors. Identifying such
social classes is a primary objective of this paper.

We want to obtain the probability distribution of the event
of having a social contact at any given physical distance by
considering a RGG on 2-D space. For generality purposes,
we choose to calibrate the distance measure by scaling it
by the nodes’ critical transmission range r. This allows our
social model to be equally applicable to both cases of dense
and extended topologies. Particularly, for the case of a dense
network in which the diameter of the network is fixed and the
critical transmission range approaches zero, this adjustment
allows having social contacts that are spaced infinitely far
away.

Let xo < z < d/r be such a range-adjusted distance
measure, where d is the diameter of the network; that is, the
longest possible physical distance between any pair of nodes,
and z, denotes the minimum range-adjusted distance between
two social contacts. Without loss of generality, we assume that
nodes’ social contacts are at least one transmission distance
away from them, which means x, = 1.

Define F,(x) = Pr{having a social contact at distance <
ra}. According to Definition 2, assume that such density
function is a power-law on distance. Also, by Poisson approx-
imation, we know that the number of potential social contacts
at any distance x in 2-D space is linearly proportional to x.
Therefore, we define the corresponding p.d.f. as follows:

falz) =cra-(ra) % =c (rx)l_a ,

in which c is a constant independent of x. To obtain the value

of ¢ note that
d/r C,,,lfoc d/r
1= w(x)de = 2zl 2
: falz)dz 5o X 1 )

Given that we are investigating the scaling behavior of a
network when d/r — oo, a natural requirement is to have
a > 2, as otherwise, the right-hand side of (2) would diverge.
Thus, from Equation (2), for any o > 2, we obtain that

c=r(2-a)(d*® —7“2_0‘)_1.

The p.d.f. f,(z) provides a description of our proximity-
based social model. We use this model to define our cost
measure as discussed in the following subsection.

C. Expected Social Path Length (ESPL)

Recall that the cost that every packet imposes to the
network is measured by the expected number of times it has
to be transmitted in the network until delivery. Knowing the
average number of hops each packet travels considering the
underlying social relations, we define the expected social path
length (ESPL) as follows.

Definition 3. The ESPL is the expected number of hops,
h(x), separating a source-destination pair on a proximity-
based social network identified by f,(x) and is calculated

as afr )
E[Z.] = fo(z) h(z)dx. 3)

1



Definition 3 exploits the notion of geographical distance to
combine the routing on the connectivity graph of the network
with the concept of social relations. In view of that, ESPL is a
cost measure reflecting the amount of resources that every node
consumes on average, while accounting for both topological
and social considerations.

Evidently, ESPL is a non-decreasing function of the net-
work size; nevertheless, the network cannot obviously sustain
a continuously increasing load forever as more nodes join in.
Hence, we present the following definition for the class of so-
cial relations that allow the underlying communication network
scale appropriately without significant loss in performance.

Definition 4. A communication network with proximity-based
social relations exhibits scalability if E[.£,] < oo when the
number of nodes n — oo.

Based on Definition 4, a necessary condition for scalability
is that the network performs, on average, a finite number of
transmissions per packet, no matter how large the network
would grow. In the sequel, we investigate to see how different
values of « affect the growth of ESPL as the network grows
larger. To that end, we first introduce a methodology to com-
pute the average number of hops, h(x), that a routing algorithm
takes over any given distance z. This analysis primarily forms
the content of the next section.

III. PROGRESSIVE WALKS ON RANDOM GRAPHS

As seen from Definition 3, an accurate evaluation of
ESPL depends at least in part on the performance of the
employed routing algorithm. Conventionally, it is preferred to
characterize the behavior of the system under idealistic con-
ditions to obtain a reasonable upper-bound on the achievable
performance limits. As such, in most practical settings, the
underlying routing algorithm is usually assumed to be optimal,
i.e., the minimum weight routing (a.k.a. shortest path routing).

Although finding optimal paths on deterministic graphs
is algorithmically straightforward, in the context of random
graphs, it turns out to be a highly challenging problem. Most of
this complexity stems from the random nature of the underly-
ing topology. In essence, an optimal routing algorithm requires
global and exact information about the network structure which
is virtually non-existent when speaking of RGG’s.

