
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Fault-tolerant grid services

Permalink
https://escholarship.org/uc/item/5mn1s9s7

Author
Zhang, Xianan

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mn1s9s7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Fault-tolerant Grid Services

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Xianan Zhang

Committee in charge:

Professor Keith Marzullo, Chair
Professor Samuel Buss
Professor Sidney Karin
Professor Kenneth Kreutz-Delgado
Professor Geoff Voelker

2006

Copyright

Xianan Zhang, 2006

All rights reserved.

The dissertation of Xianan Zhang is approved, and it is

acceptable in quality and form for publication on micro-

film:

Chair

University of California, San Diego

2006

iii

TABLE OF CONTENTS

Signature Page ...iii

Table of Contents .. iv

List of Figures..vi

List of Tables...viii

Acknowledgments ... ix

Vita, Publications and Field of Study..xi

Abstract..xiii

Chapter I. Introduction ...1

Chapter II. Background ..8

A. Primary-backup ..8
B. Service Oriented Architectures...9
C. The Grid Standards ...11
D. Paxos...12

Chapter III Primary-backup on Grid Middlewares ...15

A. Architecture ..16
B. Implementation ...18
C. Performance ..23

1. Matchmaker Grid Service...24
2. State transfer...25
3. Failover...28

D. Summary...29
E. Acknowledgements...30

Chapter IV Durability - a Service Attribute ..31

A. States and Durability ..32
1. State in SOAs ...32
2. State Durability...34

B. Customizable Transparent Durability..35
1. Assumptions ...36
2. Durability Mechanisms ..36
3. Challenges ..37

C. Solution..38

 iv

1. Overview ..38
2. Durability Proxies...41
3. Durability Mapping ... 46
4. Durability Compiler.. . 47

D. Examples ...47
1. The Counter Service .. 48
2. The Matchmaker Service... 49

E. Related Work ...52
F. Summary ..54
G. Acknowledgements ...55

Chapter V. Practical Performance of Paxos ...56

A. Classic Paxos versus Fast Paxos: Basics ...58
B. Probabilistic Analysis ..61

1. Pareto Distributions .. 64
2. Empirical Distributions ..69

C. Experiments ...74
D. Summary..80

Chapter VI. Primary-backup Paxos..82

A. The protocol...83
1. System model ..83
2. The basic protocol ..84
3. X-Paxos for read requests.. 87
4. T-Paxos for transactions ...89
5. Leader switches ..90

B. Proof...91
C. Evaluation ..96

1. The basic protocol and X-Paxos ..98
2. T-Paxos ... 100
3. Tolerating multiple failures ..102

D. Related Work...104
E. Summary ..106
F. Acknowledgements ..107

Chapter VII. Conclusion...108

Bibliography ...110

 v

LIST OF FIGURES

Figure II.1 Primary-backup Protocol..9
Figure II.2 Example Service Oriented Architecture...10
Figure II.3 Paxos ..13

Figure III.1 Pseudocode for the fault-tolerant stub on the client..................................19
Figure III.2 Pseudocode for the primary service ..21
Figure III.3 Pseudocode for the backup service ...22
Figure III.4 Median Round-trip times for state transfer using Socket, Call and
Notification with different state sizes. The white portion is the round-trip time of a
client request without replication. Therefore the overall size of the each bar is the total
client round-trip time..27

Figure IV.1 Example Architecture ...39
Figure IV.2 Durability proxy interface...41
Figure IV.3 Counter Service Throughput...49
Figure IV.4 Durability mapping for MachineQueue..51
Figure IV.5 Durability mapping for AccountSet..52
Figure IV.6 Matchmaker Service Performance..53

Figure V.1 WAN Trace ..62
Figure V.2 LAN Trace ...63
Figure V.3 Time to learn using Pareto distributions: bw = 100, al = 2:0, bl = 3, t = 1

..65
Figure V.4 Time to learn using Pareto distributions: bw = 100, al = 2:0, bl = 3, t = 3

..67
Figure V.5 Probability of a collision - Pareto distributions, bl = 10068
Figure V.6 Time to learn, single Pareto distribution, al = 2:0, bl = 370
Figure V.7 Time to learn, empirical distributions, set 1...71
Figure V.8 Time to learn, Empirical distributions, set 2 ..72
Figure V.9 Time to learn, Empirical distribution, local-area communication73
Figure V.10 Probability of collision - Empirical distributions.....................................75
Figure V.11 Request CDF: UCSD - Max Planck Institute...78
Figure V.12 Request CDF: Princeton - UCSD...79
Figure V.13 Sysnet request CDF and collision probability..80

Figure VI.1 The Basic Protocol..86
Figure VI.2 X-Paxos...88
Figure VI.3 T-Paxos execution...90
Figure VI.4 Service throughput on Sysnet ...98
Figure VI.5 Service throughput - more clients ...99
Figure VI.6 Service throughput from Berkeley to Princeton100
Figure VI.7 Service throughput on WAN ..101

 vi

Figure VI.8 Transaction throughput on Sysnet ..104

 vii

LIST OF TABLES

Table III.1 State transfer round-trip time (milliseconds)..25
Table III.2 Client request round-trip time (milliseconds) ..26
Table III.3 Ratio of client request round-trip with primary-backup to median/mean
client round-trip without replication...27
Table III.4 Failover duration (milliseconds) ..28

Table V.1 Classic and Fast Paxos...59

Table VI.1 Transaction response time..102

 viii

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support and

encouragements of many people. I owe debts of gratitude to those people who

introduce me to the fascinating computer system research world and help me in

different aspects.

First and foremost, to my advisor and mentor, Professor Keith Marzullo,

who brought me into this area and led me through the graduate study by teaching

me how to solve problems and how to express more clearly. My graduate student

experience has been both enjoyable and successful because Professor Marzullo has

always been supportive and understanding. My thanks also go to all my committee

members, Prof. Samuel Buss, Prof. Sidney Karin, Prof. Kenneth Kreutz-Delgado

and Prof. Geoff Voelker for their helpful suggestions and advice.

Thanks next go to Dr. Rick Schlitching and Dr. Matti Hiltunen. I

knew Rick and Matti when I did my summer intern at AT&T Labs - Research in

2003. Since then, we have been working closely together. They are my wonderful

mentors and close friends. I learned a lot from working with them, and I enjoyed

this experience a lot.

I also thank Dr. Flavio Junqueira who cooperated with me on the asyn-

chronous replication protocols, and Dr. Dmitrii Zagorodnov who cooperated with

me on the work on studying primary-backup grid services.

Finally, I owe an enormous dept of gratitude to my family and friends,

especially my parents, my dear husband Pengyue Wen and my sweet daughter

Jacqueline, for all the love and support they have generously given to me. I would

not have made it without you!

ix

Chapter III is, in part, reprints of material as it appears in ”Fault-tolerant

Grid Services Using Primary-Backup: Feasibility and Performance,” by Xianan

Zhang, Dmitrii Zagorodnov, Matti Hiltunen, Keith Marzullo, and Richard D.

Schlichting, in the Proceedings of the 2004 IEEE International Conference on

Cluster Computing, September 2004. The dissertation author was the primary

coauthor and co-investigator of this paper.

Chapter IV is, in part, reprints of material as it appears in ”Customizable

Service State Durability for Service Oriented Architecture,” by Xianan Zhang,

Matti A. Hiltunen, Keith Marzullo, and Richard D. Schlichting, in the Proceedings

of the 6th European Dependable Computing Conference (EDCC-6), October, 2006.

The dissertation author was the primary coauthor and co-investigator of this paper.

Chapter VI is, in part, reprints of material as it appears in ”Replicat-

ing Nondeterministic Services on Grid Environments,” by Xianan Zhang, Flavio

Junqueira, Matti A. Hiltunen, Keith Marzullo, and Richard D. Schlichting, in

the Proceedings of the 15th IEEE International Symposium on High-Performance

Distributed Computing (HPDC-15), June, 2006. The dissertation author was the

primary coauthor and co-investigator of this paper.

x

VITA

1976 Born, Jiamusi, Heilongjiang Province, P.R.China

1999 B.S. Department of Computer Science, Peking Uni-
versity, Beijing, P.R.China

2000 – 2006 Research Assistant, Department of Computer Science
and Engineering, University of California, San Diego

2002 M.S., Department of Computer Science and Engineer-
ing, University of California, San Diego

2003 Summer Intern, AT&T Labs - Research

2004 Teaching Assistant, Department of Computer Science
and Engineering, University of California, San Diego

2004 Lecturer, Department of Computer Science and Engi-
neering, University of California, San Diego

2006 Intern, IBM Almaden Research Lab

2006 Ph.D., Department of Computer Science and Engi-
neering, University of California, San Diego

PUBLICATIONS

Xianan Zhang, Matti A. Hiltunen, Keith Marzullo, and Richard D. Schlichting,
”Customizable Service State Durability for Service Oriented Architecture”, in the
Proceedings the 6th European Dependable Computing Conference (EDCC-6), Oc-
tober, 2006.

Xianan Zhang, Flavio Junqueira, Matti A. Hiltunen, Keith Marzullo, and Richard
D. Schlichting, ”Replicating Nondeterministic Services on Grid Environments”, in
the Proceedings of the 15th IEEE International Symposium on High-Performance
Distributed Computing (HPDC-15), June, 2006.

Xianan Zhang, Dmitrii Zagorodnov, Matti Hiltunen, Keith Marzullo, and Richard
D. Schlichting, ”Fault-tolerant Grid Services Using Primary-Backup: Feasibility
and Performance”, in the Proceedings of the 2004 IEEE International Conference
on Cluster Computing, September 2004.

Kjetil Jacobsen, Xianan Zhang, and Keith Marzullo. Group Membership and
Wide-Area Master-Worker Computations, in Proceedings of the 23rd International
Conference on Distributed Computing Systems (ICDCS 2003), May 19-22, 2003,
Providence, Rhode Island, USA.

xi

Hyojong Song, Xin Liu, Denis Jakobsen, Ranjita Bhagwan, Xianan Zhang, Ken-
jiro Taura, and Andrew Chien. The MicroGrid: a Scientific Tool for Modeling
Computational Grids, Super Computing 2000 (SC 2000), Nov. 4-10, 2000, Dallas,
TX.

Hyojong Song, Xin Liu, Denis Jakobsen, Ranjita Bhagwan, Xianan Zhang, Ken-
jiro Taura, and Andrew Chien. The MicroGrid: a Scientific Tool for Modeling
Computational Grids, Scientific Programming, Vol. 8, No. 3, pp. 127-141, 2000.

FIELDS OF STUDY

Major Field: System and Networking, Computer Science

xii

ABSTRACT OF THE DISSERTATION

Fault-tolerant Grid Services

by

Xianan Zhang

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Keith Marzullo, Chair

My thesis investigates how to replicate services using the primary-backup

approach in grid environments. First, the design of a primary-backup protocol

using the OGSI grid standard and implementation based on Globus Toolkit 3 are

presented, in order to evaluate the feasibility and performance of existing grid

middlewares. Then an architecture of integrating the primary-backup replication

with other techniques is proposed and evaluated. Finally, this thesis addressing

the issue replicating services on asynchronous grid environments. The experiments

on local clusters and PlanetLab show the protocols we proposed provide good

performance for replicating grid services.

xiii

Chapter I

Introduction

Grid concepts and technologies [26] were originally developed to enable

resource sharing among scientific collaborators. Scientists use grid middleware

plateforms to manage their computing resources and storage resources, so that

when they want to deploy the experiments and need more resources than available

locally, they can borrow resources from collaborators while ensuring safety, privacy,

and efficiency of the resource owners’ jobs and data at the same time. For example,

suppose that research lab A and B both have certain computing capabilities. When

A needs to handle a computing task that may take days or weeks to execute, and

B’s machines happen to be idle at that time, time can be saved if A is capable of

using some of B’s computing power for its task. Furthermore, B may be happy to

help A since B may also need similar helps from A from time to time when there is a

need for B to handle a task beyond its capability. On the other hand, B should not

have to relinquish priority, access, privacy and security of its machines for allowing

A to use them. Scientific grid has achieved great successes, through testbeds and

cooperative projects, such as GrADS [8], GriPhyN [30] and TeraGrid [55].

More recently, it has become clear that similar requirements arise in

the commercial sector such as enterprise application integration and business-to-

business partner collaboration over the Internet. The case given above for two

research labs can also happen for two business partners or two departments of the

1

2

same company. Just as the Web began as a technology in scientific community

and was adopted by e-business later, we see a similar trend for the Grid.

Since then, the emphasis of grid research has shifted from building basic

functions to providing easily deployed and integrated infrastructures and interfaces.

Combining grid technologies with service oriented architectures (SOA) meets this

requirement. Since web services’ standards are the most successful example of

the SOA interfaces, they have been extended and evolved to the interfaces of grid

services – the Open Grid Services Infrastructure (OGSI) [56] standards and the

Web Service Resource Framework (WSRF) [19].

Given the fact that grid resources are heterogeneous and often belong

to multi-organizations, failures of the resources are not uncommon. Therefore, it

is critical to build reliable grid services based on unreliable resources. Although

building reliable services is not a new problem and has been investigated as fault

tolerant techniques for years, it remains as an unsolved issue whether the existing

fault tolerant protocols can work well for grid services.

Web services are often simply replicated for fault tolerance since they are

stateless. The data of the web services are usually stored in the database and hence

the services read and write the database tables when they need to refer to the data

for serving clients’ requests. If one service replica fails, the clients’ requests will be

directed to another service – either a newly-created one or an existing one. Since

no data is lost because of the failed service replica and all the replicas have the

same functions, the web service performs well for the clients as long as there are

some replica available.

However, this simple approach doesn’t work for grid services because they

are stateful – unlike for web services: if one replica of a grid service fails, all its

states are lost and won’t be available at other replicas unless the service replicas

synchronize their states with each other.

There are two common fault tolerant approaches for synchronizing repli-

cas’ states – state machine and primary-backup. The state machine approach

3

requires all replicas execute the clients’ requests in the same sequence. Despite

the fact that this approach has the benefit of tolerating not only machine crashes

and network failures, but also the Byzantine failures, it requires the services to

be deterministic. On the other hand, in the primary-backup approach one replica

serves as the primary while the others are backups. Only the primary executes

the clients’ requests and sends its new state to the backups. Then, the backups

update their states accordingly. In this way, although the primary-backup doesn’t

tolerate the Byzantine failures, it works even if the services are not deterministic.

Which approach is appropriate depends on whether nondeterminism –

different replicas of the same service may have divergent states even though they

execute the same sequences of commands – is significant in grid services. Here I

use two examples to demonstrate how nondeterminism can arise in a grid service

context.

The first example is a Grid Resource Broker Service. A “resource bro-

ker” is a useful service in a grid environment, and grid resource brokers have been

developed in several projects. Large-scale grid platforms contain large numbers

of resources and each under the control of a local resource manager. Informa-

tion about the available resources can typically be found via grid information

services [20]. Grid users that wish to acquire grid resources to execute applica-

tions could then retrieve this resource information, select resources, and interact

with local resource managers directly. This approach, while possible, has two main

disadvantages. First, the grid users should not be responsible for developing the

above functionality. Indeed, this functionality is likely needed by many users and it

makes sense to provide a single implementation that can be shared. Also, resource

selection is a notoriously difficult question and many users lack the expertise nec-

essary for implementing it effectively. Second, having each user select resources

individually may not be desirable. Indeed, providing a single brokering service

that is used by many users provides the opportunity to implement techniques such

as load balancing across the resources. For the above reasons, several research

4

projects have investigated grid resource broker services [28, 48] and tackled the

design and development of grid resource brokers, which can be deployed as grid

services and isolate users from the complexity of the resource environment.

A resource broker service accepts requests for resources and uses specific

algorithms to select appropriate resources among the ones that the broker has

discovered using grid resource information service. A popular way to perform such

selection is to employ a randomized algorithm [23, 44, 62], so as to achieve load-

balancing (e.g., to avoid sending the same reply to two consecutive requests). This

is an inherent source of nondeterminism, which is part of the algorithm itself. To

make this service fault-tolerant, a simple replication of the service is not feasible

as replicas may provide diverging answers.

The second example is a grid scheduling service that accepts jobs from

the clients, invokes some resource broker service to select appropriate resources

and then deploys the jobs to selected resources. This example actually arose in

the NILE Global Planner [4]. Assume the grid scheduling service examines the

jobs in First-Come-First-Serve (FCFS) order while FCFS order can be overridden

by job priorities. This service can become nondeterministic as follows. Assume

Job A arrives at time t1 and Job B arrives at t2 (t2 > t1) with a higher priority.

Depending on the speed of the scheduler, if it examines the job queues at any

time between t1 and t2, it will select Job A. However, if it examines the job queue

after t2, it will schedule Job B before Job A. So the service’s behavior depends not

only on the sequence of requests received, but also on the processing speed of the

machine that hosts the service. Although the service developer does not intend to

build a nondeterministic service, this grid scheduling service ends up having this

characteristic.

It is often desirable to make such a grid scheduling service highly-available

using replication to ensure the clients’ jobs are served in a timely manner. The

simple approach is not to synchronize these service replicas. Then, when a replica

examines the jobs, it does not know which jobs have been examined by other

5

replicas. Although this approach is relatively easy to implement, it has some

limitations. For example, unless it relies on other techniques to collect grid resource

information (e.g., machines’ load) as the Condor Matchmaker Service does [49],

it is hard for the scheduling service to deliver policies such as load-balancing or

high throughput without knowing the previous assignments. This follows since the

machine load and the job delivery time depend on the jobs that are executing or

waiting to execute—a subset of previous scheduled jobs. Another solution is to use

replication in time based on message logging techniques [24]. This is the approach

that was used in NILE. A third solution, which has much lower fault recovery

latency, is to synchronize active replicas of the grid scheduling service and ensure

that the service replicas agree on the previous job scheduling decisions. To do this,

we need a protocol that can synchronize the replicas of a nondeterministic service.

Since the grid services are often nondeterministic as described in the

given examples, my thesis focuses on the fault tolerant approach applicable to

nondeterministic services – the primary-backup.

The primary-backup itself has been well studied. But how to make it work

well on the grid environments remains as an open question. More specifically, the

following issues are worth investigating.

1. Tradeoff between performance and utilization of grid facilities. Grid

services are designed using very high-level protocols and services. We could

not expect that a service built on top of SOAP will have the same latency

as a service built directly on top of TCP. Using the functions defined in

grid service standards to provide high service availability is appealing: one

could provide it as a feature portable across any grid service. But, if the

performance is much worse than the same feature implemented as a low

level, the performance may outweigh the engineering appeal of a high-level

implementation. Therefore, it is critical to analyze the tradeoff between

performance and the utilization of facilities provided by the grid standards.

6

2. Integration with other techniques making states durable. The prima-

ry-backup makes not only the grid services highly-available, but also the ser-

vices’ states durable against failures. Given the fact that the service states

differ in the degree of durability that they require and each mechanism comes

with a certain cost, it is appealing to provide an architecture allowing the

application developers use different fault-tolerance techniques with different

tradeoffs to achieve the durability of the service states. For example, the

developer might want to use a database for states that need to survive very

severe failures, such as billing information, while use the primary-backup

replication for the states that need less durability. In SOAs, services are

designed to be independent and largely self-contained abstractions that in-

teract only through well-defined service interfaces. Therefore, it is non-trivial

to integrate different fault-tolerance techniques across services in a coherent

way, while still providing a good balance with the conflicting requirements

of application transparency and execution efficiency.

3. Practical protocols applicable on asynchronous systems. The grid

environments are often asynchronous – the process execution speeds and

message delivery delays are not bounded. In asynchronous systems, it is

not possible to implement a perfect failure detector, which is necessary for

the primary-backup implementations. Using Consensus algorithms to imple-

ment a protocol that work as the primary-backup in asynchronous systems

has been proposed and studied only theoretically [22]. No practical study has

been reported in the literature. Therefore, it still remains as an open ques-

tion how we can design and implement the primary-backup on asynchronous

systems efficiently in practice.

