- Main
Aqueous electrolyte-gated solution-processed metal oxide transistors for direct cellular interfaces.
Published Web Location
https://doi.org/10.1063/5.0138861Abstract
Biocompatible field-effect-transistor-based biosensors have drawn attention for the development of next-generation human-friendly electronics. High-performance electronic devices must achieve low-voltage operation, long-term operational stability, and biocompatibility. Herein, we propose an electrolyte-gated thin-film transistor made of large-area solution-processed indium-gallium-zinc oxide (IGZO) semiconductors capable of directly interacting with live cells at physiological conditions. The fabricated transistors exhibit good electrical performance operating under sub-0.5 V conditions with high on-/off-current ratios (>107) and transconductance (>1.0 mS) over an extended operational lifetime. Furthermore, we verified the biocompatibility of the IGZO surface to various types of mammalian cells in terms of cell viability, proliferation, morphology, and drug responsiveness. Finally, the prolonged stable operation of electrolyte-gated transistor devices directly integrated with live cells provides the proof-of-concept for solution-processed metal oxide material-based direct cellular interfaces.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-