Despite theoretical difficulties in analysis of optimal rout-
ing in random configurations, more tractable solutions with
near-optimal performance can still be conceived. One such
routing strategy is known as greedy forwarding in which every
relay attempts to push the packet some distance closer to
the destination (see for example [11]). With this policy, even
though the global structure of the routes will/should not be
necessarily optimized, a sub-optimal path can still be found
through making locally optimized decisions when choosing
subsequent relays along the path.

Various criteria for optimizing local decisions have been
studied in the existing literature, and this is, essentially, what
makes different variations of greedy forwarding. We abstract
away such functional details by introducing the notion of
progressive walk that captures the gist of greedy forwarding.

Definition 5. We say a walk (s,...,t) on G(X;r) is a
progressive walk from s to t and denote it with s ~ t iff
Xy — Xt|| > || Xy — Xi|| for all ordered pairs (u,v) on s ~ t.

In fact, for a given pair of source-destination, a greedy
forwarding algorithm outputs a progressive walk on the com-
munication graph providing the existence of such a walk, and
that the algorithm can find it. The expected number of hops
on a greedy route is equivalent to the expected length of the
corresponding walk.

Note that the former requirement on the existence of such
a walk is trivial when the expected length of the walk is a
parameter of interest. The latter condition, on the other hand,
implicitly assumes that the routing algorithm is always able
to find a progressive walk with high probability (w.h.p.). Of
course, in practice, this might not necessarily be true. To
elucidate, let us first have a closer look at the core mechanism
of the greedy routing algorithm, i.e., progressive forwarding,
through the following definition. Here, B(X,;r) denotes the
ball of radius r centered at X.

Definition 6. We define the hand-off region of a relay u for
a final destination t as Hy(u) £ B(X,;r) N B(Xy; x), where
x = || X, — X¢||. Further, we say node v is a potential next-hop

Jor u ~> tiff Xy € Hi(u).

In accordance with the requirements of Definition 5, the
hand-off region defines the subset of nodes that can be con-
sidered by a relay as potential next-hops to further the packet
towards its destination. The convergence of the progressive
walk relies upon having at least one potential next-hop in
each and every hand-off region along the walk. If the packet
comes at a relay with a void hand-off region, i.e., a dead-
end, the progressive walk stalls as no further progress is
allowed. For the time being, we continue with the assumption
that the greedy algorithm converges w.h.p. However, we shall
later relax this assumption by slightly modifying our routing
algorithm to circumvent dead-ends should one be encountered.

A. Greedy Forwarding with Almost Sure Convergence

As implied by Definition 5, the key element of a progres-
sive walk is to progressively reduce the remaining distance
to the destination along the walk. In fact, at every stage
of the walk, the packet is pushed some distance closer to
the destination on the Euclidean plane. In view of this, a
progressive walk can be perceived as a drifted random walk on
the communication graph. The distance traveled by the packet
at every hop is a random variable determined by the process
specifying the topology of the communication graph as well
as the optimization criteria of the greedy routing algorithm.
Exploiting results from the theory of martingales, Theorem 1
provides a useful model that describes the relationship between
the physical distance and the average hop-count on a RGG,
under certain conditions when a greedy forwarding algorithm
is considered.

Theorem 1. Consider a source s and a destination t spaced at
distance © = | Xs — X;|| > r in a RGG G(X;r). Node s sends
a packet to t through multiple intermediate hops employing
a geographical greedy forwarding algorithm. Let &5 be a
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Fig. 1: A 2-D illustration of how the hand-off region, i.e., shaded
area, shrinks as the remaining distance to the destination is reduced.
Here ¢ is the destination, and u, and u.. represent relays at distances
r and co from destination, respectively.

random variable denoting the progress towards destination
if a transmission at distance § from destination takes place.
Provided that £5’s are independent, and the routing algorithm
converges w.h.p.,

Jim E[&] < -5 < lim E[&]. “4)

h()

Proof: Let Ss(t) = 3.'_, &(i) be a random walk where
&s5(4) is a stochastic process with respect to ¢ representing the
progress towards destination when at distance § from it. In
fact, S5 is a progressive walk that assumes all relays have
similar-sized hand-off regions as if they are all at distance &
from destination.