The following chapters of my thesis are organized as following. Chapter II

reviews the background work and introduces the functions of the primary-backup

replication, the grid standards and a Consensus protocol Paxos on which we built

7

our protocols for asynchronous systems.

Chapter III studies the tradeoff between performance and use of grid

facilities associated with building highly-available grid services using the primary-

backup approach. First, the design of a primary-backup protocol using OGSI is

presented. Then the performance implications and tradeoffs are investigated based

on the implementation on Globus [27] Toolkit 3. In particular, using a simple

example grid service, the performance of this implementation is compared with

variants in which the primary and backups communicate using standard service

method calls and TCP, respectively.

Chapter IV addresses the integration issue by presenting a software ar-

chitecture for building highly available and reliable services. The central idea of

our architecture is the concept of a durable resource, which is an abstraction pro-

viding an essential capability: the ability for state to persist across failures. In our

architecture, the designer of a resource can control which portions of a service’s

state are persistent, the tradeoff between the degree of durability and the perfor-

mance, and the atomicity of accesses to the resource with respect to failures. Such

durable resources can then be used as building blocks to construct highly available

and reliable services using existing techniques.

Chapter V and chapter VI study how to replicate services on asyn-

chronous systems. Chapter V investigates the issues that impact the practical

performance of the protocols in the Paxos family – Classic Paxos and Fast Paxos

– using simulations and experiments on a local cluster and PlanetLab. Then we

extend Paxos for supporting nondeterministic services. In chapter VI, we first de-

scribe the basic idea of how to use the Consensus algorithm for implementing the

primary-backup, followed by the demonstration on how to optimize the protocol to

reduce the overhead of read requests and requests using transactions. A prototype

application is used to evaluate the performance.

Finally, my thesis is concluded in chapter VII.

Chapter II

Background

First, the functions and limitations of the primary-backup replication

approach are described in section II.A. Then the concept of Service Oriented

Architecture is introduced in section II.B. The grid standards – the Open Grid

Service Infrastructure and the Web Service Resource Framework – are discussed

in section II.C. Finally, the variant versions of Paxos protocol are introduced in

section II.D as the foundation work of asynchronous systems.

II.A Primary–backup

Primary–backup is a well-known technique for making services highly

available [1, 9, 11]. A client sends a request to the primary, which receives and

executes the request. The primary then sends a state update message to the

backups and replies to the client. Typically, the primary does not reply to the

client until it knows that all backups have received the state update. This is done

to ensure that the backups are always consistent with the client: it is impossible

for the client to know that the primary executed the request without the backups

also knowing this. Figure II.1 shows a space-time diagram of the execution of a

simple primary–backup protocol.

Primary–backup requires that a client be notified that the primary has

failed and allow the client to rebind to the newly-appointed primary. Ideally, this

8

9

Figure II.1: Primary-backup Protocol

ability should be available below the level of the service request: doing so allows a

client designed to interact with a single non-replicated server to be transparently

ported to interact with a primary–backup service.

Primary–backup has a few drawbacks. First, it is only suited for toler-

ating benign failures such as crashes and message loss, rather than arbitrary or

malicious failures. Unless malicious failures are a concern in a specific grid envi-

ronment, we consider masking only benign failures a worthwhile tradeoff for the

ability to run non-deterministic applications.

Another drawback is that primary–backup requires that the environment

is synchronous enough to support the use of heartbeats to detect failures. In

practice, this means that the primary and the backups need to run on a cluster

that is managed by some failure detector and recovery manager. Commercial

products, such as the VERITAS Cluster Server [57], can be used for this purpose.

In systems that may suffer from network partitions or in which there is no bound on

process execution speed or message delivery speed, it is not possible to implement

a reliable failure detector [25, 16]. Primary-backup replication can not ensure the

consistency of replicas on such systems as described in Chapter V and Chapter VI.

II.B Service Oriented Architectures

Service Oriented Architectures (SOAs) structure software functionality

in a distributed system as collections of interacting services as illustrated in fig-

10

ure II.2. The services include both infrastructure services, such as directory ser-

vices (UDDI), monitoring, and resource allocation services, as well as application

services that implement some application specific service. The infrastructure ser-

vices, denoted as shaded ovals in the figure, provide the foundation for building,

running, and accessing the application services. The web services architecture and

grid services architecture are popular examples of SOAs in which services interact

by exchanging XML documents.

A service invocation, from a client’s desktop application for example,

often results in a sequence or chain of interleaved service invocations between

different services potentially in different administrative domains. This leads to a

situation where, paraphrasing Leslie Lamport, a service-oriented architecture is

one in which the failure of a service you didn’t even know existed can render your

application unusable.

Implementation of Service S4

Resource
Allocation

UDDI

Administrative Domain D1

Service S1

Service S2

Service S3

Service S4

Monitoring

Monitoring

Administrative Domain D2

Figure II.2: Example Service Oriented Architecture

11

II.C The Grid Standards

Building on both grid and Web services technologies, the Open Grid

Services Infrastructure (OGSI) defines mechanisms for creating, managing and

exchanging information among entities called grid services. Unlike Web services,

grid services are stateful and may be short-lived. The OGSI model allows each

client to choose among several available instances of a service or create its own

instance. The instances may have a limited lifetime since resources can be created

to serve certain clients and are removed after they are no longer needed.

Interaction between a grid service and a client happens in a request-reply

fashion using strictly-defined interfaces and a certain encoding of data (interfaces

are described by WSDL and the messages are encoded using SOAP, both of which

are XML-based). In addition to regular requests and replies, grid instances may

subscribe using an OGSI-specified interface to notifications, which asynchronously

alert subscribers (called sinks in OGSI terminology) of state changes.

Notifications can be of two types: a push notification sends information

along with the notification, whereas a pull notification is used to indicate that

something has changed: it is up to the notification subscriber to request (or pull)

the information using a regular request. Pull notification gives the subscriber

the freedom to decide whether and when to get information associated with the

notification, while push notification avoids the overhead of that additional call in

situations where the information is needed immediately.

In 2004, the Web Services Resource Framework (WSRF) was proposed to

refactor OGSI aimed at exploiting new Web services standards, specifically WS-

Addressing. WSRF retains essentially all of the functional capabilities present in

OGSI, while changing some of the syntax (e.g., to exploit WS-Addressing) and

also adopting a different terminology in its presentation.

WSRF specifications model state as stateful resources and codify the re-

lationship between services and stateful resources in terms of the implied resource

12

access pattern. They define WS-Resource as a web service associated with a state-

ful resource.

A stateful resource is defined to:

• have a specific set of state data expressible as an XML document;

• have a well-defined lifecycle;

• be known to, and acted upon, by one or more web services.

Examples of system components that may be modeled as stateful re-

sources are files in a file system, rows in a relational database, and encapsulated

objects such as Entity Enterprise Java beans. A stateful resource can also be a

collection or group of other stateful resources.

II.D Paxos

At a higher level, Paxos is a protocol for a set of processes to reach

consensus [50] on a series of proposals. With a leader election algorithm, a process

p elected as leader first carries out the prepare phase of the protocol. In this

phase, p sends a prepare message to all processes to declare the ballot number it

uses for its proposals, learns about all the existing proposals, and requests promises

that no smaller ballot numbers will be accepted afterwards. The prepare phase

is completed once p receives acknowledgements from a majority. If p learned any

existing proposals in the prepare phase, p can only propose a new proposal that is

consistent with the existing ones.1 Otherwise, p can propose any value. To have a

proposal committed, the leader p initiates the accept phase by sending an accept

message to all processes with the proposal and the ballot number declared in the

prepare phase. The proposal is chosen when a majority of the processes accept it.

After receiving accept acknowledgments from a majority, p commits the proposal

and informs all the processes that the proposal has been chosen. Figure II.3 shows

1If the ballot numbers of the existing proposals p learned during the prepare phase are not all the
same, p only makes its new proposal consistent with the ones with the highest ballot number.

13

P1

P2

P3

P4

P5

propose(v)

prepare
request

ACK
(confirmed)

accept
request

succeedACK
(voted) decide(v)

Prepare phase Accept phase

Figure II.3: Paxos

a space-time diagram of an execution of the Paxos protocol. In the later contexts,

we use Classic Paxos to refer to this original version of Paxos protocol.

Classic Paxos requires two message delays between when the leader pro-

poses a value and when other processes learn that value has been chosen. However,

in most systems that use consensus, values are not picked by the system itself; in-

stead, they come from clients. When the messages from the client are counted,

Classic Paxos requires three message delays.

Fast Paxos is an extention of Classic Paxos to achieve the optimal per-

formance in term of message delays. In Fast Paxos, ballot numbers are partitioned

into fast ballot numbers and classic ballot numbers. In a round associated with a

fast ballot number, if the leader can pick any proposed value in the accept phase, it

sends an any message to the acceptors. When an acceptor receives an any message

in the accept phase, it may treat any cleint’s message proposing a value as if it

were an ordinary an accept message with that value.

A round associated with a classic ballot number works the same as in

Classic Paxos. The leader picks the value that the acceptors can vote for, so dif-

ferent acceptors can not vote to accept different values in the same round. This is

not the case when a fast ballot number is used. If the leader sends an any message

in the accept phase, each acceptor independently decides what client message to

take as the accept message. Different acceptors can therefore vote to accept differ-

14

ent values when a fast ballot number is used. In case of such a collision happens,

the leader needs to take extra steps to coordinate. Therefore, Fast Paxos can not

ensure that learning occurs in two message delays in case of collisions.

Fast Paxos requires more acceptors to ensure safety. To tolerate t fault

acceptors, Classic Paxos requires 2t + 1 acceptors and at least t + 1 acceptors (a

majority) have to accept in order to have a value chosen. To tolerate the same

number of fault acceptors, Fast Paxos needs 3t + 1 acceptors and 2t + 1 acceptors

accepting a value to have it chosen.

Chapter III

Primary-backup on Grid

Middlewares

The goal of this chapter is to evaluate the tradeoffs associated with us-

ing primary–backup as a fundamental technique for building highly available grid

services in the context of OGSI and Globus [27] Toolkit 3 (GT3). Much of this

focuses on the tradeoff of performance versus use of facilities provided by the OGSI

standard. First, a primary–backup protocol is designed using OGSI to determine

whether it supplies the necessary features, such as state update and client rebind-

ing, and to see what changes might be needed to support such an approach. It is

found that it is not hard to accommodate primary–backup, and that the solution

is simple and requires only small changes to the service. The use of the OGSI

notification interface to handle replica updates is the key distinguishing feature of

this approach.

Then, this approach is implemented using GT3 to better understand the

performance implications and tradeoffs of doing primary–backup at such a high

level. In particular, using a simple example grid service, the performance of this

notification-based approach is compared to variants in which replica update is done

using standard grid service method calls and TCP, respectively. Our example grid

service implements a simplified version of the Condor Matchmaker service [49].

15

16

Nondeterminism arises in this service both from the way resources are selected

and from priorities.

The performance penalty was, in fact, quite high. While some of this may

result from the lack of performance tuning in GT3, our findings also have larger

implications related to how and where replication should be used to provide fault

tolerance in grid service architectures.

Client failures are not considered for this work. One of the attractions of

the primary–backup approach is that it defines a very simple client–server protocol

that does not depend on clients being reliable. In other words, the correctness of

the server, in terms of how it responds to requests, does not depend on help from

the clients, which means that client failures can be dealt with using orthogonal

approaches such as timeouts and leases [53]. Software bugs that can lead to com-

pletely correlated failures are also not considered. In this case, the primary and

all backups could simultaneously crash. Again, there are separate techniques that

are used in practice for tolerating such failures.

Section III.A introduces the architecture of building the primary-backup

services using OGSI notification interface. The implementation issues are discussed

in section III.B. Then section III.C represents the performance evaluation. Finally,

section III.D summarizes our observation from this work.

III.A Architecture

There are three general problems that any implementation of a primary–

backup mechanism needs to solve:

1. Transfer of application state. Before replying to the client, the primary needs

to send the change in its state to the backups. A reply can be sent to the

client only when it is known that the backups will eventually apply the state

change.

17

2. Detecting failures. Crashes and lost messages need to be detected. This is

normally done by setting a timeout for every message. If no messages are

sent for a long time, then a heartbeat message can be sent to check on a

machine.

3. Switching to a new primary. Originally, one of the service instances is des-

ignated as a primary and others as backups. After a failure of the primary,

the backups agree on a new primary and ensure that all future requests are

directed to it.

Grid service notifications are a natural mechanism for solving all these

three problems because state updates and failures are inherently asynchronous

events. Also, notifications provide a simple mechanism for disseminating informa-

tion to a number of interested parties—several backups may be interested in the

same state update, and several clients may be interested in the same failure noti-

fication. Consequently, in our system, backups register with the primary as sinks

for state update notifications and heartbeat notifications, and each client registers

with each backup as a sink for the failover notification that tells it to switch to

a different primary and to resend the last request if it was expecting a reply. We

use a push notification for the state transfer because the backup needs every state

update. For heartbeat and failover, pull notifications are used because there is no

data associated with those events.

The normal execution proceeds as follows. A client makes a grid service

request to the primary, which executes the request. When execution ends, the

change in the state of the service is extracted and sent to the backups via a noti-

fication. When the primary collects acknowledgments from all backups it replies

to the client. The state extraction and injection are application-specific: the grid

service needs to support methods that allow this to be done. In addition, the

service can be designed to have the primary send checkpoints to the backups if its

computation is long-running.

18

Failure of the primary is detected by backups when they do not receive a

heartbeat message after a certain period of time. This method allows detection of

host and task crashes, as well as network partitions. At that point, the backups

need to cooperate in election of the new primary. The newly elected primary then

sends a failover notification to the client so it can obtain a new server instance

handle. If the client was expecting a reply from the service when a failover noti-

fication arrives, then the client resubmits the request to the new service instance.

If the old primary had already sent a state update to the new primary, then the

new primary can reply with the result computed by the old primary. Otherwise,

it can compute the result itself (perhaps starting from a checkpoint if the primary

had sent checkpoints to the backups).

Failures of the backups do not interfere with the operation of the surviving

system components, so the only new issues are the detection of backup failures and

the integration of new backups into the system. Neither is conceptually hard to

implement, although integration of a new backup may require a large amount of

state to be transferred. The details of how to best do this are outside the scope of

this chapter.

III.B Implementation

In this section we give a more detailed overview of our system using

pseudocode to illustrate key actions performed by each of the three participants:

a client, a primary, and a backup. Each one is enclosed in an object with private

variables and methods. Note that we use C language convention for pointers: &x

is a reference to variable x.

The client code, shown in Figure III.1, is interposed between the client

application and the original SOAP stub in such a way that client code is not

changed. The original stub supports the init method, which is called when the

client binds to a grid service, and a number of operations, shown here collectively

19

as op. We intercept init with the init client method to register for receipt of

failover notifications from each backup. The op method spawns a separate thread,

implemented by invoke op, to invoke the operation via the original stub.

var target // points to the current primary

var ops // contains records of on-going operations

INIT CLIENT () // called when client binds to a Grid service

(replica1, replica2, ...replican)← find replicas();

target ← replica1;

ops ← ∅;

for each host ∈ {replica2...replican} do

register notification(&FAILURE HANDLER, host, FAILURE);

stub.init();

OP (params)

var op // object for holding operation parameters

var done // a semaphore for waiting until success

var result // object for holding results of executions

op ← { params, &done, &result };

ops ← ops ∪ &op; // add op to the list of on-going operations

create thread(&INVOKE OP, &op);

wait on semaphore(&done); // wait for someone to succeed in op

ops ← ops \ &op; // remove op from the list

return result;

INVOKE OP (op)

var result // object for holding results of executions

result ← stub.op(op.params); // make the SOAP call

if result 6= failure then

op.result ← result; // pass result back to OP()

signal(op.done); // wake it up

FAILURE HANDLER (new primary)

target ← new primary;

for each op ∈ ops do

create thread(&INVOKE OP, op);

Figure III.1: Pseudocode for the fault-tolerant stub on the client.

If the primary crashes during this invocation, two things happen in arbi-

trary order: the call to stub.op() returns an error message, and a failure notification

arrives from the backup, causing failure handler method to execute. To reduce

20

the failover duration, we don’t wait for the stub.op() to return (it may take a while

for the TCP socket to time out), so we re-submit the request to the new primary in

failure handler by spawning another invoke op thread. The parameters for this

invocation are kept in the list ops. Eventually, some invocation should succeed,

allowing op to wake up and return the result.

The OGSI model specifies a method for clients to deal with failures of

grid service instances. Specifically, each grid service has a persistent handle called

a GSH (Grid Service Handle) and this handle can be resolved into a handle, called

a GSR (Grid Service Reference), for an instance of this grid service. The GSR

may become invalid over time and the client can reacquire a valid GSR by re-

resolving its GSH. The handle resolution is performed by a grid service called the

Handle Resolution Service. Although our design could incorporate this approach,

in this chapter we use a design that by-passes the Handle Resolution Service for

two reasons:

• The Handle Resolution Service, if not fault-tolerant itself, would provide

a single point of failure that could make all grid services that rely on it

unavailable.

• In the handle resolution approach, the client only detects the failure of the

primary when it attempts to use its GSR. In our approach, the client is

notified immediately.

The code on the replicas is interposed between the grid infrastructure and

the service implementation. For each client op there is an implementation of that

operation on the server. To make stateful primary–backup replication possible, the

service must implement two additional methods for state transfer: extract state()

and inject state(). Ideally, state transfer can be done by a small set of values

describing all the relevant application state, but in the extreme it could be a full

application checkpoint.

On the primary, as shown in Figure III.2, we intercept each one of the

21

operations with the execute method. It first checks whether this request has al-

ready been processed—this can happen when a server crashes after sending the

state to the backups, but before replying to the client. In that case the old result

is returned without executing the request. Otherwise, the request is executed, fol-

lowed by the extraction of state, which is sent to backups via notifications. Note

that notify change with ack blocks until it gets an acknowledgment from every

backup. In the initialization routine, the primary advertises itself as a source of

two types of notifications (heartbeat and state update) and schedules a heartbeat

routine to run regularly.

var rate sending // time interval for sending heartbeats

INIT PRIMARY ()

claim notification source(HEARTBEAT); // register as source

claim notification source(STATE UPDATE);

schedule(&HEARTBEAT GENERATOR, rate sending); // run regularly

HEARTBEAT GENERATOR ()

notify change(HEARTBEAT); // send a notification

EXECUTE (request)

var result // object for holding results of executions

result ← check previous requests(request);

// if request is completed result is not NULL, but for new requests it is

if result = NULL then

var state // encoding of application state

result ← service.op(request.params); // execute the request

state ← service.extract state(); // obtain state of the application

notify change with ack(STATE UPDATE, state); // waits for acks

return result;

Figure III.2: Pseudocode for the primary service.

Figure III.3 shows the pseudocode for backups. During normal oper-

ation they receive two kinds of notifications: their state handler receives state

updates and injects the state into the service application and their hb handler

receives heartbeats. Both store the current timestamp in the global variable

last notification. failure detector checks this variable to make sure it is not

stale. If it is, then the primary is assumed to have failed.

22

Figure III.3: Pseudocode for the backup service

23

Switching to a new primary can take a long time because it needs to reg-

ister as a source of notifications and all backups must re-bind to the new primary.

If we delayed client-bound failover notification until re-binding is complete, the

failover time of our system would be extremely large (binding can take tens of sec-

onds!). We avoid this performance penalty by binding all backups to one special

backup, which we call the senior backup, at the time of service initialization.

If a failure is detected, the senior backup becomes the primary and notifies

the client immediately, since it already has all backups registered with it to receive

state updates and heartbeats. The remaining backups then chose a new senior and

bind to it off-line, without delaying processing of client requests. This binding is

implemented in the setup senior method, which is called during initialization and

during recovery. In the rare situation that the senior backup fails together with

the primary, all surviving backups will assume the failure of the senior after the

second missing heartbeat and they will go through full re-initialization by calling

init backup.

