Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Proton-mediated reversible switching of metastable ferroelectric phases with low operation voltages

Abstract

The exploration of ferroelectric phase transitions enables an in-depth understanding of ferroelectric switching and promising applications in information storage. However, controllably tuning the dynamics of ferroelectric phase transitions remains challenging owing to inaccessible hidden phases. Here, using protonic gating technology, we create a series of metastable ferroelectric phases and demonstrate their reversible transitions in layered ferroelectric α-In2Se3 transistors. By varying the gate bias, protons can be incrementally injected or extracted, achieving controllable tuning of the ferroelectric α-In2Se3 protonic dynamics across the channel and obtaining numerous intermediate phases. We unexpectedly discover that the gate tuning of α-In2Se3 protonation is volatile and the created phases remain polar. Their origin, revealed by first-principles calculations, is related to the formation of metastable hydrogen-stabilized α-In2Se3 phases. Furthermore, our approach enables ultralow gate voltage switching of different phases (below 0.4 volts). This work provides a possible avenue for accessing hidden phases in ferroelectric switching.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View