Let T5 = inf{¢ : S5(t) > x} be the first time S5(¢) hits the
target distance . Note that 0 < &5(i) < r and E[¢5] > 0; thus,
P(T5<OO)—1 Also, {t<T5}—{S5( ) S5()<.”L‘}
which is clearly independent of Ss(¢’) for t' > T(;. Therefore,
T is a stopping time with respect to S5 (t).

Fix a ¢ such that » < § < =z, and consider a relay at
distance § from destination. The measure of hand-off region
is a monotonically decreasing function of § (see Fig. 1);
therefore,

Jim B[] < Elg] < Jim E[g] forall 6>r. (5)

Now, consider the process Ms(t) = Ss(t) — t E[&s]. Note that,

E[M; (1) = E|S5(t) — tEfgs]| = [255 ) — tE[&]]

E[zt: (gg(z) - ]E[&s])] = ZE[&(@') - E[ﬁs]}

S (Bl — Bles)) = 0 < oo,

i=1

Also, E[Ms(t +1) — Ms(t)] = E[Ms(t +1)] — E[Ms(t)] = 0.
Therefore, M;(t) is a martingale with respect to £5. According
to the optional stopping theorem, M;(Ts At) is also a martin-
gale with respect to &s;, where (Ts A t) is the minimum of T
and t. Hence,

E[M;(Ts)] = E[Sé(TJ) —Ts E[ﬁé]}
= E[S5(T5)] — E[T5] - E[§5] = 0

which yields
E[S5(T5)] = E[T5] - E[Ss] - (©6)

Now, consider the process S(t) = S)!_, &,(t), where y =
max (z — S(t—1),r) and S(0) = 0. Let T = min{t : S(t) >
x} be a stopping time. From Equation (5), for all y > r we
have that

Jim E[és] - E[T] <E[§,] - E[T] < lim E[és] - E[T] =
lim Bg;] - E[T] < E[S(T)] < lm E[&)-E[T] =
slirg Elg)] < Egg)] < 51320 El&s]-

Having E[S(T)] = z and noting that E[T] = h(z) is in
fact the average number of hops over distance x, we obtain
Equation (4) and the theorem follows. [ |

Given a physical distance x and under a greedy forwarding
algorithm, Theorem 1 bounds the expected number of hops
over x. As mentioned earlier, a problem that limits the accuracy
of the given bounds is the assumption on the convergence of
the routing algorithm w.h.p. This assumption might be true
when studying dense networks, but it is not applicable to
networks of finite node density where a dead-end might be
encountered. In the following, we extend the case studied in
Theorem 1 to account for such possibilities as well.

B. Greedy Forwarding with Backtracking

We analyze a modified greedy forwarding algorithm which
works as follows. At every stage ¢ of the walk, the packet
either makes a progress of +&(t) towards destination with
probability p, or backtracks for a random step size of —&(t)
with probability 1 — p in the event of encountering a dead-end.
Considering the underlying P.P.P., the probability p is then

pIHE)

where p is the intensity of the P.P.P., and |H(-)| denotes the
Lebesgue measure of the hand-off region. The corresponding
random walk, hence, is formalized as follows:

St —1 t—1
S(t) = { Sgt _ 1; tggt - 1% with probability 1 — p

and S(0) = 0. Therefore, E[S(t)] = S(t—1)+(2p—1) £(t—1).
Consider the process M (t) = S(t) —t (2p — 1) E¢ for ¢t > 0.
We first verify that M (¢) is a martingale.
E[M(t +1) [ M(#)]
=E[S(t+1)— (t+1)(2p — DEE| S(t) — t(2p — 1)EE]
=E[S(t) + (2p — 1&(t) — (t+ 1)(2p — DEE| - |
=St)—t(2p—1)EE = M(¢).