For simplicity, the pseudocode shows that the state is applied immediately

by calling inject state in state handler. In a real implementation it it would be

better to queue up the state update, send back an acknowledgment and apply the

state later, so as to impose as small of a penalty on the response time as possible.

As implemented, the protocol queues state updates and applies them later in this

way. Doing so can slow down failover because the backup may have to apply

queued state messages before processing new requests.

III.C Performance

While it appears that OGSI is a suitable platform for building primary–

backup fault tolerance, the overhead of replication may ultimately determine whe-

ther the technique is useful in practice. In this section, we describe the performance

of our prototype implementation using GT3.

24

Our example highly available grid service is a simplified version of the

well-known Condor Matchmaker service. We measured the transfer overhead, the

request response time, and the failure notification overhead of a prototype service

structured according to the primary–backup approach described above. We per-

formed experiments on a pair of dual-CPU Pentium II 300MHz workstations with

400Mb of memory, running Linux 2.4. We only considered a system with a pri-

mary and one backup, since this is by far the most common way primary–backup

is used.

III.C.1 Matchmaker Grid Service

We designed the grid matchmaker service based on existing (but more

complex) non-grid services, such as Condor Matchmaker [49], Java Market [2],

and the resource management tools in Globus [21]. We chose to use this service

because it is an example of an important class of grid services, and because is

inherently nondeterministic.

Our Matchmaker service keeps track of machines available in the Grid,

accepts requests for allocating machines, and maps each request to a suitable ma-

chine. There are two kinds of requests: one is a resourceAdvertise request, and the

other is a jobSubmit request. A resourceAdvertise request provides information

about a machine that is available for allocation. The input of this request is: the

resource ID, the available CPU speed, the available memory size, the available

disk size, the machine’s IP address, and an identification string used to implement

a simple capability for using the machine. A jobSubmit request sends a specifi-

cation for a desired machine. If there are suitable machines available, then the

Matchmaker service will choose one and send the address of this machine and the

identification string back to the client. The input of this request is: the job ID, the

required CPU speed, the required memory size, the required disk size, the priority

of the job. The response of this request is the address and identity of the chosen

machine, if there is one available; otherwise, the request returns a null string.

25

Table III.1: State transfer round-trip time (milliseconds)

10 B 100 B 1 kB 10 kB 100 kB
Notification Median 192.5 189.0 193.0 195.5 190.0

Mean 201.3 191.8 196.7 199.8 192.7
St. Dev. 29.8 13.0 15.5 23.6 14.8

Call Median 19.5 19.0 26.5 30.0 209.0
Mean 26.4 24.2 33.1 32.6 299.0
St. Dev. 12.0 9.2 17.9 6.3 333.0

Socket Median 1.0 2.0 2.5 12.0 133.0
Mean 1.5 1.7 2.5 14.8 144.5
St. Dev. 0.8 0.5 0.5 11.9 32.4

This Matchmaker service is non-deterministic for two reasons. First, if

there are several machines that satisfy a jobSubmit request, then the machine that

is allocated can be nondeterministically chosen. Second, the Matchmaker service

is implemented by two threads: one enqueues requests and one executes enqueued

requests. Requests are enqueued in priority order, and is FIFO within each priority.

Two servers S1 and S2 could behave differently because of these rules on priority

as described in chapter I.

III.C.2 State transfer

To fully understand the sources of overhead in state transfer, we compared

the implementation using OGSI notifications for state updates (labeled Notifica-

tion) to two alternative implementations, one that uses direct grid service method

calls (labeled Call) and one that uses TCP connections (labeled Socket). In the

following tables we present the median, the mean, and the standard deviation for

a set of 20 round-trip measurements. To better understand the overhead of state

updates, our service can be configured to send an arbitrary amount of data in each

state update.

First, Table III.1 shows the round-trip time of a single state update, for

a number of different state sizes (from 10 bytes to 100 kilobytes), as measured on

26

Table III.2: Client request round-trip time (milliseconds)

10 B 100 B 1 kB 10 kB 100 kB
Notification Median 242.0 241.0 240.0 238.5 232.0

Mean 252.3 247.4 251.2 301.1 241.2
St. Dev. 41.9 36.5 36.6 257.9 34.2

Call Median 65.0 72.0 76.5 74.0 261.0
Mean 71.4 78.0 89.7 82.5 350.8
St. Dev. 21.9 28.9 40.9 21.9 333.5

Socket Median 45.5 47.0 48.5 55.5 182.0
Mean 52.8 56.5 55.5 62.6 195.9
St. Dev. 21.6 26.6 21.8 22.9 50.4

the primary. Not surprisingly, Socket always has the smallest round-trip time, but

this advantage goes from around 200 times faster for 10B updates to only 1.4 times

faster when the state size is 100 kB. Call has intermediate round-trip times: at

10B, it is about 20 times slower than Socket, while at 10 kB it is only 2.5 times

slower.

Note that the round-trip times for Notification are mostly insensitive to

the size of the state update. Essentially, the cost of sending 10 bytes and 100

kilobytes with a notification is roughly the same. We think the cause of this lies

in the format of GT3 notification messages; this is something that might be worth

examining for later versions of the toolkit.

We also observed very high variance in samples: the standard deviation is

sometimes higher than 50% and in one case is larger than the mean. This last case

is due to a single outlier in the Call experiment for 100 kB of state update, which

took 1.7 seconds. We think that much of this large variance is an artifact of Java

garbage collection or other background processing in the Java virtual machine or

the grid container.

Table III.2 shows round-trip times of client requests during normal, failure-

free operation, as measured by the client. We would expect these numbers to be,

approximately, the sum of the request round-trip time without primary–backup

27

0 50 100 150 200 250

Round-Trip Time (milliseconds)

10

100

1k

10k

100k

State Size
(bytes)

Socket
Call
Notification

Figure III.4: Median Round-trip times for state transfer using Socket, Call and

Notification with different state sizes. The white portion is the round-trip time of

a client request without replication. Therefore, the overall size of the each bar is

the total client round-trip time.

Table III.3: Ratio of client request round-trip with primary-backup to me-

dian/mean client round-trip without replication

10 B 100 B 1 kB 10 kB 100 kB
Notification Median 5.5 5.5 5.5 5.4 5.3

Mean 4.6 4.6 4.6 5.5 4.4
Call Median 1.5 1.6 1.7 1.7 5.9

Mean 1.3 1.4 1.7 1.5 6.5
Socket Median 1.0 1.1 1.1 1.3 4.1

Mean 1.0 1.0 1.0 1.2 3.6

replication plus the state update overhead shown in Table III.1 above. This is, in-

deed, the case since the request round-trip time of a normal grid service, without

replication, is 54.3 ms on average with the median being 44 ms. The data from the

previous two tables is summarized graphically in Figure III.4, where client request

round-trip time is broken down into interaction between the client and the primary

(white) and the interaction between the primary and the backup (solid, upward

diagonal, and downward diagonal).

In Table III.3, we normalized the data of Table III.2 by dividing the

median and mean numbers by the median and mean of the normal grid service

28

Table III.4: Failover duration (milliseconds)

1 2 4 8 16
Median 189 215 524 896 1989
Mean 194 302 547 1018 2269
St. Dev. 21 352 83 454 666

round-trip. So, each number shows the magnitude of overhead imposed by repli-

cation. The table shows that with Socket the median overhead of replication is

small: for small state sizes (up to 10 kB) is 30% or less. With Call, the median

overhead is 70% or less for small state sizes. For large state sizes all approaches

perform similarly, with overheads of 400% and more.

From these results, we conclude that notifications are considerably less

efficient than socket messages and service calls for small state sizes. For larger

state sizes all of the three approaches impose a high overhead. Note that in all

cases the requests have very low overheads. In this situation a request that used

to take 44 ms ends up taking between 4 and 6.5 times as long with replication.

For grid services that have longer-running requests, the overhead of replication

will be diminished. For example, for a request that takes 3 seconds to execute

and has state size of 100 kB, the overhead of replication is less than 10%. Hence,

the drawback of using GT3 to implement primary–backup becomes negligible for

long-running requests.

III.C.3 Failover

Another important metric for the performance of a fault-tolerant system

is failover duration. This is a sum of two quantities: the time it takes for the

backup to detect the failure, and the time it takes for the backup to notify the

clients of a failover. The first quantity depends on the frequency of heartbeat

messages and is largely independent of the implementation. Therefore, we only

measure the second quantity, as shown in Table III.4.

29

With one client, it takes 194 ms on average to notify the client of a

failure. As the number of clients increases, the notification overhead increases

linearly. In [60] we report that recovering a network connection endpoint in less

than 200 ms requires significant investment in equipment for logging of packets that

may be lost due to the failure, and so we believe that 194 ms is quite acceptable.

If the number of clients that shares the same instance is large, however, then the

overhead may become too large. Again, these results were obtained based the

current implementation of GT3. A later version may be able to have notifications

run faster than linear in the number of sinks.

Note that if the client doesn’t have outstanding requests to the primary

service when the failure happens, then the overhead of the failover at client is

almost zero, since the client only needs to change the address of the service invoked.

III.D Summary

Fault tolerance of stateful grid services is becoming increasingly impor-

tant with the development and use of OGSI. Both infrastructure services such as

monitoring, resource allocation, and scheduling, as well as grid applications imple-

mented as grid services, are required to be reliable and highly available. In this

chapter, it is shown that the facilities defined in OGSI and the newly proposed

WS-Notification extension to Web services [29] can be used to design a primary–

backup service. While not described in this chapter, this service can be easily

extended to multiple backups and to dynamically adding backups. In addition, by

using slightly modified client stubs, failover can be done transparently to clients.

We found the overhead of using GT3 implementation of the OGSI notifi-

cation to be quite high. The overhead is particularly large in the cases where the

state data is small or the number of clients is large. Much of the overhead seems

to come from the cost of notifications, which can most likely be improved in future

implementations of GT3. Failing that, one might wish to provide state update

30

below the OGSI level or by using simpler OGSI facilities such as basic grid service

method calls. It might be possible to improve performance of primary–backup by

using an alternate protocol binding—something that is specified in OGSI but not

available in GT3—but we have not explored this option in any detail.

The approach for primary–backup is only applicable for replicas located

in a cluster, since otherwise failure detection becomes too unreliable for primary–

backup. The protocols for asynchronous systems will be discussed in Chapter V

and Chapter VI.

III.E Acknowledgements

This chapter is, in part, reprints of material as it appears in ”Fault-

tolerant Grid Services Using Primary-Backup: Feasibility and Performance,” by

Xianan Zhang, Dmitrii Zagorodnov, Matti Hiltunen, Keith Marzullo, and Richard

D. Schlichting, in the Proceedings of the 2004 IEEE International Conference on

Cluster Computing, September 2004. The dissertation author was the primary

coauthor and co-investigator of this paper.

Chapter IV

Durability – a Service Attribute

A key requirement for implementing highly available services is the ability

to maintain service state across machine failures and server process crashes. This

problem has been extensively studied and many techniques exist for protecting ser-

vice state, including storing the state in a database or maintaining it in replicated

processes. Each such technique can be characterized based on its level of protection

and its cost in terms of hardware resources required and performance overhead.

While many such techniques exist, service developers typically have a very small

set of options (e.g., a database or nothing) and the chosen option must be coded in

the service implementation (e.g., by denoting objects as session or entity beans in

J2EE [10]). Specifically, there is no integrated and transparent way to use different

techniques to protect service state. However, different types of service state differ

in the degree of protection required; some types such as billing information needs

to survive very severe failures, while others might be reconstructed relatively easily

should a failure occur. Furthermore, the business or cost requirements associated

with the service may change over time, resulting in large code rewrites.

This chapter introduces an architecture that allows service developers to

use different techniques with different tradeoffs to protect service state flexibly and

transparently. The service state is stored in one or more state objects. We propose

to treat state durability—that is, the likelihood that the state can survive failures—

31

32

as an explicit design parameter that is associated with each state objects used by

a service. Based on this durability attribute, different techniques with different

tradeoffs can then be used to ensure the durability of different state objects. For

example, the value of one state object can be stored in a database, while another

is replicated in-memory on two or more computers. Note that one can view the

different techniques as implementations of the stable storage abstraction [39], but

with an explicit recognition of and control over the tradeoff between the fidelity of

the abstraction and the cost of implementing it.

We have built a prototype based on Globus Toolkit 4 (GT4) using Java. In

this prototype, service designers can choose for each state object between distinct

points on the durability-performance continuum, including implementing durabil-

ity using primary-backup replication or implementing it using a database. Different

choices can be made for different service state objects and the choice has no impact

on the way in which the state object is used by services. To illustrate the way in

which the architecture can be used, we describe a prototype implementation of a

highly available Matchmaker service.

IV.A States and Durability

This section discusses the role of state in SOAs and defines the concept

of state durability.

IV.A.1 State in SOAs

There are many aspects to providing reliable and highly available services.

Specifically, the service architecture must be able to detect failures of services,

restart failed services, and reconnect clients (which may be end-applications or

other services) with the recovered or relocated service instances. A key factor

in providing such services is maintaining the service state through failures. If

the service state can survive the failure of the server processes that provide the

33

service, the service can be restarted by simply starting a new server process with

the preserved service state.

The type of service state depends on the specifics of the service as well as

the middleware platform used to implement the services and service interactions.

Services may be completely stateless, that is, all the state required to process a

service request is included in a request (e.g., an encryption service that receives

the data and key in the request). Otherwise, the service may have:

• Internal state. State that the service reads or updates when processing a

request, e.g., an inventory database.

• Session state. State associated with the interaction between the service

and (typically) one client, e.g., a shopping cart.

Distributed object platforms such as CORBA and DCOM support both

internal and session state maintained in the object instance accessed by the client.

Traditional web services do not explicitly support any state and are therefore often

considered stateless for this reason. However, many web service applications re-

quire state that is maintained across client requests and most web service platforms

support storing important state in a database (either explicitly like in ASP.NET

or implicitly like in J2EE entity beans).

The first generation of grid services as defined by the OGSI standard sup-

ported both session and internal state. Conceptually, these grid services were very

similar to distributed object systems with the concept of creating grid service in-

stances that maintain state. The new WSRF [19] replaces OGSI and allows stateful

grid services to be built directly on the web services foundation. WSRF defines a

framework for managing state in distributed systems using services. Such state is

modeled as a WS-Resource that provides a web service interface for manipulating

a stateful resource (e.g., a database table, file, J2EE entity bean).

34

IV.A.2 State Durability

We use the term durability to describe the attribute of service state that

describes its resilience against hardware and software failures, that is, durability

is the probability that the state will persist for a specified length of time despite

failures. While other dependability concepts such as reliability and availability [6]

are attributes of measuring the overall service, durability has its focus on service

state, which is often the key factor to provide the dependability of the overall

service. Analogously to reliability or availability, the state durability depends on

the techniques used and the numbers, types, and frequency of failures that occur in

the underlying resources during the lifetime of the service state. Similar to these

two other metrics, it is impossible to provide 100% durability but it can be be

increased to be arbitrarily close to 100% by using the appropriate techniques.

There are a number of techniques that can be used to increase the dura-

bility of a state object. For example, the state object may be replicated on multiple

processors, stored in a file, or stored in a database. Note that not all file systems

and databases provide the same degree of durability. For example, a file system

that uses redundant disks (e.g., RAID) provides higher durability than a normal

file system that relies on a single hardware disk, and a replicated database typ-

ically provides a higher durability than a non-replicated database. The cost of

providing durability depends on the technique and implementation platform cho-

sen. This cost includes both of the runtime performance overhead and the cost of

the hardware and software. Furthermore, the different durability techniques may

have different recovery time (MTTR - mean time to repair) and thus, affect the

overall availability of the service.

The state in different services, and different types of state within a ser-

vice, have different durability requirements. For example, an e-commerce service

maintains inventory information, information about the regular customers (e.g.,

address, credit card number, preferences), and state about on-going customer in-

teractions (“shopping carts”). The inventory information is most valuable because

35

its loss would prevent the service from operating, while the loss of the information

about on-going customer interactions would be a nuisance for the users, but would

not stop the service. Note, however, that even such issue may be enough to cause

users to switch to a competing service, resulting in loss of revenue.

Note that the durability concept is more general than the typical classifi-

cation of state as soft or hard state. Soft state is often defined as state that can be

reconstructed automatically given enough time and/or work (computation), while

hard state is typically defined as state that cannot be reconstructed automatically

if lost due to a failure. Note, however, that whether the data can be automatically

reconstructed does not necessarily reflect the true value of a state. For example,

a shopping cart is hard state but not extremely high value, while a soft state such

as a simulation result may have a high value if its reconstruction takes days of

CPU time on hundreds of computers. Therefore, the concept of state durability

allows the durability techniques to be tailored based purely on the value of the

state. This realization that all the state is not the same can result in performance

improvements, cost reduction, as well as an increase in service availability.

IV.B Customizable Transparent Durability

The goal of this work is to provide services with customizable availabil-

ity, durability, performance, and resource cost tradeoffs. Specifically, our approach

allows the service state to be made durable by applying different durability tech-

niques transparently and automatically to different state objects, as independently

as possible from the semantics and representation of the state. By doing so, we

provide durability transparency to the service: the desired mechanisms can be in-

stantiated when the service is built or configured. Furthermore, given such durable

state, we show how highly available services can be constructed using standard ser-

vices.

36

IV.B.1 Assumptions

We assume that a service is implemented as a Java class and each state

object used by the service is implemented as a separate Java class. Thus, all state

access operations by the service are method calls to the Java objects implementing

the state. Each method exported by the service may read and update one or more

of the state objects, one or more times.

As an example, consider an on-line bagel shop service that allows clients

to order bagels by issuing service requests. Examples of state objects in this exam-

ple could be the store inventory (e.g., how many bagels of each kind are available)

and customer information (e.g., delivery address and credit card information). The

service can be implemented as a stateless Java class that takes the request, checks

the inventory and reserves bagels for the customer, issues a credit card transaction

to the customer’s bank (using a service request), and if everything succeeds, sched-

ules delivery to the customer’s delivery address. Standard transactional techniques

can be used to ensure bagels are delivered if and only if the credit card transaction

succeeds. Other service operations are available for registering a new customer,

querying price of bagels, etc.

In this chapter, we consider crash failures of the machines on which the

service is running, as well as crash failures of the container process that hosts the

service. Specifically, we assume that all state maintained in the memory will be

lost if a failure occurs. Furthermore, we assume a failure can be detected reliably

(i.e., the availability of perfect failure detector).

IV.B.2 Durability Mechanisms

In this chapter, we consider three mechanisms with different performance-

durability tradeoffs:

• Database. State object is backed up in a database.

37

• Replication. State object is backed up in a backup replica(s) of the state

object on another machine(s).

• Reconstruction. State object is stored in volatile memory only without

any backup, and then reconstructed in case of failure.

We chose these three different mechanisms because their implementations are quite

different: accommodating them in a way that is transparent to the service is a

challenge. Also, they provide different performance, durability, availability, and

resource cost tradeoffs. Note, however, that a specific mechanism can provide a

range of possible tradeoff points depending on factors such as number of replicas

used (for replication) or the type of database (and the underlying file system, OS,

and hardware) used. For example, an in-memory database implementation uses

the database interface, but does not provide any additional increase in durability.

Many other mechanisms with different performance-durability tradeoffs,

such as client-side caching, files, and state machine replication, resemble in some

ways resources constructed using one of these approaches.

IV.B.3 Challenges

There are many challenges in providing such customizable transparent

durability.

• Internal transparency. How to add state durability mechanisms to an

existing service without requiring manual modification of the service code

(including the state object code).

• External transparency. How to ensure that the different durability mech-

anisms used within a service do not change the external behavior of the

service.

• State update and restoration. The different durability mechanisms use

very different representations of the state, and thus, the operations for updat-

ing the state are very different. The database solution requires the state to be

38

converted into database tables and state update operations into updates of

the tables. A trivial solution is to use Java serialization to serialize the state

object and store this serialized form in the database. However, this solution

can be very expensive if the state is large. Since the replication approach

replicates the whole state object, it may be possible to execute the same

operations on the backup (in the same order) as are executed on the original

object (primary). However, if the update operations are nondeterministic,

this simple solution cannot be used.

