Skip to main content
eScholarship
Open Access Publications from the University of California

A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46,450 cases and 42,461 controls from the breast cancer association consortium.

  • Author(s): Milne, Roger L
  • Herranz, Jesús
  • Michailidou, Kyriaki
  • Dennis, Joe
  • Tyrer, Jonathan P
  • Zamora, M Pilar
  • Arias-Perez, José Ignacio
  • González-Neira, Anna
  • Pita, Guillermo
  • Alonso, M Rosario
  • Wang, Qin
  • Bolla, Manjeet K
  • Czene, Kamila
  • Eriksson, Mikael
  • Humphreys, Keith
  • Darabi, Hatef
  • Li, Jingmei
  • Anton-Culver, Hoda
  • Neuhausen, Susan L
  • Ziogas, Argyrios
  • Clarke, Christina A
  • Hopper, John L
  • Dite, Gillian S
  • Apicella, Carmel
  • Southey, Melissa C
  • Chenevix-Trench, Georgia
  • kConFab Investigators
  • Australian Ovarian Cancer Study Group
  • Swerdlow, Anthony
  • Ashworth, Alan
  • Orr, Nicholas
  • Schoemaker, Minouk
  • Jakubowska, Anna
  • Lubinski, Jan
  • Jaworska-Bieniek, Katarzyna
  • Durda, Katarzyna
  • Andrulis, Irene L
  • Knight, Julia A
  • Glendon, Gord
  • Mulligan, Anna Marie
  • Bojesen, Stig E
  • Nordestgaard, Børge G
  • Flyger, Henrik
  • Nevanlinna, Heli
  • Muranen, Taru A
  • Aittomäki, Kristiina
  • Blomqvist, Carl
  • Chang-Claude, Jenny
  • Rudolph, Anja
  • Seibold, Petra
  • Flesch-Janys, Dieter
  • Wang, Xianshu
  • Olson, Janet E
  • Vachon, Celine
  • Purrington, Kristen
  • Winqvist, Robert
  • Pylkäs, Katri
  • Jukkola-Vuorinen, Arja
  • Grip, Mervi
  • Dunning, Alison M
  • Shah, Mitul
  • Guénel, Pascal
  • Truong, Thérèse
  • Sanchez, Marie
  • Mulot, Claire
  • Brenner, Hermann
  • Dieffenbach, Aida Karina
  • Arndt, Volker
  • Stegmaier, Christa
  • Lindblom, Annika
  • Margolin, Sara
  • Hooning, Maartje J
  • Hollestelle, Antoinette
  • Collée, J Margriet
  • Jager, Agnes
  • Cox, Angela
  • Brock, Ian W
  • Reed, Malcolm WR
  • Devilee, Peter
  • Tollenaar, Robert AEM
  • Seynaeve, Caroline
  • Haiman, Christopher A
  • Henderson, Brian E
  • Schumacher, Fredrick
  • Le Marchand, Loic
  • Simard, Jacques
  • Dumont, Martine
  • Soucy, Penny
  • Dörk, Thilo
  • Bogdanova, Natalia V
  • Hamann, Ute
  • Försti, Asta
  • Rüdiger, Thomas
  • Ulmer, Hans-Ulrich
  • Fasching, Peter A
  • Häberle, Lothar
  • Ekici, Arif B
  • Beckmann, Matthias W
  • Fletcher, Olivia
  • Johnson, Nichola
  • dos Santos Silva, Isabel
  • Peto, Julian
  • Radice, Paolo
  • Peterlongo, Paolo
  • Peissel, Bernard
  • Mariani, Paolo
  • Giles, Graham G
  • Severi, Gianluca
  • Baglietto, Laura
  • Sawyer, Elinor
  • Tomlinson, Ian
  • Kerin, Michael
  • Miller, Nicola
  • Marme, Federik
  • Burwinkel, Barbara
  • Mannermaa, Arto
  • Kataja, Vesa
  • Kosma, Veli-Matti
  • Hartikainen, Jaana M
  • Lambrechts, Diether
  • Yesilyurt, Betul T
  • Floris, Giuseppe
  • Leunen, Karin
  • Alnæs, Grethe Grenaker
  • Kristensen, Vessela
  • Børresen-Dale, Anne-Lise
  • García-Closas, Montserrat
  • Chanock, Stephen J
  • Lissowska, Jolanta
  • Figueroa, Jonine D
  • Schmidt, Marjanka K
  • Broeks, Annegien
  • Verhoef, Senno
  • Rutgers, Emiel J
  • Brauch, Hiltrud
  • Brüning, Thomas
  • Ko, Yon-Dschun
  • GENICA Network
  • Couch, Fergus J
  • Toland, Amanda E
  • TNBCC
  • Yannoukakos, Drakoulis
  • Pharoah, Paul DP
  • Hall, Per
  • Benítez, Javier
  • Malats, Núria
  • Easton, Douglas F
  • et al.
Abstract

Part of the substantial unexplained familial aggregation of breast cancer may be due to interactions between common variants, but few studies have had adequate statistical power to detect interactions of realistic magnitude. We aimed to assess all two-way interactions in breast cancer susceptibility between 70,917 single nucleotide polymorphisms (SNPs) selected primarily based on prior evidence of a marginal effect. Thirty-eight international studies contributed data for 46,450 breast cancer cases and 42,461 controls of European origin as part of a multi-consortium project (COGS). First, SNPs were preselected based on evidence (P < 0.01) of a per-allele main effect, and all two-way combinations of those were evaluated by a per-allele (1 d.f.) test for interaction using logistic regression. Second, all 2.5 billion possible two-SNP combinations were evaluated using Boolean operation-based screening and testing, and SNP pairs with the strongest evidence of interaction (P < 10(-4)) were selected for more careful assessment by logistic regression. Under the first approach, 3277 SNPs were preselected, but an evaluation of all possible two-SNP combinations (1 d.f.) identified no interactions at P < 10(-8). Results from the second analytic approach were consistent with those from the first (P > 10(-10)). In summary, we observed little evidence of two-way SNP interactions in breast cancer susceptibility, despite the large number of SNPs with potential marginal effects considered and the very large sample size. This finding may have important implications for risk prediction, simplifying the modelling required. Further comprehensive, large-scale genome-wide interaction studies may identify novel interacting loci if the inherent logistic and computational challenges can be overcome.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View