p:l—exp(—

with probability p,

Define a stopping time 7 = inf{¢t : S(t) > D}. By the
optional stopping theorem, E[M (T)] = E[M(0)] =0

. Thus,
EIS(T)) = (2p— DE[TIEE] =
r=(p- DETEE =
M= nEE "

The natural constraint of E[T] > 0 requires that p > 1/2

in order for Equation (7) to make sense. As p — %Jr, E[T]

diverges, which is an intuitive behavior. Also, when p = 1, (7)
simplifies to (6) which is also expected.
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Fig. 2: Succeeding hand-off regions may overlap. Here, the darker
shaded region is empty, and part of it, i.e., the crosshatched area,
overlaps the hand-off region of v on v ~ .

The bounds given in Theorem 1 are expressed in terms of
the expected progress the greedy forwarding algorithm makes
per hop when at a limiting distance of oo or r from destination.
In the next section, we examine the tightness of the suggested
bounds in Theorem 1.

IV. EXPECTED PROGRESS PER HOP

Aside from the size of the hand-off region, the expected
progress per hop also depends on the forwarding policy of
the greedy algorithm, i.e., the criteria by which the next relay
is chosen from within the set of potential next-hops. Several
next-hop selection policies have been proposed in the context
of greedy routing algorithms. A widely used policy is to always
choose the next-hop with the least remaining distance (LRD) to
the destination. Even though this strategy does not guarantee
that the packet necessarily travels the fewest hops, it ensures
the maximum possible progress towards the destination at
every hop.

An issue with the LRD policy is that it violates the required
condition on the independence of per-hop progresses. To
clarify, observe that the hand-off regions of subsequent hops
are not disjoint. For instance, in Fig. 2, the hand-off region of
node u overlaps that of node v on v ~» ¢ in the crosshatched
region. Therefore, if node v is chosen as next-hop for u ~ ¢
under LRD, then v cannot logically have a potential next-hop
in the crosshatched region. This implies that when LRD is used
as the forwarding policy, the information from the past history
of the walk can affect the future decisions.

To be able to use Theorem 1, we must make sure that the
adopted forwarding policy does not violate the independence
of succeeding progresses as described above. One such com-
pliant policy is random greedy forwarding (RGF) by which a
current relay forwards the packet to a randomly chosen next-
hop. Such a next-hop could clearly be located anywhere within
its hand-off region, and its election as the next relay does not
impose any restriction on the location of subsequent hops. As
such, RGF satisfies the required conditions of Theorem 1.

In what follows, we quantify the expected progress per hop
under RGF in 2-D space. It is worth mentioning that although
RGF is not an optimal forwarding strategy, it can serve as a
lower-bound for more aggressive policies such as LRD.

A. A Lower-Bound on EI[§]

Consider the case when the source and destination are
located at a distance r + € for a small positive € — 0. In this
case, the hand-off region for the source can be approximated

by a symmetrical biconvex lens, as illustrated in the left-hand-
side of Fig. 1. For the moment, assume r = 1 and define the
boundaries of the hand-off region as follows:

| = VI-(1-6)2=v25—-46 if0<s<i,
ol V1I-4? if $<6<1.

Due to the symmetry of the region, the enclosed area can
be calculated as

3 V26-57 3
T):4-/ / dwd5:4-/ V26 —62dJ.
o Jo 0

Because the next-hop can be located anywhere within the
hand-off region with equal probability, E[£(r)] is the expected
distance from the relay over the region which can be calculated
as follows:

5 12
E[é("’)]—m(/o . V 62+w2 de5+
1 /162
/ V2 4+ w? dwd5> )

5 J0

-

2

Using numerical methods and noting that E[£(r)] is linear in
r, for a general case, we obtain that

51_1)111+ E[£(6)] ~ 0.643 7. (8)

B. An Upper-Bound on E[¢]

Consider the right-hand side of Fig. 1. The boundary of
the hand-off region is defined as follows:

lwl=+v1-082 for0<d<1.