• Atomicity w.r.t. failures. Since a service request may update multiple

state objects (or a single object more than once), we may want to ensure

all-or-nothing semantics in the case of the service failure in the middle of

processing a request. That is, if the service fails in the middle of the request,

the impact on the state objects is as if the request was never executed. Given

such semantics, the client can simply reissue to request with no undesirable

side effects. While database transactions provide such atomicity for the the

database-based solution, similar guarantees must be provided for the repli-

cation approach.

IV.C Solution

This section describes our approach in detail and explains how the chal-

lenges above can be addressed.

IV.C.1 Overview

Our solution is based on the following key concepts:

• Durability proxies that implement a durability mechanism in a generic,

state independent, manner.

• Durability mapping that specifies which durability mechanism is to be

used for each state object, as well as any needed object specific instructions.

39

• Durability compiler that takes the service and state object code, the dura-

bility mapping, and the necessary durability proxies and generates a service

and the associated state objects where the desired durability mechanisms are

used for each state object.

An example of a service transformed by the durability compiler is shown

in Figure IV.1. In this example, a service uses two state objects, one of which

uses the database (via the database proxy) and the other object replication (via

replication proxies). Note that the backup state replica is maintained inside a

backup service, but this backup service only maintains the state object and does

not serve clients’ service requests, unless the primary service fails.

If the (primary) service fails, a backup service takes over the processing of

client requests. Specifically, the recovery operation in the database proxy retrieves

the object state from the database. Since the replication proxy at the backup

already maintains the current object state, it simply changes its role to be the

primary replication proxy and a new backup service is created, if necessary. If no

backup service exists when the service fails, a new service instance can be created

and the chosen proxies restores the service state before the service starts serving

client requests.

Web Service
(backup)

WS Container/JVM

Database Proxy

database

Web Service
(primary)

WS Container/JVM

Database Proxy

WS Client requests

Replication Proxy Replication Proxy

State object 1 State object 2State object 2 State object 1

Figure IV.1: Example Architecture

40

The service client may use some form of service transactions—defined by

the WS-Transactions specifications including WS-Coordination [13], WS-Atomic-

Transaction [14], and WS-BusinessActivity [12]—to access the service and the ser-

vice may participate in WS-Transactions spanning multiple other services. When

transactions are used, the usual transactional guarantees are provided by our cus-

tomized service with regard to atomicity and serializability. When WS-Transactions

are not used, our service ensures semantic durability and consistency of any state

changes. Specifically, this means that if a client executes a service request that up-

dates the state of the service and the client receives a response indicating success,

this change remains in effect even if the original service instance subsequently fails.

Thus, if the client issues a subsequent service request that is served by a backup

service, the state of this service will be consistent with the client expectation, that

is, as if no failure had occurred. If a service crashes in the middle of a service re-

quest, our solution ensures that any partial changes made as a part of this request

are rolled back.

We assume that the service client detects the failure of the service and

reissues the failed request. The failure of the service is detected when the request

times out and the underlying HTTP layer returns an error. The fact that the

service has moved to another machine can be hidden using standard load balancing

techniques that virtualize the physical address of the machine providing the service.

Alternatively, the client may need to relocate the service using facilities based on

the proposed WS-RenewableReference specification.

This chapter does not address the specific details of how failure(s) of the

service instance(s) are detected or which component in the system is responsible for

starting a new instance of the service or notifying the backup to change its role.

There are no established services standards for such services yet, although the

work on services and grid computing standards at OASIS (Organization for the

Advancement of Structured Information Standards), DMTF (Distributed Man-

agement Task Force), and GGF (Global Grid Forum) may provide appropriate

41

standards in the near future. Without such standards, each SOA environment

provides its own proprietary facilities. Typical monitoring systems for distributed

systems (e.g., HP Openview, BigBrother [47]) allow scripts to be specified to be

executed when a specific event (e.g., failure of the primary service) occurs and such

scripts can be used to start or activate a service. Alternatively, systems specifically

geared for automatic recovery through restart can be used [32]. Finally, the backup

service can be programmed to be activated if it receives a client request directly,

assuming that the backup service only receives requests when the original service

has failed.

IV.C.2 Durability Proxies

The durability proxies “wrap” state objects to make their state durable.

The wrapping is implemented using the Java reflection API—Java Dynamic Proxy

classes. Java Dynamic Proxies allow a method call to the object proxied to be

intercepted and customized behaviors to be added before and after the actual

object method call is completed.

web service

method 1
method 2
method 3
method 4

invoke
init

startTA
commitA
startA

recover

durability proxy state object

operation 1
operation 2

abortTA
commitTA

Figure IV.2: Durability proxy interface

Figure IV.2 illustrates the interface provided by a durability proxy. Specif-

ically, each durability proxy provides an invoke operation that is invoked every

time an operation on the proxied state object is invoked. If this operation up-

dates the state object, the durability proxy saves the new state using its durability

mechanism (e.g., database). Furthermore, each durability proxy provides init and

recovery methods that are used to initialize the object state at startup and to re-

42

store the object state in case the original service fails, respectively. For example,

at initialization, a database proxy creates the database tables used for storing the

object state and at recovery, the proxy at the backup or newly created service

instance loads the object from the database.

Finally, a durability proxy also implements five action control methods

that the (modified) service calls directly to ensure the desired atomicity properties

for the service request. These operations are used to ensure the desired atomicity

for the service method execution with and without WS Transactions:

• startA: start of a new service request (atomic action),

• commitA: complete (commit) the state changes made during the execution

of this service request (complete atomic action),

• startTA: start service transaction,

• commitTA: commit state changes made during the current service transac-

tion,

• abortTA: abort (undo) any state changes made during the current service

transaction.

The durability compiler modifies the service code so that it issues calls

to these proxy methods when appropriate, see section IV.C.4. Specifically startA

is called at the beginning of the service request and commitA at the end of the

service request for all the state objects for which the update operations are called

during the processing of the service request. The startTA, commitTA, and abortTA

operations are called by the service when it participates in the WS transaction

coordination protocols. Note that when a service method is called inside a WS

transaction, the startA and commitA operations have no impact since the state

changes cannot be completed until the WS Transaction commits (or aborts). The

durability proxy simply ignores these operations when it knows that the state

object is involved in a WS Transaction.

43

Since it is impossible to implement efficient generic durability proxies,

some of the state object-specific instructions used by the durability proxies are

specified in the durability mapping, see section IV.C.3. The durability compiler

combines the generic durability proxy code with the information specified in the

durability mapping to generate state object specific durability proxies.

Replication proxy

As illustrated in figure IV.1, the replication proxy replicates the state

object by maintaining backup copies of the object in backup copies of the service.

The replication proxy at the service acts in the role of the primary proxy and the

replication proxies at the backup services act in the role of backup proxies. The

replication proxy implements the basic proxy API as follows:

• init: create a TCP connection between the primary and backup proxies.

• recover: (backup) change role to primary and create TCP connections to new

backup proxies.

• startA: (primary) create an empty update buffer at the primary.

• invoke: (primary) if the operation issued is an update operation, forward the

request to the local state object and store the corresponding state update in

the update buffer.

• commitA: (primary) send update buffer to backup(s), wait for acknowledg-

ment. When a backup proxy receives this state update, it sends back an

acknowledgment to the primary proxy. Note that the backup can issue the

state updates after sending this acknowledgment.

Implementing transactional semantics involves deciding whether the fail-

ure of a service instance (primary or any of the backups) should be masked from

the WS transaction or whether the WS transaction should be aborted if one of the

service instance fails during the transaction. While doing the first would provide

44

failure masking and slightly better service reliability, it would require changes to

the WS Transaction specifications. As WS-Transaction is currently defined, a ser-

vice automatically joins a transaction when it receives a service request containing

a new transaction object. If this service does not respond during the two-phase

commit protocol, then the decision will eventually be to abort since the service will

not be around to vote yes to commit the transaction. Hence, one would need to

have a way to de-register the failed service with the transaction (which would be

a change to WS-Coordination) and to allow the backup (or newly started service

instance) to join the transaction. Another alternative would be to migrate the

identity of the registered service from the failed service to the backup. Doing the

latter would require some support for migration of identities.

The second approach can easily be implemented with the current WS-

Transactions standards and is thus used by our current replication proxy. In this

case, if a service instance fails during the transaction, the transaction coordinators

will eventually abort the transaction. After the service has recovered, the client

can reissue a transaction request similar to the case without transactions. When a

transaction starts, the service invokes the startTA method on the replication proxy

and when the transaction commits or aborts, the service invokes the commitTA or

abortTA operations, respectively. The transaction context is passed as an argument

to the startTA operation. The implementations of these operations are as follows:

• startTA: (primary) checkpoint current state (see durability mapping below);

create update buffer; send transaction context to the backup(s), wait for

acknowledgment(s); (backup) register as a participant in the transaction.

• commitTA: (primary) send update buffer to backup(s); wait for acknowledge-

ment(s); discard checkpoint; (backup) apply state updates sent by primary;

send an acknowledgement.

• abortTA: roll back state, discard update buffer.

Database proxy

45

As illustrated in figure IV.1, the database proxy backs up the object

state in a database. When an update operation is invoked on the state object, the

database proxy updates the object state in the database by issuing appropriate

database operations. The init method creates the database tables necessary for

storing the object state and the recover method at the database proxy at a backup

(or newly created) service issues the appropriate database query operations to load

the current object state.

The action control operations in this case simply rely on the transac-

tional support provided by the underlying database system. Both the atomic

actions (defined by startA and commitA methods) and WS Transactions (defined

by startTA, commitTA, and abortTA) are implemented by calling the methods

for starting, committing, and aborting a transaction provided by the database.

For example, if the Java Transaction API (JTA) is used, the operations could be

TransactionManager.begin, TransactionManager.commit, and TransactionMa-

nager.rollback. Note that the startA and commitA operations check to see if

the state object is already involved in a WS Transaction and if it is, they simply

return without invoking any database operations.

When the state object is involved in a WS Transaction, it must be able

to undo any changes made in case the transaction is aborted. Similar to the repli-

cation proxy case, the object state can be checkpointed at the beginning of the

transaction (startTA operation); however, in this case the state can also be restored

by simply using the recover operation that pulls the state from the database (af-

ter the transaction has been aborted). These operations can be specified in the

durability mapping.

Reconstruction proxy

The reconstruction proxy is appropriate in situations where semantically

durable state can be implemented by reconstructing the object state after fail-

ure. The init operation simply creates an “empty“ state object (the definition

of “empty“ is object specific), while the recover operation invokes the init opera-

46

tion. The invoke operation forwards operations to the state object and startA and

commitA operations do nothing (i.e., return).

To implement transactional semantics—particularly, to be able to abort

a transaction—even this proxy has to implement the startTA, commitTA, and

abortTA operations. A checkpointing strategy similar to the replication proxy can

be used, or alternatively, if aborts are unlikely, it would be semantically valid to

abort to an “empty“ state (i.e., abortTA simply calls init).

IV.C.3 Durability Mapping

The durability mapping describes for each state object the durability

mechanism chosen for this object and the state object specific instructions. These

specific instructions may be required for the following operations:

• Initialization and recovery,

• for each update method of this object, the state update instructions,

• checkpointing and restoring instructions.

While Java object serialization can be used to implement both the state

update and checkpointing, more efficient methods are often available depending

on the state object semantics. For example, if the state object operations are

deterministic, the state update in the case of a replication proxy can be achieved

by simply executing the same operation on the object replica(s). For example, for

a state object that uses the database proxy, the durability mapping could include

the following:

• Initialization: Create database table(s) for the state.

• Recovery: Database instructions to query database for the object state and

instructions to assign the state.

• State update(s): Database instructions to update a table based on operation

parameters.

47

• Checkpointing: mapping specifies a no op.

• Restoring: Call the recover operation.

IV.C.4 Durability Compiler

The durability compiler takes the service code (including the code for the

state objects) and the durability mapping, and generates modified service code and

customized durability proxies for the state objects. The durability proxies are gen-

erated by taking the generic proxy code and inserting the required customization

code from the durability mapping; see section IV.D for an example. The output

of the durability compiler is normal Java code that can be compiled and executed

as a normal Java program.

The service code is modified as follows. The initialization code of the

service is extended to create the durability proxies for each state object. All

method calls to the state objects are replaced with calls to the corresponding

durability proxy. For each method of the service, the durability compiler inserts

calls to the state objects’ startA methods at the beginning and commitA methods

at the end for all state objects that may be updated by the service request. Note

that the code for the backup service is the same as for the service except that

it creates any replication proxies in the backup role and it does not call the init

methods of the database proxies. It also provides a method that can be invoked to

force the backup to assume the role of the primary service. Some additional code

to interact with the system monitoring and registry system may also be necessary

at the service and in the backups depending on the specifics of the system.

IV.D Examples

We use two services to illustrate our approach and evaluate the perfor-

mance overhead imposed by the different durability mechanisms. The first service

is the Counter service that is included as an example in the Globus Toolkit soft-

48

ware and is built using WSRF. We use this simple service for micro-benchmarking

throughput and latency. The second service is the Matchmaker service again, with

slightly different functions as the one we use in chapter III. We use this Match-

maker service to experiment with the performance tradeoffs of services using more

than one state object.

Our performance evaluation is based on Globus Toolkit 4. Our configura-

tion consisted of three dual-CPU Pentium III 2x2785 Mhz workstations connected

to a 1 Gbit Ethernet and running RedHat 9. One machine ran the clients, a second

machine ran the server, and the third machine hosted the database server and was

used to run the service backup. We used MySQL 4.0 as our database servers. The

durability compiler has not been implemented; the corresponding transformations

were performed manually. Furthermore, since the Globus Toolkit does not yet

provide support for WS Transactions, we did not implement transaction support.

IV.D.1 The Counter Service

The Counter service uses WSRF to maintain stateful information. This

service has one operation “add”, which increments the value of the counter state

by one and returns the incremented value. The state object, Counter, provides

two operations: “setValue” and “getValue”, and only “setValue” updates its state.

We compared the performance of three service configurations: the original Counter

service, the service with the Counter object protected using the replication proxy

(PB service), and the service with the Counter protected using the database proxy

(DB service). Since the reconstruction proxy does not perform any operations

except when failures occur or when the state object is involved in a transaction

(neither of which were present in the experiments), its performance would be iden-

tical to the original Counter service. Our test client sends a specified number of

“add” requests sequentially to the service. For the latency tests, we used one client

that sends 40,000 requests, while for the throughput tests we used c concurrent

clients, c ∈ {1, 2, 4, 8, 12, 16}, where each client sends 40000/c requests.

49

The average request round-trip time (RTT) of the original service was

139 ms (with 95% confidence interval ±0.3 ms). The RTT of the PB service is

essentially the same, while the average RTT of the DB service is 171 ms (with 95%

confidence interval ±0.3 ms), which is an increase of 23%. Figure IV.3 shows the

throughput of the three services. The throughput of the PB service is close to the

throughput of the original counter service, especially when the number of clients

is small. The throughput of the DB service is lower than the other two. For all

three services, the throughput increases when the number of clients increases from

1 to 8, and does not change much when the number of clients increases from 8 to

16. The 95% confidence intervals of all the throughput values are no wider than

±0.11. Thus, the confidence intervals would not be readable in the figure.

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Number of clients

Original
Primary-backup

Database

Figure IV.3: Counter Service Throughput

IV.D.2 The Matchmaker Service

The Matchmaker service is similar as the one we use in chapter III. It

keeps track of machines available in a grid and allocates them to clients request-

ing computing resources. The service provides two methods: “machineAdvertise”

and “jobSubmit”. Each machine periodically advertises its availability by invok-

ing “machineAdvertise” with information about the resources it has available (e.g.,

50

CPU speed, available memory, available disk, etc). A client that requires a ma-

chine invokes “jobSubmit” with requirements for the desired machine. If suitable

machines are available, Matchmaker choose one and returns it to the client. Oth-

erwise, it returns an error message indicating that machines of the requested type

are currently not available. The scheduling policy of this Matchmaker service is

different from the one in chapter III. If there are more than one machines suitable

for a “jobSubmit” request, the Matchmaker service returns the first one it finds.

After receiving a “jobSubmit” request, the Matchmaker exemines the resource pool

and responds to the client immediately, instead of putting the request into a queue.

The Matchmaker service contains two state objects: MachineQueue and

AccountSet. MachineQueue maintains a list of available machines and AccountSet

maintains usage records for each client used to charge the user for the resources.

If the MachineQueue is lost, it can be reconstructed based on the periodic “ma-

chineAdvertise” calls but there is no way to reconstruct AccountSet if it is lost.

Thus, these two state objects have different durability requirements. Note that

“machineAdvertise” updates the MachineQueue, while “jobSubmit” may update

both state objects.

Tables IV.4 and IV.5 illustrate the durability mappings for MachineQueue

and AccountSet. For MachineQueue, the mapping specifies that a replication proxy

should be used. The state update method is to execute the same method (with

the same arguments) on the backup state object (keyword repeat). No special

initialization or recovery code is needed in this case and we omit checkpointing and

restoration instructions. For AccountSet, this mapping specifies that a database

proxy should be used. The initialization section specifies the instructions for cre-

ating a database table for the object state. The recovery section specifies the

intructions for retrieving the object state from the database. The state update

methods are based on the arguments of the state object operations and map to

simple database update operations.

We compared the performance of four service configurations: the original

51

<durability proxy> <type> Replication </type>

<update methods>

<method>

<name = insertNode>

<state update> repeat </state update>

</method>

<method>

<name = deleteNode>

<state update> repeat </state update>

</method>

</update methods>

</durability proxy>

Figure IV.4: Durability mapping for MachineQueue

Matchmaker service, one using replication proxies for both states objects(PB), one

using a replication proxy for MachineQueue and a database proxy for AccountSet

(PB+DB), and one using database proxies for both state objects (DB). Our ex-

periment has one client first advertise a large enough number of machines that all

subsequent “jobSubmit” calls can be satisfied. Then, four clients generate load for

the Matchmaker service. Each client executes the following sequence of actions

30 times: (1) pick a random number n between 1 and 5; (2) send MatchMaker n

requests, with each request asking for one machine; (3) pick a random number C

from a specified “computation interval”; (4) sleep for C seconds. The sleep period

simulates the time during which the client is using the allocated machines.

The results are shown in figure IV.6. As expected, the average latency

of PB is the closest to the original service: it is about 60 ms less than DB. The

performance of PB+DB is between PB and DB. These results indicate that by

using a cheaper durability mechanism for the less critical state object, the overall

performance of the service can be improved compared to using a database for both.

When the computation time interval increases, the average latency decreases, since

the chance that two clients invoke the Matchmaker service at the same time is

52

<durability proxy> <type> Database </type>

<initialization>

CREATE TABLE bills (clientID INT, balance INT) ENGINE = INNODB;

</initialization>

<recovery>

SELECT * FROM bills;

for (each line) insertBill(clientID, balance);

</recovery>

<update methods>

<method>

<name = insertBill>

<state update>

INSERT INTO bills VALUES (arg[0], arg[1]);

</state update>

</method>

<method>

<name = setBill>

<state update>

UPDATE bills SET balance = arg[0] WHERE clientID = arg[1];

</state update>

</method>

</update methods>

</durability proxy>

Figure IV.5: Durability mapping for AccountSet

reduced.

IV.E Related Work

The fault tolerance of services in distributed systems has been an issue

since the inception of distributed computing. The basic techniques used to achieve

such fault tolerance are fundamentally the same: the state of the service is secured

against failure using some form of redundancy. We classify the related work based

on the view taken on the service state.

53

0

50

100

150

200

250

300

350

0.3~0.6 3~6 30~60 300~600

Computation time (seconds)

L
at

en
cy

 (
m

ill
is

ec
o

n
d

s)

Original
PB
PB+DB
DB

Figure IV.6: Matchmaker Service Performance

One traditional approach is to view the service state as a part of the

server, and provide state durability by making the service fault tolerant via server

replication. This approach was formalized by the replicated state machine ap-

proach [53]. Numerous distributed computing platforms based on group communi-

cation take this approach for replicating processes to provide fault-tolerant services.

This approach was also standardized as the method for providing fault tolerance in

CORBA [45] and it was also used in our earlier work on providing fault-tolerance

for grid services based on the OGSI model [61]. Such an approach has also been

proposed for services in the form of FT-SOAP [41].

Another approach taken to securing service state is to use stable storage

provided by a file system or a database. In an SOA, each state change is typically

stored to a database immediately before a reply is returned to the client. The

Java J2EE [10] architecture for 3-tier e-commerce services provides a durability

mechanism transparent to the programmer in the form of entity beans. The J2EE

runtime environment (application server) provides database based persistence for

entity beans transparently. Complete transparency has performance implications,

and therefore, systems such as Hibernate have been designed to provide object

persistence at a lower cost [7]. Hibernate is a framework that allows the mapping

54

of a data representation from a Java object model to a relational data model with

an SQL-based schema. Hibernate maps Java classes to database tables at runtime.

Finally, [59] proposes a replication algorithm that provides both state consistency

and exactly-once semantics for stateful J2EE application servers.

The availability of stable storage implemented as a database can be in-

creased using replication. Database replication at the middleware level has recently

received considerable attention [43, 3, 5, 46, 52] since it can support a heteroge-

neous environment without the need to change the underlying database system.

Finally, [34] presents models for evaluating the dependability of data stor-

age system, including both individual data protection techniques and their com-

positions. These models estimate storage system recovery time, data loss, normal

mode system utilization, and operational costs under a variety of failure scenarios.

To our knowledge, no prior work provided the flexibility of allowing dif-

ferent techniques to be used transparently to improve the service state durability.

IV.F Summary

This chapter addresses the increasingly important issue of how to make

services in an SOA highly available and fault tolerant. Our work is based on the

observation that if the state of the service can survive failures (i.e., is durable),

it is relatively easy to construct highly available services. However, durability

may have a considerable performance overhead depending on the specific tech-

niques used. Therefore, our approach allows the transparent customization of the

durability techniques used for different parts of the service state, that is, differ-

ent objects that store the service’s state. The durability requirements and chosen

techniques can be determined after the service and its state objects have been

implemented. Our approach is based on using a durability compiler that takes the

service implementation, a service-specific durability mapping specification, and

reusable durabability proxies and generates code where each state object in the

55

service is protected by the chosen durability technique. To our knowledge, our

proposed system is the first to offer such a level of customization of the durabil-

ity/performance tradeoff. While we have not implemented the durability compiler,

we anticipate that its complexity is comparable to a stub compiler for middleware

platforms such as CORBA.

Our performance measurements show that being careful about choosing

the appropriate durability techniques can significantly boost performance, with the

gain increasing as the number of state objects accessed in a single client invoca-

tion increases. We also anticipate that the relative performance gain will improve

further as more efficient implementations of services platforms are developed.

IV.G Acknowledgements

This chapter is, in part, reprints of material as it appears in ”Customiz-

able Service State Durability for Service Oriented Architecture,” by Xianan Zhang,

Matti A. Hiltunen, Keith Marzullo, and Richard D. Schlichting, in the Proceed-

ings of the 6th European Dependable Computing Conference (EDCC-6), October,

2006. The dissertation author was the primary coauthor and co-investigator of

this paper.

Chapter V

Practical Performance of Paxos

The previous two chapters explored how we can build highly available ser-

vices in synchronous systems. However, some grid environments are asynchronous

— the process execution speeds and message delivery delays are not bounded.

We need additional techniques to make services highly available in asynchronous

systems.

In this chapter, we evaluate practical performance of existing protocols

for asynchronous systems. Based on this foundation, we propose a new set of

protocols that support both asynchronous systems and nondeterministic services

in the next chapter.

We consider two protocols here: Classic Paxos [35], which implements

repeated consensus for crash failures, and Fast Paxos [37], which implements the

same protocol under the same failure model, but does so using shorter message

chains. Indeed, Fast Paxos is optimal in time (as measured by the length of message

chains) for reaching consensus. Fast Paxos does this by offloading dissemination

of values from servers to the clients. Of course, this does not mean that Fast

Paxos may be faster than Classic Paxos in practice. For example, in the paper

that presents Fast Paxos, the author points out that when there are “collisions”

(defined later in this chapter), then Fast Paxos can be significantly slower than

Classic Paxos.

56

57

In this chapter we take a more careful look at the performance of Classic

versus Fast Paxos. We then consider two realistic system configurations assuming

that servers are collocated: one in which the clients and the servers are all in the

same local-area network (as one might have in a private cluster service, such as a

resource manager) and one in which the servers are all in one local area network

but the clients are attached via a wide area network (as one might have in a

replicated Web service). Although the case in which servers are not collocated

is also interesting, we concentrate in this work on the cases in which replicas are

part of the same local-area network. A discussion of settings in which servers are

spread across a wide-area network and how the choices of replicas impact on the

availability of a system implementing Classic Paxos appears in [33].

From an analytical point of view, we uncovered several facts that surprised

us. For example, increasing replication can, in some circumstances, reduce the

chances of collisions; in some networks, the larger replication requirements of Fast

Paxos can hurt its performance; in a wide-area setting, Fast Paxos’s offloading to

the clients the dissemination of values can have a serious impact on performance. In

other realistic situations, though, Fast Paxos does indeed have better performance

than Classic Paxos.

The chapter proceeds as follows: in section V.A, we give a simple factors

model of Classic Paxos and Fast Paxos to describe what are the system parameters

that can affect the relative performance of the two approaches. In section V.B, we

look at the two protocols using an analytical probabilistic model to understand the

relative effects the different system parameters have. In section V.C, we describe

a set of experiments we conducted running Classic Paxos and Fast Paxos in two

different systems to validate the observations in section V.B. We conclude with

some final observations and directions for further research in section V.D.

58

V.A Classic Paxos versus Fast Paxos: Basics

In this section, we review the message flow of Paxos to gain an under-

standing of the factors affecting the performance of the two versions. We concen-

trate on the failure-free case, since in any practical system this should also be the

common case.

Both in Classic Paxos and in Fast Paxos, servers have roles: there are

proposers that propose values for consensus, acceptors that accept proposals (as

well as make promises not to accept certain proposals) and learners that learn the

outcome of consensus. In our case, clients are proposers and servers are acceptors

and learners. An acceptor can have a special role, which is as a leader.1 If there is

only one leader and enough acceptors are not faulty, then the protocols are live.2

When a new acceptor arises as a leader, the new leader and the acceptors

execute a part of the protocol to guarantee that the acceptors accept proposals

from the new leader. This is called the prepare phase. We assume (again as part

of the common case) that there is only one leader whose identity does not change,

and so the prepare phase need not be run repeatedly. Thus, the message flow of

the two protocols are, from proposing to the servers learning the consensus value:

Classic Paxos proposer −→ leader
p2
−→ acceptors

p2
−→ learners

Fast Paxos proposer
p2
−→ acceptors

p2
−→ learners

In this diagram, messages labeled p2 constitute phase 2. Briefly, the proposer sends

a request to the leader (Classic Paxos) or to all of the acceptors (Fast Paxos), and

a learner accepts a value when it receives a message from a quorum of acceptors.

A quorum in this case is a minimal subset of acceptors necessary to ensure safety.

It is important to notice that the message chain for Fast Paxos is one shorter

1Although the leader is not necessarily an acceptor, we assume so in this chapter as we assume that
every server is an acceptor.

2These terms are used slightly differently for the two different papers. Readers who are familiar only
with Classic Paxos may wonder why an acceptor is the leader rather than a proposer. The terms we use
here are from Fast Paxos.

59

Table V.1: Classic and Fast Paxos
Number of replicas Quorum size # Length of msg chain

Classic Paxos 2t + 1 t + 1 4
Fast Paxos 3t + 1 2t + 1 3

than that for Classic Paxos. In using one of Classic or Fast Paxos to implement

a replicated state machine, it is often necessary to have an extra message back to

the client giving the result of the computation. Such a reply is the same for both

variants of the Paxos algorithm, and none of the algorithms imposes constraints

on how to implement it (the server that sends such a reply or its form). For this

work, we therefore choose to ignore it, and we concentrate on the time to learn.

The two protocols have different replication requirements: Classic Paxos

requires 2t + 1 acceptors and Fast Paxos requires 3t + 1 acceptors, where t is the

maximum number of faulty acceptors. For Classic Paxos, a quorum consists of

t+1 acceptors and in Fast Paxos, a quorum consists of 2t+1 acceptors. Table V.1

presents a summary of the requirements of both algorithms.

Fast Paxos can exhibit a behavior called a collision. This occurs when

two or more proposers send proposals at approximately the same time and the

acceptors receive those proposals in different order. When a collision occurs, a

collision resolution protocol is run to determine the outcome of consensus (in fact,

this resolution protocol can be run even if 2t+1 receive the message from one of the

clients first, but the learners will learn the consensus value even if this resolution

protocol is not run). The equivalent of a collision in Classic Paxos can occur only

when there is more than one leader. Although a leader oracle is an important

part for a real deployment of Paxos, in this chapter we concentrate on the cases in

which the communication with the leader is reliable enough so there are no false

suspicions.

Looking at this more carefully, let R(Src,Dst ,Mid , Q) denote the elapsed

time between when Src sends a message to all servers in the set Mid , and when

60

the set Dst receives the triggered messages from Q replicas in Mid . Note that each

replica sends Dst a message after receiving from Src, and some replicas can start

sending before others receives from Src. Consequently, R(Src,Dst ,Mid , Q) is not

necessarily the sum of the individual message latencies as there can be overlapping.

Let prop be the proposer, leader be the leader, A be the set of acceptors,

and learner be a learner. In addition, let latency(prop, leader) be the message

latency from prop to leader . The latency of Classic Paxos is latency(prop, leader)+

R(leader , learner , A, t+1) while the latency of Fast Paxos is R(prop, learner , A, 2t+

1) assuming no collisions.

Ignoring collisions, Fast Paxos has a lower latency than Classic Paxos only

when R(leader , learner , A, t+1)+ latency(prop, leader) > R(prop, learner , A, 2t+

1). There are two reasons why this may not be the case:

Wide Area Network Variance When the client is not in the same local area

network as the servers, then the variance of messages from the client to

acceptors can be quite large. Classic Paxos sends only one such message,

while Fast Paxos sends 3t + 1 messages and 2t + 1 of them are in the critical

path. The client sends these messages in parallel, and by sending more

messages, there is a higher chance of having at least one substantially slower

message in the critical path.

Quorum Size A large message variance in the local area network containing the

servers can also affect the latency because Fast Paxos requires a larger quo-

rum of acceptors.

We quantify these effects in the following sections.

Collisions also increase the latency of Fast Paxos. How much of an effect

this has depends on the probability of collisions and the latency in resolving them.

We look at this issue in the following sections.

61

V.B Probabilistic Analysis

The performance of both variants of the Paxos algorithm depends upon

how fast the network delivers messages to receivers. Their relative performance

depends strongly on the variance of message latency. In many real networks, the

distribution of message latencies is often heavy tailed due to traffic variations

and non-deterministic scheduling of processes in a single computer. Informally,

this implies that most of the time messages are delivered fast, but occasionally

messages take one or two order of magnitude more time to be delivered at the

receiver.

To illustrate this observation, we use traces obtained with NWS (Network

Weather Service [58]) in the GrADS testbed [8] over the period between August and

October of 2002. These are traces of TCP connections between pairs of machines.

Each trace contains the time to establish a TCP connection, send four bytes, receive

four bytes, and close the connection. As there are hundreds of such pairs in these

traces, we only present graphs for two pairs that we believe are representative of

many of the traces in the data set. These pairs are: one pair of hosts connected

through a wide-area network (the Internet) and one pair of hosts connected through

a local-area network.

Figure V.1(a) shows a time series over the measurement period for a

pair of hosts connected through a wide-area link, and Figure V.1(b) shows the

cumulative distribution function (CDF) of the same data. Similarly, Figure V.2(a)

shows a time series over the measurement period for a pair of hosts connected

through a local-area link, and Figure V.2(b) shows the CDF of the same data.

In both cases, it is easy to see that the connection times have a large variation,

and the corresponding probability distributions have a long tail. The local-area

distribution presents less variation, but the tail is still significantly long (indeed,

some local-area pairs show much larger variations).

It is not our goal in this work to model distributions of message laten-

62

 60

 65

 70

 75

 80

 85

 90

 95

 100

10-108-26
M

e
s
s
a

g
e

 L
a

te
n

c
y
 (

m
s
)

Time

(a) WAN Time Series

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100

C
D

F

Message Latency (ms)

(b) WAN CDF

Figure V.1: WAN Trace

cies. In fact, modeling the distribution of message latencies is an open research

problem [17]. The only two assumptions we make for the remaining of this chapter

based on these data sets is that message distributions have long tail and that the

minimum latency in a local-area network is at least one order of magnitude smaller

compared to latencies in a wide-area network.

To analyze the performance of Classic and Fast Paxos, we use both syn-

thetic distributions and distributions from our data set. The synthetic distributions

use a Pareto model [51]. We decided to use a Pareto model not because it is a par-

63

 0

 2

 4

 6

 8

 10

10-108-26
M

e
s
s
a

g
e

 L
a

te
n

c
y
 (

m
s
)

Time

(a) LAN Time Series

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000 10000

C
D

F

Message Latency (ms)

(b) LAN CDF

Figure V.2: LAN Trace

ticularly accurate model to use, but because they are simple to compute and have

a long tail which is adjustable by a parameter of the model. For the distributions

from the GrADS traces, we consider four of the large number of possible cases: two

cases in which the proposer is connected to the servers through a wide-area link

and two cases in which all participants are in the same local-area network. These

four are sufficient to illustrate that the computed probabilities have a behavior

similar to the synthetic distributions.

In the following probabilistic analysis, we assume that the time of local

64

computations is negligible, and that message latencies are independent for distinct

messages.

V.B.1 Pareto Distributions

A Pareto distribution has two parameters: α > 1 and b. The parameter

α determines the shape of the distribution. As we decrease the value of α, we

obtain a distribution with a longer tail. The parameter b gives the minimum value

in the distribution.

Figures V.3(a), V.3(b) show the probability that a learner learns by time

L for different sets of parameters, assuming that there is a single client and that

there are no failures. More formally, let Lc be a random variable corresponding

to the time that a given learner learns using Classic Paxos, and Lf be a random

variable corresponding to the time that a given learner learns using Fast Paxos.

We then have that the each of the graphs in Figures V.3(a) and V.3(b) show

P{Lc ≤ x} and P{Lf ≤ x}. Additionally, we plot the distribution of wide-area

messages for comparison with the other curves.

For the message distributions, we assume one wide-area distribution (αw

and bw) and one local area distribution (αl and bl). The values we assume for this

graph are the following: αw ∈ {1.2, 1.8}, bw = 100ms, αl = 2.0, bl = 3ms, and

t = 1. We chose αw and αl arbitrarily, under the constraint that αw < αl. This

is because we assume that wide-area distributions are more skewed and therefore

have a longer tail. We have also chosen the values of bw and bl arbitrarily, but

following our assumption that bl is at least one order of magnitude smaller than

bw. A natural choice is the minimum in graph V.2(b). To make the influence of

the local-area communication observable, we use a value one order of magnitude

larger. Even with such a value, as we can see from the graphs in Figures V.3(a)

and V.3(b), the latency of wide-area messages dominates, although the difference

between the curve for the distribution of wide-area latency values and the curve

for Classic Paxos is noticeable.

65

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000
C

D
F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(a) αw = 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

C
D

F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(b) αw = 1.8

Figure V.3: Time to learn using Pareto distributions: bw = 100, al = 2.0, bl = 3,

t = 1

There are a few important observations to make on Figure V.3(a) and

Figure V.3(b). First, the Classic Paxos curve follows closely the distribution of

wide-area messages. This implies that the local communication has negligible

influence on the performance of Classic Paxos. Second, although the latency of

wide-area messages also has a higher impact on performance compared to the

latency of local-area messages for Fast Paxos, the shape of the curve does not

closely follow the one of the distribution of wide-area messages. This is for two

66

reasons.

1. For a short interval of time, the probability of a learner learning within that

interval is smaller for Fast Paxos because the client has to communicate with

multiple acceptors. There is consequently a higher probability that one of

these messages is slow;

2. For longer intervals of time, the probability that a learner learns within this

time interval is higher for Fast Paxos because messages have to be fast only

from the client to a quorum of acceptors, and hence a few slow messages do

not hurt performance.

This is different of what happens with Classic Paxos: if messages between the

client and the leader are fast, then learning is fast, otherwise learning is slow.

In the graphs, the previous observations map to two regions in the graph:

one in which the Fast Paxos curve is under the Classic Paxos curve (P{Lc ≤ x} >

P{Lf ≤ x}), and another in which the Classic Paxos curve is under the Fast Paxos

curve (P{Lc ≤ x} < P{Lf ≤ x}). The division between the two regions is around

300ms, and the values of P{Lc ≤ x} and P{Lf ≤ x} are both over 0.7 for both

values of αw.

One way to interpret this is as follows: asynchronous systems can still

have deadlines, but such deadlines can be violated. For deadlines shorter than

300ms, Classic Paxos is more likely to reach consensus than Fast Paxos. This

deadline is longer than the median time to reach consensus, which is closer to

200ms. If a longer deadline is acceptable, then Fast Paxos is a better choice since

it is more likely to reach consensus. For longer deadlines, however, the difference in

likelihood to decide between the two Paxos protocols is smaller than the difference

for shorter deadlines.

We also present a similar set of CDF graphs for t = 3 (Figures V.4(a)

and V.4(b)). Comparing to graphs with t = 1, we observe that the curve for Fast

Paxos is steeper, which implies simultaneously a shorter tail and lower probabilities

67

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000
C

D
F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(a) αw = 1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

C
D

F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(b) αw = 1.8

Figure V.4: Time to learn using Pareto distributions: bw = 100, al = 2.0, bl = 3,

t = 3

for smaller time values. Note that when we increase the value of t, we are increasing

the size of the quorums of acceptors.

As noted before, collisions hurt the performance of Fast Paxos. In Fig-

ures V.5(a) and V.5(b), we show the probability of collision for a distribution of

message latencies with parameters αw = 1.2 and b = 100, and two clients. For this

analysis, we assume that the first client sends a request at time r and that the

second client sends a request at time r+ δ, and the values in the x-axis correspond

68

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000
P

ro
b

a
b

ili
ty

 o
f

C
o

lli
s
io

n

Delay (ms)

t=1
t=2
t=3

(a) αw = 1.2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250 300 350 400

P
ro

ba
bi

lit
y

of
 C

ol
lis

io
n

Delay (ms)

t=1
t=2
t=3

(b) αw = 1.8

Figure V.5: Probability of a collision - Pareto distributions, bl = 100

to this delay δ. The two requests conflict if none of them can obtain a quorum of

acceptors.

As we increase the value of t, the probability is higher for small delays.

For example, the probability of collision for simultaneous requests is approximately

0.38 for t = 1, whereas this same probability is approximately 0.65 for t = 3. For

longer delays, however, as we increase the value t, the probability of having a

collision decreases faster. This is consistent with our previous observations. As

we increase the value of t, the tail of the time-to-learn distribution is shorter.

69

Consequently the distribution of time values for the first client request to obtain a

quorum of acceptors before the second client request can reach enough acceptors

to cause a collision must also have a shorter tail.

If one increases the number of clients, then the probability of collisions

will increase because there are more ways that no proposer obtains a quorum of

acceptors. These curves will still steepen as t increases.

To finish this section, we show a case in which Fast Paxos clearly performs

better than Classic Paxos. This happens when clients and replicas are in the

same local area network. To illustrate this case, we use αw = αl = 2.0 and

bw = bl = 3ms. We show distributions of time to learn for this set of parameters

in Figures V.6(a) and V.6(b). From these graphs, we have that for any time value

x, P{Lc ≤ x} ≥ P{Lf ≤ x}. Increasing the value of t has the effect of making the

tail shorter for both Fast and Classic Paxos.