The area of the hand-off region is clearly A(oco) = /2. Hence,

%@d(/()l/()mx/mdwdzs)__

By analogy to the previous case, we obtain that
lim E[£(6)] ~ 0.667 . ©))
§—00

E[§(o0)] =

From Theorem 1 and Equations (8) and (9), we obtain that,
under a routing with RGF policy, the average hop count over
any given distance x > r is bounded as

1.50 (%) < h(z) < 1.56 (f) . (10)

Note that /r is the theoretical lower-bound on the number of
hops under any routing scheme, which, of course, can almost
never be attained on a RGG.

V. ANALYSIS OF SCALABILITY

Leveraging the mathematical models developed in previous
sections, we now examine the scalability conditions of random
networks under proximity-based social models. The following
theorem identifies a large family of social relationships that let
a communication network scale.

Theorem 2. Under a proximity-based social model identified
by the power-law p.df. f.(-), an extended or dense RGG
exhibits scalability if o > 3.



Proof: From Definition 4, the required condition on
scalability is to maintain E[£L,] < co when the network size
goes to infinity. From Equation (10) and for a range-adjusted
distance measure x we have h(x) < ¢’z for some constant
¢’ > 0. Substituting this into Equation (3) and expanding yields

Sl

e’

c¢(rzx) - zdx

=cdri™® /

1
2— dBG=a) _p(B=a)

= ( O‘) : ! . (11
33—« rd2-o) —pB-a)

Examining the convergence conditions for (11), in the

following, we prove the result stated by the theorem for the
extended and dense models of networks separately.

Sl

z?7%dz  (assuming a > 2, o # 3)

a) The case for extended networks: Santi and
Blough [12] derive the critical transmission range for extended
networks as r(d) = O(y/logd), where d is the diameter of
the network. We are interested in the scaling behavior of the
network at the limiting condition of d — oco. Owing to the
fact that d grows much faster than r(d) in case of an extended
network, we can write

. . ga=2\[(drd)* —r(d)?>d*
Jm ElZ] < Jim (a - 3) (d2 ()@ — r(d)3 do

-2
:c’(a 3)<oo providing that o > 3.
o —

When a < 3, the big fraction on the right-hand side above
diverges as d/r(d). Therefore, the foregoing limit is finite only
if > 3.

b) The case for dense networks: The critical transmis-
sion range to ensure connectivity in dense graphs is derived
by Gupta and Kumar [13] as r(n) = @(\/k’%). Similar to
the case for extended networks, we write

-2 d3 « _ 3 de
lim E[.Z,] < lim c'(a )( rin) rin) ) .

n—00 n—oo  \a—3/\d2r(n)etl) —r(n)3d>

Because (n) ——> 0, the rightmost term becomes an inde-
terminate form. Assuming o > 3 and by applying I’"Hopital’s
rule to the rightmost term 3 times, it is easy to verify that it
tends to 1 as n — oo. Therefore,

lim E[.Z,] < c’(a —

n—00 o —

2
3) < oo providing that o > 3.

The divergence of the rightmost term when a < 3 is clear
noting that d/r(n) would be the dominant term therein.

Hence, o > 3 is the necessary condition for scalability in
the extended and dense models of RGG’s. ]

A similar (though more heuristic) line of study was previ-
ously published by Li ef al. [14] and reported o > 2 as the
scalability threshold. To clarify, we underline that this apparent
inconsistency, in fact, stems from a slight difference in the
construction of the models. More precisely, we have considered
the effect of greater multiplicity of social contacts at farther
geographical distances, while this observation was absent in
the previous work of Li et al.

VI. CONCLUSIONS AND OUTLOOK

We investigated how geographical diversity of social inter-
actions can affect the scalability of communication networks.
Particularly, we identified a threshold on the spatial diversity
of social interactions beyond which the majority of inter-
node communications become statistically concentrated within
a finite neighborhood around nodes. We showed that this
phenomenon enables the underlying communication graph to
scale as the number of nodes in the network increases.

The modeling framework we have introduced is very
general and the results we have derived apply to the both dense
and extended network models. The framework can be used
to derive more realistic bounds on the throughput capacity
of composite networks as compared against the pessimistic
results of Gupta and Kumar [1] which neglects the importance
of social relationships.
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