V.B.2 Empirical Distributions

We consider four sets of distributions from the NWS/GrADS traces, both

sets containing one wide-area distribution and one local-area distribution. For this

analysis, we assume that the time to send a message corresponds to the time of a

connection as we described for the traces we have.

The first set, which we call “set 1”, uses the distributions in Figures V.1(b)

and V.2(b). The graphs in Figures V.7(a) and V.7(b) show distributions of time

for a given learner to learn a client request, assuming no competing requests and

no failures.

From these graphs, we observe a similar behavior as the one for the Pareto

distributions. This behavior corresponds to having two regions, one in which the

CDF curve for Fast Paxos is under the curve for Classic Paxos, and another region

in which we have the opposite. In the first region, for the same time value x, we

have that P{Lc ≤ x} − P{Lf ≤ x} ≈ 0.2. The second region, however, is not as

pronounced as the first one, which signifies that, for the same time value x, the

70

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100
C

D
F

Time (ms)

Classic Paxos
Fast Paxos

(a) t = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F

Time (ms)

Classic Paxos
Fast Paxos

(b) t = 3

Figure V.6: Time to learn, single Pareto distribution, al = 2.0, bl = 3

probability of Fast Paxos is not significantly higher than the probability of Classic

Paxos. It is also interesting to observe that the two curves overlap for a small

range. This implies that the probability is the same for time values in this range.

For such a scenario, we conclude that using Fast Paxos as opposed to Classic Paxos

is not a good choice.

The second set of distributions, which we call “set 2”, uses a less skewed

wide-area distribution, but that still has a long tail. We show CDF’s, equivalent to

the ones for “set 1”, in Figures V.8(a) and V.8(b) for different values of t. We can

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 65 70 75 80 85 90 95 100
C

D
F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(a) t = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 65 70 75 80 85 90 95 100

C
D

F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(b) t = 2

Figure V.7: Time to learn, empirical distributions, set 1

see from these graphs that they also have two regions as in the first case and as

in the Pareto cases. In the curves for “set 2”, however, the difference between the

curves is small. That is, for every possible value of x, |P{Lc ≤ x} − P{Lf ≤ x}|

is small. In this case, we also conclude that using Fast Paxos is not beneficial, as

there is no substantial gain in performance.

As we did for Pareto distributions, we now show cases in which all the

communication is local. In Figure V.9(a), we plot P{Lc ≤ x} and P{Lf ≤ x}

using a moderately skewed distribution. Because the distribution is only moder-

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100
C

D
F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(a) t = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100

C
D

F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(b) t = 2

Figure V.8: Time to learn, Empirical distributions, set 2

ately skewed and all the communication is local, Fast Paxos outperforms Classic

Paxos. To show another instance of when Fast Paxos may have a poor performance

compared to Classic Paxos, we use one trace in which the distribution is unusually

skewed to compute the distribution of time to learn. Figure V.9(b) shows the

distributions for both Fast and Classic Paxos.

From the figure, for time values under 1ms, a learner has a higher prob-

ability of learning of a request when using Fast Paxos. This probability, however,

is at most 0.26. For time values up to 14ms, the probability is higher for Classic

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100
C

D
F

Time (ms)

Classic Paxos
Fast Paxos

(a) Moderately skewed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Time (ms)

Classic Paxos
Fast Paxos

(b) Highly skewed

Figure V.9: Time to learn, Empirical distribution, local-area communication

Paxos, and this probability is roughly 0.8 around 14ms. For larger time values,

Fast Paxos presents a higher probability. The difference, however, is small: the

maximum is 0.048 at 60.203ms.

Finally, we computed the probability of collisions assuming that two

clients send requests concurrently, exactly as we did for Pareto distributions. The

graphs in Figure V.10(a) and V.10(b) show the density probability function for

both “set 1” and “set 2” for different values of t. As we observed for Pareto dis-

tributions, the probability of a collision decreases faster for larger values of t, and

74

is higher for small delays and larger values of t. One interesting observation com-

pared to the results for Pareto distributions is that the probability values we see

in these graphs are substantially smaller. This is due to the longer tail of Pareto

distributions (Pareto distributions are defined in the range [b,∞]) and due to the

choices of parameters. Equally interesting is the raise of the probability of collision

for “set 2” around 25ms. This happens due to the nature of the wide-area trace we

used. From Figure V.1(a), during the initial period of the trace, the time values

are mostly around 60ms, whereas during the final part, the time values are mostly

around 85ms. For this reason, when the second client sends a request with a delay

with respect to the first client around 25ms, the collision probability increases.

V.C Experiments

In this section, we compare the performance of Classic Paxos and Fast

Paxos by measuring the request latency in three different settings. Messages are

not written to stable storage here to simplify the implementation. The first set-

ting consists of machines in a local cluster. The other two settings use machines

spread across the Internet. We also present figures on the probability of collisions,

collected in experiments conducted in the local cluster. The main goal is to show

evidence that our results obtained by using probability models hold in practice,

and to complement the collision results shown in section V.B.

To tolerate one server failure, we ran three server processes for Classic

Paxos, and four processes for Fast Paxos. The server processes were all executing

on different machines. Each process served as both an acceptor and a learner,

and one of them also served as the leader of Classic Paxos and Fast Paxos. In

the following discussion, although every server is simultaneously an acceptor and

a learner, we use the terms “acceptor” and “learner” to refer to the particular role

of a server in specific cases. We also used another four machines to host the client

processes, and each machine hosted no more than two clients.

75

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20 25 30
P

ro
b

a
b

ili
ty

 o
f
C

o
lli

s
io

n

Delay (ms)

t=1
t=2
t=3

(a) Set 1

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

b
a

b
ili

ty
 o

f
C

o
lli

s
io

n

Delay (ms)

t=1
t=2
t=3

(b) Set 2

Figure V.10: Probability of collision - Empirical distributions

After a client process starts, it waits for a message from the leader before

it starts to send requests. The leader sends the signal to the clients simultaneously

to ensure the client processes start at (roughly) the same time. After receiving the

signal, each client process sends a sequence of requests one by one. Each request is

sent to all the acceptors. After receiving a reply from any learner, the client starts

a new request. Every learner sends a reply to the client process after learning

the chosen value; the client accepts the first reply and ignores the others. When

collisions happen, the servers use the coordinated recovery method [37] to resolve

76

them – the leader chooses a value based on what it receives from the quorum and

proposes it to all the servers.

When running Classic Paxos, as long as the leader process receives a

request and does not fail before proposing the request to other servers, the request

will be chosen and replied if there are enough non-faulty servers. For Fast Paxos,

however, it is not as simple. Assuming there are four clients A, B, C and D

proposing at the same time – A proposes va, B proposes vb, C proposes vc and D

proposes vd, the four acceptors can receive these messages in the following order:

Replica 1: < va, vb, vd, vc >; Replica 2: < va, vb, vd, vc >; Replica 3: < va, vd, vc,

vb >; Replica 4: < vd, vb, vc, va >.

Assume the leader receives from the quorum consisting of Replica 2, 3, 4

for these four requests. Following the Fast Paxos algorithm, the leader eventually

detects collision for the first three requests, and proposes va as the first, vb as the

second and vc as the third request. As a result, vd will never be learned. Thus, the

client process needs to time out and resend the request. However, “time out” is

not easy to implement in asynchronous environments since it is tricky to decide a

good “time out” value. Even if we could determine a good value, it may degrade

the performance because the client has to wait much longer than in the average

case. To overcome this problem, we implemented an extra function at the leader

process. Besides handling collisions, the leader keeps a counter for each request

tracking the number of acceptors that have already accepted this request. When

the leader observes that all the servers have already accepted the request but the

request has not been learned, it will send the client a message informing the client

that the request might not be chosen. The approach does not always work if the

message among the servers can be lost, but it can reduce the need of a client time

out.

We measured the CDF of single client latency on three settings. The first

one is a local cluster called Sysnet, which belongs to the University of California,

San Diego (UCSD). Both the server and the client processes ran on Pentium IV

77

2.8 GHz workstations connected through a Gigabit Ethernet network and run-

ning Linux 2.6.11. For the second setting, the server processes ran on PlanetLab

machines located at the Max Planck Institute for Software Systems, Germany

(MPG), while the client process on a local machine at UCSD. In this case, the

client communicates with the servers through a wide-area network, whereas the

servers are connected to a local-area network. The third setting is similar to the

second one, but the servers are at UCSD and the client is one of the PlanetLab

nodes at Princeton University. For approximately 24 hours, we ran Classic Paxos

and Fast Paxos approximately every two minutes. In Figure V.11, Figure V.12

and Figure V.13(a), we show the CDF for the latency of requests.

Fast Paxos has better performance compared to Classic Paxos on Sys-

net. This is consistent with what we found in Figures V.6(b), V.6(a), and V.9(a).

Since the network between the client and the servers is the same as among the

servers, saving one message delay does boost the performance of Fast Paxos. For

the experiments between UCSD and MPG, Classic Paxos presents smaller latency

values. The reason is that the variance of WAN latency between the client and

the servers increases the overhead of Fast Paxos and the communication over-

head among server processes is relatively small. As we observed in Figures V.8(a),

V.8(b), V.7(a), and V.7(b) the curves for Fast and Classic Paxos cross over. Al-

though the cross over point appears at a higher probability value, this is consistent

with the predictions of our model. The discrepancies we observe are likely due to

process scheduling and execution time, which our model does not account for. We

indeed observe that some PlanetLab nodes often present unusually high processing

latency, on the order of tens of milliseconds. We attribute this to the high demand

on these nodes. At the same time, it is interesting that such factors impact nega-

tively on the request latency for Fast Paxos, which implies that our model is in fact

conservative in comparing Fast and Classic Paxos. For the experiments between

Princeton and UCSD, Classic Paxos and Fast Paxos behave similarly, since the

network variance between Princeton and UCSD is not as big as between UCSD

78

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 250 300 350 400
C

D
F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(a) 0% to 100%

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 200 400 600 800 1000 1200 1400

C
D

F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(b) 80% to 100%

Figure V.11: Request CDF: UCSD – Max Planck Institute

and MPG.

To understand the collision overhead of Fast Paxos, we measured the

probability of collisions on the Sysnet cluster for 2, 4, 6 and 8 clients. Fig-

ure V.13(b) shows the results. Calibrating a value of δ to try to match experimen-

tal results with the curves of section V.B is not possible unless we have perfectly

synchronized clocks. We instead start multiple clients simultaneously and have

these clients send requests one after another without any waiting interval, where

”simultaneously” refers to the time that the clients receive a start message from

79

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 85 90 95 100 105 110 115 120
C

D
F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(a) 0% to 100%

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 80 85 90 95 100 105 110 115 120

C
D

F

Time (ms)

Classic Paxos
Fast Paxos
WAN msgs

(b) 90% to 100%

Figure V.12: Request CDF: Princeton – UCSD

the leader. Recall from graphs V.10(a) and V.10(b) that the cross over point for

different values of t is at the minimum message delay. As the servers we use for

this experiment are in the same cluster, this point must have a small value of δ (on

the order of microseconds). By increasing the number of clients, we have a higher

chance of getting larger values of δ, and consequently, the probability of collision

increases with the number of clients.

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100
C

D
F

Time (ms)

Classic Paxos
Fast Paxos

(a) Request latency CDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

P
ro

ba
bi

lit
y

Number of clients

Paxos
Fast Paxos

(b) Collision probability

Figure V.13: Sysnet request CDF and collision probability

V.D Summary

Classic Paxos and Fast Paxos are algorithms that implement repeated

consensus, and enable the implementation of efficient replicated state machines.

Theoretically, the message chain of Fast Paxos has one fewer message, and so by

that metric Fast Paxos is indeed faster. In this chapter we looked at the question

of when Fast Paxos is faster in practice.

We showed in this chapter that there are some structural details about

81

Fast Paxos that can impact latency in the common case of no failures. Using a

probabilistic model, we found that:

• While it is true that collisions have a negative impact on Fast Paxos, under

some circumstances, this impact can be reduced by increasing the quorum

size (that is, increasing t), since doing so reduces the probability of collisions.

• If the clients communicate with the servers over a wide-area network, then the

variance of communications associated with the WAN can result in Classic

Paxos having a lower latency than Fast Paxos.

• Under some circumstances, the larger quorum size of Fast Paxos can lead to

Fast Paxos performing worse than Classic Paxos.

As well as our results with synthetic message distributions, we have iden-

tified realistic scenarios in which Classic Paxos outperforms Fast Paxos using em-

pirical distributions and in experiments with real networks. When clients (or

proposers using the Paxos terminology) are connected to the servers playing the

leader, the acceptors, and the learners through a wide-area network, Classic Paxos

outperforms Fast Paxos if the communication cost among the servers is negligible

compared to the cost of the wide-area communication. Even if all the communica-

tion is local, but the distribution of message latency values is highly skewed, Classic

Paxos outperforms Fast Paxos. Fast Paxos outperforms Classic Paxos, however,

when the message latency is comparable for all pairs of participating processes and

the distribution of message latency values does not have a large variance.

The work in this chapter implies that when deploying a replicated service

based on Paxos, the choice of Fast Paxos versus Classic Paxos is not necessarily

straightforward.

Chapter VI

Primary-backup Paxos

The primary-backup approach is a traditional way to replicate nondeter-

ministic services [11]. In this approach, a primary replica executes client requests

and sends the resulting state updates to the backups. Due to the special role of

the primary, reliable failure detection becomes essential.

One can implement a perfect failure detector using heartbeats on syn-

chronous systems where the primary periodically sends out “alive” messages to

the backups or to some system monitor service [58, 31]. If there is no “alive” mes-

sages received for a certain period of time, then the primary is assumed to have

failed and a new primary is elected from the backups. However it is impossible to

implement perfect failure detectors in asynchronous systems [25, 16], where there

is no bound on machines’ speed and message delivery time. No receipts of “alive”

messages from the primary may only mean that the primary is slow for being over-

loaded or the messages are delayed because of network congestion. In reality, the

grid systems often consist of thousands of heterogeneous machines which belong to

different organizations and are connected through unreliable networks. The ma-

chines’ speed and message delivery time can vary dramatically and many things

can go wrong. Therefore, the grid systems are usually not synchronous and we can

not use the simple primary-backup approach to replicate services.

This chapter addresses the problem of replicating nondeterministic ser-

82

83

vices in asynchronous environments, such as grid systems, by using and extending

the Paxos algorithm [35]. We organize the rest of this chapter as following. In

section VI.A we introduce the basic protocol and optimizations that deliver better

performance for practical applications. In addition, we also discuss the impacts

of leader switches on the optimizations. The proof of the protocols is represented

in section VI.B. And we evaluate the performance with a local cluster and on

PlanetLab in section VI.C. Finally we describe the related work in section VI.D

and conclude our work in section VI.E.

VI.A The protocol

We describe a new protocol based on Paxos [35, 36]. In this section, we

first introduce the system model (section VI.A.1) followed by the description of

our new protocol (section VI.A.2). The performance of the basic protocol can

be further improved with two optimizations for practical applications as presented

in sections VI.A.3 and VI.A.4. The first optimization improves the performance

of the requests that do not change the service’s states while the second optimiza-

tion reduces the overhead of services that support transactions. Furthermore, we

discuss the performance impacts of leader switches in section VI.A.5.

VI.A.1 System model

A system is a set of processes that are pairwise connected through chan-

nels that are used to send and receive messages. Processes are subject to crash

failures: a faulty process executes no steps of the protocol while in a crashed state

and it executes correctly the steps of the protocol if it is not faulty. We assume

that faulty processes can recover. Once a process recovers, it executes the steps of

the protocol correctly. We say that a process is correct if it behaves according to

the specification of the protocol.

A process is either a service process or a client process. A service process

84

is also called a replica or a service replica in the following sections of this chapter.

We use n to denote the number of service processes. Then, our protocols require

that at most b(n−1)/2c service processes are crashed, and thus, at least d(n+1)/2e

service processes are correct.

We assume that the communication channels are reliable in the sense

that messages sent between correct processes are eventually received, and that the

system is asynchronous. This last assumption implies that there is no bound on

the amount of time to deliver a message. Thus, not receiving a message from a

process does not necessarily imply that the process has crashed.

A leader is a service process that is elected to examine and reply to client

requests. A client process sends each request to all service processes, while only

the leader sends a reply. A read request does not change the service state, while

a write request changes the service state. As in the Paxos algorithm, we assume

that there is an underlying leader election service.

Every service process has data structures that it reads from (read request)

and writes to (write request), and a log of commands that it uses throughout an

execution to remember executed commands. This log is important to guarantee

that once a new leader emerges, this leader learns about all previously accepted

requests.

VI.A.2 The basic protocol

To synchronize the replicas of deterministic services, one can implement

a series of separate instances of the Paxos consensus algorithm and the proposal

chosen by the ith instance is the ith executed request. Therefore, it can be assured

that all the service replicas execute the same sequence of requests. However, it is

more complicated to synchronize the replicas of nondeterministic services since the

replicas may behave differently even if they execute the same sequence of requests.

To guarantee the consistency of nondeterministic service replicas, we let

the proposal chosen by the ith instance be a tuple < req, state >, where req is

85

the ith request executed and state is the leader’s state after executing req. Clients

send requests to all service replicas so that they do not need to know which replica

is the current leader.

We make the usual assumption that the common case is the one of no

suspicions and no failures in the system. In executions with no failures and no

suspicions, there is a single leader. After receiving the requests, the leader assigns

a position in the sequence to each request. If the leader decides that a certain

request should be the ith request, it executes the request and then tries to have

this request and the new state chosen as the proposal of the ith instance of the

Paxos consensus algorithm. Typically, we do not need to run the prepare phase

often since the identity of the leader rarely changes. Figure VI.1 shows an example

execution of this protocol.

After accepting a proposal, a replica keeps the proposal in its log. Each

replica needs to remember all the requests in the accepted proposals, while it

only needs to keep the state of the latest proposal. The proposals are ordered by

proposal numbers, which are pairs of numbers consisting of the ballot number and

the instance number associated with the accept request of each proposal. Proposal

numbers are ordered lexicographically, first by the ballot number and then by the

instance number. When a replica learns that a proposal has been chosen, it applies

the state associated with the proposal to its own state.

The leader never tries to propose more than one proposal simultaneously.

Although it can start executing the ith request, it will not propose the ith request

and the corresponding state until the (i−1)th request commits. Otherwise, if the ith

proposal is chosen but the (i−1)th is not, the leader generates a gap in the sequence

of chosen proposals. Such a gap makes the service state inconsistent because the

state after executing the ith request depends on all the requests executed previously.

It does not make sense to commit the state after executing the ith request and

abort the (i − 1)th request. If the leader fails to receive the expected response to

its proposal for the ith instance, it retransmits those messages. If all goes well,

86

client

leader

replica

replica

primary start 1st instance 2nd instance

Figure VI.1: The Basic Protocol

then the proposal will eventually be chosen.

If the leader fails, a new leader is elected by an underlying leader election

service. It typically knows most of the requests that have already been committed.

Assume the leader knows requests 1–87 and 90 and the state after request 90 has

been served. Then, the leader executes the prepare phase of instances 88, 89, and

of all instances greater than 90. It can do this by sending a single message to all

the other replicas that does not include the states after executing 88 or 89 since

the replicas are only interested in the latest state. A replica responds with a simple

OK unless it knows any of these instances from some other leader. If the replica

knows 88 or 89, it only needs to send back the request and the associated proposal

number. If the replica knows any instance greater than 90, it sends the leader not

only all the requests greater than 90 with the proposal numbers but also the state

of the latest proposal it knows.

Suppose the outcome of this execution determines the requests in posi-

tions 88, 89, 91 and the state upon execution of request 91. The leader executes

the accept phases of instances 88, 89, and 91 by sending one single message to all

the replicas, and makes requests 88, 89, and 91, as well as the latest state, chosen

and learned.

In practice, service state can be large, and there may be a significant

overhead in transferring the whole service state among replicas. It is possible

87

to reduce this overhead with two approaches. If the nondeterministic operation

can be reproduced with the client request and some additional information, the

replicas only need to exchange the request and the additional information, and each

replica can generate the state itself. For example, in the grid scheduling service of

section I, the primary only need to send the state of its queue when it selects a new

request, assuming that requests have deterministic priorities. In doing so, replicas

know exactly what request comes next in the schedule. Even if the service state is

difficult to reproduce, the replicas may be able to exchange only the updated state

if they already agree on the previous state. Therefore, the overhead of transferring

service state can usually be made small.

VI.A.3 X-Paxos for read requests

It is relatively expensive to run the basic protocol for every request due

to the overhead of the accept phase. Although we do not believe one can relax

the algorithm for writes, it is possible to improve the performance of reads. This

section presents an optimization that benefits read requests. We call this optimized

version X-Paxos.

The optimization takes advantage of the synchronization requirements of

read requests. Unlike writes, the relative order of reads is not critical. For example,

if the clients send two read requests, say r1 and r2, to the service at the same time,

it makes no difference to the service state whether r1 is executed before r2 or after.

Therefore, there is no need to maintain a total order of all the requests. On the

other hand, there is a consistency requirement for reads: the value that the service

returns as a response to a read must reflect the latest update. In other words, the

relative order between reads and writes is important. If w is the last write request

before the read request r, the returned value of r should be consistent with the

service state after executing w. Therefore, a service process p should not respond

to any read request if there is another service process q that has already executed

and replied to a write request w, while p does not know w. This requirement can

88

client
request

confirm

reply

leader

replica

replica

Figure VI.2: X-Paxos

be satisfied if only the leader process that proposed the highest accepted ballot

number responds to read requests from client processes.

Based on these observations, the X-Paxos protocol optimizes the per-

formance of read requests while still satisfying the consistency requirements of

replicated grid services. X-Paxos is a simple majority-voting protocol and is not

a real consensus protocol. It assures that only the latest leader can reply to the

requests and that the replicas do not need to agree on the order of the read re-

quests. Figure VI.2 shows how X-Paxos works in a scenario with one client and

three server replicas.

If the request sent by the client is a read, the service replicas coordinate

using X-Paxos. Otherwise, the replicas coordinate using the protocol described in

section VI.A.2. When serving a read request, the leader starts executing it and

waits for the confirm messages from the majority at the same time. Every other

service process sends a confirm message to the process with the highest ballot

number it has accepted after receiving the read request. The leader sends its reply

to the client only after it gets the confirmations from a majority of the replicas

(including itself). Since a service process becomes the leader only after a majority

of service processes accept its ballot number, only the leader with the highest

accepted ballot number can receive confirms from a majority and respond to read

requests.

Assume E is the execution time of the request, M is the message latency

89

between a client and a service replica, and m is the message latency between

two service replicas. Then, the request latency of X-Paxos is 2M + max(E, m),

assuming that all values are constant and that processes are able to send messages

in parallel. The first M is the message latency for the client sending the request

to the service replicas. max(E, m) is the time the leader spends on executing the

request and waiting for confirming messages concurrently. The second M is the

time for the reply message sent back to the client. The request latency of the basic

protocol is 2M+E+2m assuming we can ignore the overhead of checkpointing. 2M

is sum of the message latencies for the request sent from the client to the service

replicas and the reply sent from the leader to the client. 2m is the overhead of

running the accept phase of Paxos among the service replicas.

When read requests are predominant, X-Paxos achieves better perfor-

mance compared to Paxos, since X-Paxos saves one message delay and performs

the request execution and the wait for confirming messages in parallel. However,

if the message latency variance of the network between the clients and the service

replicas is much larger compared to the message latency of the networks intercon-

necting service replicas, X-Paxos may not achieve better performance because it

may take longer for the request to reach a majority than reach only the leader.

This special case is out of the scope of this chapter.

VI.A.4 T-Paxos for transactions

The second optimization reduces the synchronization overhead of requests

that use transactions. We call the protocol with this optimization T-Paxos. T-

Paxos does not implement atomic transactions. Instead, if the client uses transac-

tions when invoking the service, T-Paxos improves the service performance.

If clients use transactions when submitting requests to the service, the

overhead of replication can be reduced further. When a client uses transactions, it

can rollback and discard the data from the service if the transaction is aborted. As-

sume a transaction consists of three requests: r1, r2, and r3. The client commits the

90

client

leader

r1 r2 r3 commit

replica

replica

Figure VI.3: T-Paxos execution

transaction after successfully executing these three requests. Then, the sequence

of messages the client sends to the service is: r1, r2, r3, commit. The leader does

not need to coordinate with other service replicas until it sees the commit message,

and it can reply to each client request immediately. With this optimization, the

response time of individual requests is the same as for an unreplicated service, but

the overhead is paid at the commit phase. Figure VI.3 shows how service processes

coordinate using T-Paxos when serving the transaction r1, r2, r3, commit.

If the service handles more than one transaction at a time, the service

may have an inconsistent state when some transactions commit and others abort.

For example, transaction T1 consists of r1, r3, commit, and transaction T2 con-

sists of r2, r4, abort. If the leader receives and executes the requests in the order

r1, r2, r3, commit(T1), r4, abort(T2), then the service cannot abort r2 without intro-

ducing inconsistency with the results of T1. Note that this problem is not intro-

duced by replicating the service—any service that supports transactions needs to

deal with concurrency of this type using locks or other mechanisms.

VI.A.5 Leader switches

Theoretically, there must eventually be one server that becomes the leader

for X-Paxos to be live, just as for Paxos. In practice, both Paxos and X-Paxos

require that one server remains the leader long enough for the protocol to termi-

91

nate. “Long enough” is longer for X-Paxos than for Paxos, because in X-Paxos, the

leader needs to receive messages confirming that it is the leader from a majority

of processes, while in Paxos, a process accepts any proposal with a ballot number

no smaller than the ones it has already accepted. “Long enough” is even longer

for T-Paxos; if the leader switches during the transaction, the previous leader that

executes the requests of the transaction cannot commit, and the transaction has

to be aborted. Thus, X-Paxos and T-Paxos are more sensitive to leader switching

than Paxos.

Leader stability is a characteristic of asynchronous leader election proto-

cols, like those that underlie practical implementations of Paxos. Leader stability

characterizes under what conditions the leader changes. Recent work on leader

election (e.g., [42]) has concentrated on having good leader stability. Hence, these

recent leader election protocols satisfy the requirements of our protocols as well.

VI.B Proof

We prove the proposed protocol implements the property of atomic reg-

isters. The definitions of different registers are as below.

Safe register A safe register is one in which a read not overlapping any write

returns the most recently written value. A read that overlaps a write may

return any value from the domain of the register.

Regular register A regular register is a safe register in which a read that overlaps

a write obtains either the old value or the new value.

Atomic register An atomic register is a safe register in which reads and writes

behave as if they occur in some total order, which is an extension of the

precedence relation.

Since T-Paxos only treats transactions as individual requests (committing

all the requests in one transaction together), and the commits are coordinated using

92

either the basic protocol or X-Paxos, we do not prove transactions seperately with

requests in our proof. We only need to prove that the combination of the basic

protocol and X-Paxos implements atomic registers. The formal description of the

combined protocol is:

Protocol 1. A new leader is established by executing the prepare phase and the

accept phase as described in Section VI.A.2. Then the leader handles read requests

using X-Paxos described in Section VI.A.3, and handles write requests according

to the basic protocol.

New leader – After a new leader is elected, it proposes its current state

and the set of commands it knows to all the replicas by executing both the prepare

phase and the accept phase. The new leader will not executes and reponds to any

new request until both two phases complete successfully.

Read – After the leader receives a read request, it executes the request

and waits for the confirm messages from the replicas. The leader responds to the

client process if and only if the request has been executed completely and the leader

receives the confirm messages from a majority of the replicas.

Write – After the leader receives a write request, it executes the requests.

After the execution completes, the leader sends all the replicas a proposal with

the leader’s current state and the set of commands the leader knows. The leader

responds to the client process if and only if the proposal has been accepted by the

majority of the replicas.

We prove Protocol 1 implements Automic Register semantics as follows.

Definition 1. We say a request r happens at [t1, t2], if the first time that r is

submitted is at t1, and r is received by the client at t2.

Definition 2. We use < p, b > to represent a primary replica. p is the process ID

and b is the ballot number p proposes and uses. Let < p1, b1 > and < p2, b2 > be

two primaries. We define < p1, b1 >≺< p2, b2 >≡ b1 < b2.

93

Definition 3. A state sequence is a list of states and write requests served, with

the format like: s0, w1, s1, w2, s2,wi, si,wn, sn. s0 is the initial state, wi is

the ith write request served, si−1 is the state before executing wi, and si is the state

after executing wi. We use S(< p, b >, t) to represent primary replica < p, b >’s

state at time t.

Lemma 1. There is a linear order of all the primaries, according to ≺ relationship

of the primaries.

Proof. This is true, because according to our protocol, a replica can only become a

new primary by choosing a balnum bigger than all the previous primaries’ balnums.

We define the functions succ and prec of primaries as below:

succ(< p, b >) the next primary after < p, b > in the linear order.

prec(< p, b >) the last primary before < p, b > in the linear order.

Theorem 1. The protocol implements the property of safe registers. That is: for

any read request r, if r does not overlap with any write request, and write request

w is the last served write request by a service replica, then the returned value of r

is equal to the written value of w.

Proof. Assume < p, b > is the service replica which replied to r, r happens at

[t1, t2], and w happens at [t3, t4]. We know t2 < t3.

If < p, b > is also the replica which served w, then p’s state will clearly be

equal to the written value of w when responding to r. We know that the returned

value of r is the returned value of w.

If < p, b > is not the replica which served w, then we assume < p0, b0 >

is the service replica serving w, and s is < p0, b0 >’s state sequence after serving

w.

Now we want to prove: For any primary < pi, bi >, if w and s are in

< pi, bi >’s state sequence at t and < pi+1, bi+1 >= succ(< pi, bi >), then w and

94

s are in < pi+1, bi+1 >’s state sequence at t′, for any t′ > t and < pi+1, bi+1 >’s

primaryID = < pi+1, bi+1 > at t′.

1. w and s are in < pi, bi >’s state sequence at t, only if more than half of the

replicas send it phase 2b messages containing w and s before t.

2. < pi+1, bi+1 > can only become a primary after receiving phase 1b and phase

2b messages from more than half of the replicas.

3. From above, we know there exists a replica R, such that R accepts the phase

2a message containing w and s from < pi, bi >, and < pi+1, bi+1 > receives

the phase 1b messages from R.

4. From the protocol, we know R can’t accept the phase 2a message from <

pi, bi > after sending a phase 1b message to < pi+1, bi+1 >, since bi+1 > bi.

Then R sends the phase 1b message to < pi+1, bi+1 > after accepting the

phase 2a message from < pi, bi >

5. So we know < pi+1, bi+1 > learns w from R. Then < pi+1, bi+1 > knows w

and s at t′, for ∀t′ > t, < pi+1, bi+1 >’s primaryID =< pi+1, bi+1 > at t′.

Using induction, we have w are s are at the end of < p, b >’s state

sequence when < p, b > serves r. And the theorem is proved.

Definition 4. Each request r has a sequence number s(r), and s(r) =< b, i > if

and only if ∃ a primary < p, b >: r’s successful reply is from < p, b > ∧ r is the

ith request < p, b > replied. We let bal(r) = b, and ind(r) = i.

Definition 5. r1 ≺ r2 ≡ [bal(r1) < bal(r2)] ∨ [(bal(r1) = bal(r2)) ∧ (ind(r1) <

ind(r2))].

Lemma 2. All the successfully replied requests are linearly ordered according to ≺

relationship of the requests.

95

Proof. From Lemma 1, we know all the primaries are linearly ordered. So we know

all the successfully replied requests are linearly ordered according to ≺ relationship.

We define the functions succ and prec of requests as below:

succ(r) the next request after r in the linear order.

prec(r) the last request before r in the linear order.

Lemma 3. ∀ write requests w1 and request r, if w1 is the last write request before

r according to ≺ relationship, the state before serving r is the same as the state

after serving w1.

Proof. If w1 and r are served by the same primary, then this is trival.

If w1 and r are served by different primary < p, b > and < p′, b′ >, we

know b < b′. < p, b > must receives phase 2b messages from more than half of

the replicas before serving w1. And < p′, b′ > must receives phase 1b messages

from more than half of the replicas before becoming a primary and serving w2. So

there must be some replica which replies both the phase 2b message to < p, b >

and the phase 1b message to < p′, b′ >. Then we know it must replies the phase

2b message to < p, b > before replying to the phase 1b message to < p′, b′ >.

Otherwise, the protocol is violated. So we know < p′, b′ > would know w1 and the

state after serving w1 from this phase 1b message. Since w1 is the last write before

r, < p′, b′ >’s state before serving r should be the same as < p, b >’s state after

serving w1.

Theorem 2. The protocol implements the property of atomic registers.

Proof. Theorem 1 has proved the protocol implements safe registers. We only

needs to prove all requests behave as if they occur in some total order.

From Lemma 2, we know all requests are linearly ordered according to ≺

relationship. From Lemma 3, we know all requests behave as if they occur in this

order.

96

VI.C Evaluation

In this section, we evaluate the performance of our protocol by comparing

request response time and service throughput of the basic protocol and X-Paxos,

as well as transaction response time and service throughput (transactions per sec-

ond) of T-Paxos. In the experiments, the service replicas first receive the client

requests, then coordinate with each other using the protocols described in the

previous section, and finally reply to the clients. The service executes no actual

operation for serving the requests, so the CPU cycles consumed by the replicas

for this step are minimal; thus our experiments highlight the replication overhead.

The communication between service replicas, and between clients and service repli-

cas, uses TCP sockets. Although we could have integrated our prototypes into a

grid middleware such as the Globus Toolkit [27], we chose not to do so, since the

overhead of XML-based Web service requests in Globus is considerable [54] and it

would have dominated the replication overhead. Thus, by minimizing the commu-

nication overhead between clients and the replicas by using TCP, we once again

highlight the replication overhead.

We use three different configurations in our experiments. The first one is

a local cluster called Sysnet that belongs to the Computer Science Systems Group

at the University of California, San Diego (UCSD). Both the service and the client

processes ran on Pentium IV 2.8 GHz machines connected through a Gigabit Eth-

ernet network and running Linux 2.6.11. Since the Sysnet network is fast and

reliable, the main reasons for the system to behave asynchronously in this configu-

ration are process scheduling and machine load (computers under a heavy load can

slow down processes). Both the second and third configurations use PlanetLab [18]

machines and represent the deployments of replicated services on wide-area net-

works. Our second configuration represents the case where the clients are remote

from the service replicas but the service replicas are located relatively close to one

another. Specifically, all service processes were located on different machines at

97

Princeton University, while the client processes were located on machines at Uni-

versity of California, Berkeley. Our third configuration represents the case where a

service is replicated across a wide-area network to tolerate correlated failures [33]

(e.g., power outage, network outage). Specifically, the leader replica ran on a ma-

chine at the University of Illinois at Urbana-Champaign, and the other service

replicas ran at the University of Utah and the University of Texas, Austin. The

client processes ran on machines locating at the University of California, Berkeley

and Intel Labs Oregon.

We ran three service replicas (t = 1) in all of our experiments, since we

believe this is the most common case in practical systems. The server replicas

executed on different machines in order to tolerate one server failure. The service

takes three kinds of requests: read, write, and original. All three kinds of re-

quests invoke an empty method and do not trigger any actual operation. However,

a read represents a request that does not change the service state, while a write

represents one that changes the service state. Furthermore, both read and write

requests require that the service replicas coordinate with each other. Thus, the

service replicas use the basic protocol to coordinate for write requests and use

X-Paxos for read requests. An original request represents the request sent to

the original non-replicated service. The leader replies immediately after receiving

an original request without coordinating with the backup replicas. The size of

service state is small (a few bytes) in our experiments. Although a larger state

might result in a higher overhead, the size of the state can often be kept small, as

described in section VI.A.2. The overhead of transfering larger size of state was

analysized in [61].

We used another eight machines to host the client processes. Each test

client sends a specified number of one kind of request sequentially to the service

replicas. After a client process starts, it waits for a message (start signal) from

the leader before it starts to send requests. The leader sends this signal to all

the clients simultaneously to ensure that the client processes start at (roughly)

98

the same time. After receiving the signal, each client process sends a sequence of

requests one by one. Each request is sent to all service replicas, and only the leader

replica sends a reply to the client process. A client does not send a new request

until it receives the reply associated with the previous one. For the response time

tests, we used one client that sends 20 requests in one sample test, while for the

throughput tests, we used c concurrent clients, c ∈ 1, 2, 4, 8, 16, where each client

sends exactly 1000/c requests. For each value, we collected hundreds of samples

to measure the confidence intervals.

VI.C.1 The basic protocol and X-Paxos

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Number of clients

Read
Write

Original

Figure VI.4: Service throughput on Sysnet

On Sysnet, the measured average request response time (RRT) of origi-

nal requests was 0.181 ms (with 99% confidence interval ±0.002 ms). The average

RRT of read requests was 0.263 ms (with 99% confidence interval ±0.02 ms),

while the average RRT of write requests obtained in the experiments was 0.338

ms (with 99% confidence interval ±0.003 ms). This shows that X-Paxos reduced

the RRT 22% compared with the basic protocol. Figure VI.4 shows the service

throughput when serving different requests. Although the throughput of both

“reads” and “writes” are lower compared to original requests (as expected), the

99

 0

 20000

 40000

 60000

 80000

 100000

 128 64 32 16 8

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Number of clients

Read
Write

Original

Figure VI.5: Service throughput – more clients

throughput of “reads” was at least 13% higher than that of “writes”. The 99%

confidence intervals of all the throughput values were no wider than 16% of the

average value, and some of the confidence intervals are not readable in the figure.

Our experiments indicate that on local-area settings the performance of the basic

protocol described in section VI.A is acceptable, and X-Paxos significantly reduces

the request response time (22%) and improves service throughput (at least 13%)

for read requests.

Figure VI.5 shows the throughput with the number of clients ranging from

8 to 128 in log scale. All clients are processes that execute across eight machines

and the number of clients on each machine range from 1 to 16. The basic protocol

achieves the highest throughput when the number of clients is between 8 and

32, while X-Paxos achieves the highest throughput when the number of clients is

between 16 and 64.

For the second configuration (Berkeley to Princeton), the RRT of origi-

nal requests was 91.85 ms (with 99% confidence interval ±0.18 ms). The RRT of

read and write requests are close to that of original requests—92.79 ms (with

99% confidence interval ±0.48 ms) for reads and 93.13 ms (with 99% confidence

interval ±0.27 ms) for writes. The throughput of original, read, and write

100

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Number of clients

Read
Write

Original

Figure VI.6: Service throughput from Berkeley to Princeton

requests are also close, as shown in figure VI.6. This indicates that if service pro-

cesses are located at the same site and client processes are on different sites, the

basic protocol achieves performance roughly the same as a non-replicated service

and the X-Paxos optimization does not improve RRT and throughput much. The

reason is that communication among service processes is relatively cheap compared

to communication between client processes and service processes.

For the third configuration, the RRT of original requests was 70.82 ms

(with 99% confidence interval ±0.25 ms), read requests was 75.49 ms (with 99%

confidence interval ±0.25 ms), and write requests was 106.73 ms (with 99% confi-

dence interval ±0.32 ms). Figure VI.7 presents the throughput of original, read

and write requests. We can see that when service processes are located on different

sites, X-Paxos achieves better performance than the basic protocol.

VI.C.2 T-Paxos

To evaluate the performance improvement of T-Paxos, we measured the

transaction response time (TRT) and throughput (number of transactions per sec-

ond) of the following operations on the Sysnet cluster with the number of requests

per transaction equal to 3 and 5:

101

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

R
eq

ue
st

s/
se

co
nd

)

Number of clients

Read
Write

Original

Figure VI.7: Service throughput on WAN

• Read/write. Transactions consist of both read and write requests. T-Paxos

was not used in this case: X-Paxos was used to coordinate for reads and the

basic protocol was used to coordinate for writes and commits. We assume

a 3-request read/write transaction consists of 2 reads and 1 write, while a

5-request read/write transaction consists of 3 reads and 2 writes.

• Write-only. Transactions consist of only write requests. The basic protocol

was used in this case to coordinate for all requests and commits.

• Optimized. Transactions consist of the same number of requests. The

optimized protocol (T-Paxos) was used, and the replicas only coordinate

with each other during commits.

Service processes coordinate for commits even for unoptimized read/write and

write-only transactions since processes perform functions that affect service state

when committing transactions, such as deleting checkpoints and logs.

Table VI.1 summarizes the transaction response time with 99% confi-

dence intervals of different operations. T-Paxos reduced the transaction response

time by 28% for 3-request read/write transactions and 34% for 3-request write-only

transactions. When the size of a transaction gets larger, the performance improve-

102

Table VI.1: Transaction response time
Operation Req/tran Avg. TRT 99% CI

(ms) (ms)
Read/write 3 1.17 ±0.02

5 1.79 ±0.02
Write-only 3 1.29 ±0.02

5 2.01 ±0.03
Optimized 3 0.85 ±0.02

5 1.23 ±0.02

ment becomes even more significant: the reduction in the transaction latency was

31% for 5-request read/write transactions and 39% for 5-request write-only trans-

actions. The 99% confidence intervals are no wider than ±0.03 ms.

Figure VI.8 shows the throughput of read/write, write-only, and opti-

mized transactions and the 99% confidence intervals (some intervals are again too

small to read). T-Paxos increases the service throughput by 42%, 43%, 45%,

47% and 57% when the number of clients was equal to 1, 2, 4, 8 and 16, respec-

tively, compared to 3-request read/write transactions. Compared with 3-request

write-only transactions, the transaction throughput increases by 52%, 53%, 77%,

88% and 97% with the number of clients equal to 1, 2, 4, 8 and 16, respec-

tively. Throughput improves even more significantly for 5-request transactions:

a 53% − 90% increase for read/write transactions and a 69% − 138% increase for

write-only transactions.

Our experiments with transactions show that T-Paxos reduces the trans-

action response time and increases the service throughput for applications that

support transactions. The impact on both throughput and response time becomes

more significant as the number of operations in each transaction increases.

VI.C.3 Tolerating multiple failures

For t > 1, the behavior of our protocols depends strongly on the network

setting. We can give some insight into the behavior of one network setting, where

103

the server replicas are on one local area, low latency network, and the clients are in

other networks connected to the servers’ network via a wide-area, higher latency

network with a large variance in message delivery time. This is a typical setting

for both Grid and commercial services.

In such a setting, with Paxos the latency of a client’s request is deter-

mined primarily by the wide area network over which the client exchange messages

only with the proposer (backup replicas ignore messages received directly from the

client). Increasing t has a small effect on client latency. With X-Paxos, however,

a client sends multiple requests across the wide-area network. Even when the re-

quests are sent concurrently, the increased variance could result in performance

degrading when t is increased. Experimental results bear out this intuition [33].

104

 0

 2000

 4000

 6000

 8000

 10000

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/s
ec

on
d)

Number of clients

Read/write
Write-only
Optimized

(a) 3 requests per transaction

 0

 2000

 4000

 6000

 8000

 10000

 0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/s
ec

on
d)

Number of clients

Read/write
Write-only
Optimized

(b) 5 requests per transaction

Figure VI.8: Transaction throughput on Sysnet

VI.D Related Work

Semi-passive replication, a variant of passive replication that can be im-

plemented in the asynchronous system model without requiring an agreement on

105

the primary, was presented in [22]. This protocol uses the Chandra-Toueg ♦S

consensus algorithm [16] to implement the primary-backup approach. It uses the

same idea of running consensus on both the command and the state update, but

its practical implementation and performance remains uninvestigated.

Paxos [35, 36] provides the capability to replicate an arbitrary determin-

istic state machine in asynchronous message-passing systems. It does so by pro-

viding a safe, if not necessarily live, implementation of repeated consensus. Fast

Paxos [37] saves one message delay compared with Paxos by having clients send

commands directly to the acceptors, bypassing the leader. An acceptor interprets

clients’ messages as if it were an accept request from the leader for the next unused

command number, that is, the command number that the acceptor believes to be

the next unused one. Fast Paxos works well if all acceptors assign the same com-

mand number to a client’s command. Otherwise, the processes may not choose

any command, forcing the leader to intercede. Fast Paxos requires more replicas

than Paxos to mask the same number of failures. Finally, Generalized Paxos [38] is

a version of Paxos that solves the generalized consensus problem: agreement upon

increasing partial orders of commands. By generalizing the Paxos algorithm, one

can implement a system in which commands issued concurrently execute in two

message delays if they are commutative, that is, it does not matter in which order

the commands are executed. To our knowledge, no previous work has investigated

the use Paxos for nondeterministic services.

The BFT protocol by Castro and Liskov (also known as Byzantine Paxos

[40]) shares several goals and properties with the Classic Paxos algorithm, but tol-

erates Byzantine failures as opposed to only crash failures [15]. The BFT protocol

proposes an optimization for reads, which consists of simply reading from a quorum

of replicas. In contrast with X-Paxos, such an optimization only works when a read

does not overlap any writes and all the replicas return the same value (the client

does not read from a Byzantine replica), thus implying that read requests may not

complete. If a read request does not complete, then the client has to re-issue the

106

read request using the regular, non-optimized BFT protocol. Although we have

not considered thoroughly variants of the Paxos algorithm for Byzantine failures,

an optimization similar to the one of X-Paxos should be applicable to protocols

such as BFT.

[42] described a realization of distributed leader election. Progress is

guaranteed in the weak setting where eventually one process can send messages

such that every message obtains f timely responses (f is a resilience bound). An

extension of this protocol provides leader stability which guarantees against arbi-

trary demotion of a qualified leader and avoids performance penalties associated

with leader changes in schemes such as Paxos.

VI.E Summary

High availability of services, including grid and Web services, is important

not only for business services (e.g., e-commerce) but also for many high perfor-

mance and scientific computing applications. Replication is a proven technique

for ensuring high availability, but nondeterminism and the asynchronous nature

of many such computing environments make the problem challenging. In this

chapter, we present a replication protocol that can handle nondeterminism and

asynchrony of the computing nodes and the underlying network. We show us-

ing experimental results that the overhead of replication is often reasonable, both

in terms of response time and service throughput. Furthermore, we also present

two optimized protocols, X-Paxos and T-Paxos, that reduce service response time

and increase throughput by taking advantage of application-specific characteris-

tics, namely, service requests that do not modify the service state (read-only) and

applications that use transactions. X-Paxos and T-Paxos reduce replication over-

head for configurations in which communication overhead between service replicas

is not ignorable compared with that between client processes and service replicas.

One case of such a scenario is when all client and service processes are located at

107

the same site. Another case is when service replicas are spread across wide-area

networks to mask correlated failures. Experiments on a local cluster and PlanetLab

demonstrate that X-Paxos and T-Paxos deliver significantly better performance in

such settings.

VI.F Acknowledgements

This chapter is, in part, reprints of material as it appears in ”Replicat-

ing Nondeterministic Services on Grid Environments,” by Xianan Zhang, Flavio

Junqueira, Matti A. Hiltunen, Keith Marzullo, and Richard D. Schlichting, in

the Proceedings of the 15th IEEE International Symposium on High-Performance

Distributed Computing (HPDC-15), June, 2006. The dissertation author was the

primary coauthor and co-investigator of this paper.

Chapter VII

Conclusion

Given the fact that the grid resources are heterogeneous and often belong

to multi-organizations, it is critical to build reliable grid services based on unreli-

able resources. Grid services are often nondeterministic and the primary-backup

is the traditional approach to make nondeterministic services highly available. My

thesis investigates how to replicate services using the primary-backup approach in

grid environments.

First, my thesis presents the design of a primary-backup protocol us-

ing the grid standard – OGSI, and the implementation based on Globus Toolkit

3. The design and implementation shows that it is not hard to accommodate

primary-backup on grid middleware, and the solution is simple and requires only

small changes to the service. The use of the OGSI notification interface to handle

replica updates is the key distinguishing feature of this approach. Using a simple

example grid services, we compare the performance of this notification-based ap-

proach with variants in which replica update is done using standard grid service

method calls and TCP. We found the overhead of using GT3 implementation of

the OGSI notification is quite high. The overhead is particularly large in the cases

where the state data is small or the number of clients is large.

Then my thesis addresses the issue of integrating the primary-backup

replication with other techniques. We presented an architecture, in which the ser-

108

109

vice designer can control which portions of a service’s state are persistent, the

tradeoff between the degree of durability and the performance, and the atom-

icity of accesses to the service state with respect to failures. The performance

measurements show that being careful about choosing the appropriate durability

techniques can significantly boost performance, with the gain increasing as the

number of state objects accessed in a single client invocation increases.

Finally my thesis studies how to replicate grid services on asynchronous

systems. We evaluated the performance of the existing protocols – Classic Paxos

and Fast Paxos. Although theoretically Fast Paxos is faster when there is no colli-

sions, our simulation and experiments show that there are some structural details

about Fast Paxos that can impact latency. We identified realistic scenarios in which

Classic Paxos outperforms Fast Paxos. Based on our observation, we propose a

new set of protocols that support both asynchronous systems and nondeterminis-

tic services. Using experiments on a local cluster and PlanetLab, we shows that

our new protocol provides good performance for replicated nondeterministic grid

services.

Bibliography

[1] P. Alsberg and J. Day. A principle for resilient sharing of distributed re-
sources. In Proceedings of the 2nd International Conference on Software
Engineering, pages 562–570, Oct 1976.

[2] Y. Amir, B. Awerbuch, and R. S. Borgstrom. Managing checkpoints for
parallel programs. In Proceedings of the 1st International Conference on
Information and Computation Economies (ICE-98), 1998.

[3] Y. Amir and C. Tutu. From total order to database replication. In Proceed-
ings of the 22nd International Conference on Distributed Computing Systems
(ICDCS’02), July 2002.

[4] A. Amoroso and K. Marzullo. Multiple job scheduling in a connection-limited
data parallel system. IEEE Transactions on Parallel and Distributed Sys-
tems, pages 125–134, February 2006.

[5] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent
replication for scaling back-end databases of dynamic content web sites. In
Proceedings of the fourth ACM/IFIP/USENIX International Conference on
Middleware, June 2003.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1:11–33, Jan 2004.

[7] C. Bauer and G. King. Hibernate in Action. Manning Publishing Company,
Aug 2004.

[8] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon,
L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed,
L. Torczon, and R. Wolski. The GrADS Project: Software support for high-
level grid application development. International Journal of High Perfor-
mance Computing Applications, 15(4):327–344, December 2001.

[9] K. Birman, T. Joseph, T. Raeuchle, and A. Abbadi. Implementing fault-
tolerant distributed objects. IEEE Transactions on Software Engineering,
SE-11(6):502–508, Jun 1985.

110

111

[10] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan, and B. Stearns. The
J2EE Tutorial. Addison-Wesley, Mar 2002.

[11] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. Primary-backup
protocols: Lower bounds and optimal implementations. In Proceedings of
the 3rd IFIP Working Conference on Dependable Computing for Critical
Applications, pages 187–198. Springer-Verlag, Wien, 1992.

[12] L. Felipe Cabrera, G. Copeland, W. Cox, T. Freund, J. Klein, D. Lang-
worthy, I. Robinson, T. Storey, and S. Thatte. Web Service BusinessAc-
tivity (WS-BusinessActivity), Nov 2004. http://www6.software.ibm.com/-
software/developer/library/ws-busact200401.pdf.

[13] L. Felipe Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson,
C. Kaler, J. Klein, D. Langworthy, A. Nadalin, D. Orchard, I. Robinson,
J. Shewchuk, and T. Storey. Web Service Coordination (WS-Coordination),
Nov 2004. http://www6.software.ibm.com/software/developer/library/WS-
Coordination.pdf.

[14] L. Felipe Cabrera, G. Copeland, M. Feingold, T. Freund, J. Johnson,
C. Kaler, J. Klein, D. Langworthy, A. Nadalin, D. Orchard, I. Robin-
son, T. Storey, and S. Thatte. Web Service AtomicTransaction (WS-
AtomicTransaction), Nov 2004. http://www6.software.ibm.com/software/-
developer/library/WS-AtomicTransaction.pdf.

[15] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems, 20(4):398–461, Novem-
ber 2002.

[16] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, 1996.

[17] B. Choi, S. Moon, Z. Zhang, K. Papagiannaki, and C. Diot. Analysis of
point-to-point packet delay in an operational network. In Proceedings of
IEEE INFOCOM, volume 3, pages 1797–1807, March 2004.

[18] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman. PlanetLab: An overlay testbed for broad-coverage services.
ACM Computer Communications Review, 33(3), July 2003.

[19] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource Framework,
Jan 2004. http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

[20] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid informa-
tion services for distributed resource sharing. In Proceedings of the Tenth
IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC-10), 2001.

112

[21] K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-Allocation in com-
putational grids. In Proceedings of the Eighth IEEE International Symposium
on High Performance Distributed Computing (HPDC-8), 1999.

[22] X. Defago, A. Schiper, and N. Sergent. Semi-passive replication. In Proceed-
ings of the 17th IEEE Symposium on Reliable Distributed Systems (SRDS),
1998.

[23] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load scharing in
homogeneous distributed systems. IEEE Transactions on Software Engineer-
ing, 12(5), 1986.

[24] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys,
pages 375–408, September 2002.

[25] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed con-
sensus with one faulty process. Journal of the ACM, 32(2):374–382, Apr
1985.

[26] I. Foster. The grid: A new infrastructure for 21st century science. Physics
Today, 2002.

[27] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Perfor-
mance Computing, 11(2):115–128, 1997.

[28] A. Galstyan, K. Czajkowski, and K. Lerman. Resource allocation in the grid
using reinforcement learning. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS-04), 2004.

[29] S. Graham, P. Niblett, D. Chappell, A. Lewis, N. Nagaratham, J. Parikh,
S. Patil, S. Samdarshi, S. Tuecke, W. Vambenepe, and B. Weihl. Web
Service Notification (WS-Notification), Jan 2004. http://www.ibm.com/-
developerworks/library/ws-resource/ws-notification.pdf.

[30] Grid physics network. http://www.griphyn.org/.

[31] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer. Dynamic mon-
itoring of high-performance distributed applications. In Proceedings of the
Eleventh IEEE International Symposium on High Performance Distributed
Computing (HPDC-11), 2002.

[32] K. Joshi, M. Hiltunen, W. Sanders, and R. Schlichting. Automatic model-
driven recovery in distributed systems. In Proceedings of the 24th IEEE
Symposium on Reliable Distributed Systems (SRDS 2005), pages 25–36, Oct
2005.

113

[33] F. Junqueira and K. Marzullo. Coterie availability in sites. In Proceedings
of DISC, pages 2–16, September 2005.

[34] K. Keeton and A. Merchant. A framework for evaluating storage system
dependability. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN-2004), 2004.

[35] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, May 1998.

[36] L. Lamport. Paxos made simple. ACM SIGACT News (Distributed Com-
puting Column), 32(4):18–25, 2001.

[37] L. Lamport. Fast Paxos. Technical Report MSR-TR-2005-112, Microsoft
Research, July 2005.

[38] L. Lamport. Generalized consensus and Paxos. Technical Report MSR-TR-
2005-112, Microsoft Research, July 2005.

[39] B. Lampson. Atomic transactions. In Distributed System-Architecture and
Implementation, pages 246–265. Springer-Verlag, 1981.

[40] B. Lampson. ABCD’s of Paxos. In Proceedings of the 20th ACM Sym-
posium on Principles of Distributed Computing (PODC), page 13, August
2001. Full technical report at http://research.microsoft.com/Lampson/65-
ABCDPaxos/Abstract.html.

[41] D. Liang, C.-H. Fang, C. Chen, and F. Lin. Fault tolerant web service.
In Proceedings of the 10th Asia-Pacific Software Engineering Conference
(APSEC’03), pages 310–319, Dec 2003.

[42] D. Malkhi, F. Oprea, and L. Zhou. Ω meets Paxos: Leader election and sta-
bility without eventual timely links. In Proceedings of the 19th International
Symposium on Distributed Computing (DISC), pages 199–213, September
2005.

[43] J. M. Milan-Franco, R. Jiménez-Peris, M. Patino-Mart́ınez, and B. Kemme.
Adaptive middleware for data replication. In Proceedings of the fifth
ACM/IFIP/USENIX International Conference on Middleware, Oct 2004.

[44] M. Mitzenmacher. On the analysis of randomized load balancing schemes. In
ACM Symposium on Parallel Algorithms and Architectures, pages 292–301,
1997.

[45] Object Managemnt Group. Fault tolerant CORBA. In Common Object
Request Broker Architecture: Core Specification, chapter 23, pages 955–1059.
Object Management Group, Dec 2002.

114

[46] C. Plattner and G. Alonso. Ganymed: Scalable replication for transactional
web applications. In Proceedings of the fifth ACM/IFIP/USENIX Interna-
tional Conference on Middleware, Oct 2004.

[47] Quest Software. Big brother professional edition, 2005.
http://www.quest.com/bigbrother/.

[48] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Krememek, A. Jagath-
eesan, C. Cowart, B. Zhu, S. Chen, and R. Olschanowsky. Storage resource
broker - managing distributed data in a grid. Computer Science of India
Journal, Special Issue on SAN, 33(4):42–54, Oct 2003.

[49] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource
management for high throughput computing. In Proceedings of the Seventh
IEEE International Symposium on High Performance Distributed Computing
(HPDC-7), 1998.

[50] M. Raynal. Consensus in synchronous systems: A concise guided tour. In
Proceedings of the 2002 Pacific Rim International Symposium on Dependable
Computing (PRDC’02), 2002.

[51] W. Reed. The Pareto, Zipf, and other power laws. Economics Letters, 74:15–
19, December 2001.

[52] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong
replication in the globdata middleware. In Proceedings of the Workshop on
Dependable Middleware-Based Systems, June 2002.

[53] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, pages 299–319, December
1990.

[54] F. Taiani, M. Hiltunen, and R. Schlichting. The impact of web services inte-
gration on grid performance. In Proceedings of the Fourteenth IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC-14),
pages 14–23, 2005.

[55] The TeraGrid project. http://www.teragrid.org/.

[56] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman,
T. Maquire, T. Sandholm, D. Snelling, and P. Vanderbilt. Open Grid Ser-
vices Infrastructure (OGSI), June 2003. http://xml.coverpages.org/OGSI-
SpecificationV110.pdf.

[57] Veritas company homepage. http://www.veritas.com/index.html.

[58] R. Wolski, N. Spring, and C. Peterson. Implementing a performance forecast-
ing system for metacomputing: The network weather service. In Proceedings
of the SuperComputing 1997 (SC97), 1997.

115

[59] H. Wu, B. Kemme, and V. Maverick. Eager replication for stateful J2EE
servers. In Proceedings of the International Symposium on Distributed Ob-
jects and Applications (DOA), Oct 2004.

[60] D. Zagorodnov, K. Marzullo, L. Alvisi, and T.C. Bressoud. Engineering
fault-tolerant TCP/IP servers using FT-TCP. In Proc. IEEE Intl. Conf.
on Dependable Systems and Networks (DSN), pages 393–402, San Francisco,
California, USA, June 2003.

[61] X. Zhang, D. Zagorodnov, M. Hiltunen, K. Marzullo, and R. Schlichting.
Fault-tolerant grid services using primary-backup: Feasibility and perfor-
mance. In Proceedings of the 2004 IEEE International Conference on Cluster
Computing (Cluster 2004), Sep 2004.

[62] S. Zhou. A trace-driven simulation study of dynamic load balancing. IEEE
Transactions on Software Engineering, 14(9), 1988.

