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Wealth Distribution with Random Discount

Factors

Alexis Akira Toda∗

November 5, 2017

Abstract

It is well-known that empirical wealth distributions have Pareto tails.
To explain this fact, the quantitative macro literature has occasionally
assumed that agents have random discount factors. However, the fact
that random discounting generates Pareto tails is a ‘folk theorem’ that
has been shown only in very particular settings (e.g., i.i.d. environment
or affine rule-of-thumb consumption rule). Using a highly stylized but
fully specified heterogeneous-agent dynamic general equilibrium model of
consumption and savings with an arbitrary Markovian dynamics for the
discount factor, I prove that the upper and lower tails of the wealth dis-
tribution obey power laws and characterize the Pareto exponents. I also
discuss a numerical example and show that there is no clear relationship
between the return on wealth and inequality and that the Pareto exponent
is highly sensitive to the persistence of the discount factor process.

Keywords: consumption-savings problem, double power law, inequal-
ity, Pareto exponent.

JEL codes: C62, D31, D58, E21.

1 Introduction

One of the key features of the empirical wealth distribution in many countries
is that it obeys the power law: the fraction of agents with wealth w or larger is
approximately proportional to a power function w−α, where α > 0 is called the
power law (or Pareto) exponent.1 Since a power law distribution does not have
moments beyond order α, it is more skewed and has heavier tails than many
commonly used distributions such as the exponential, gamma, or lognormal.
A typical value for the Pareto exponent for wealth is 1.5 (Pareto, 1896; Klass
et al., 2006; Vermeulen, 2017).

Economists have long been interested in explaining the wealth distribution.
An early example is Champernowne (1953), who obtains a stationary wealth dis-
tribution that obeys the power law in both the upper and lower tails, although

∗Department of Economics, University of California San Diego. Email: atoda@ucsd.edu.
I thank John Stachurski for suggesting some of the proof techniques and Jinhui Bai, Dan
Cao, Chris Carroll, Alisdair McKay, and Tommaso Porzio for comments and suggestions that
improved the paper.

1More precisely, a random variable X has a Paretian tail if 0 < A = limx→∞ xα Pr(X > x)
exists. See Gabaix (2009, 2016) for an introduction to power laws.
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his model is not micro-founded. Since the 1990s researchers have tried to ex-
plain the wealth distribution from fully specified dynamic general equilibrium
models. Early examples are Banerjee and Newman (1991), Huggett (1993), and
Aiyagari (1994). In these models in which agents are subject to uninsurable
income risk alone, however, it has been found that the model-generated wealth
distribution does not have a fat enough upper tail compared to the data, because
the precautionary savings motive is not strong at high wealth levels (Carroll,
1997). One particular mechanism introduced by Krusell and Smith (1998) in
order to overcome this issue is to assume that agents have random discount
factors. Since agents are more patient in some states than in others, it intro-
duces heterogeneity in saving rates, which makes the wealth distribution more
skewed. Although such heterogeneous-agent models are successful in explaining
the wealth distribution, there seems to be a huge gap between the numerical
results and the theoretical understanding of models.

The present paper attempts to fill this gap. I build a stylized dynamic gen-
eral equilibrium model with heterogeneous agents to study the saving behavior
and the wealth distribution when agents have random discount factors. In or-
der to isolate the effect of random discounting on the wealth distribution, I
abstract from all other forms of uncertainty or heterogeneity: agents have iden-
tical constant relative risk aversion (CRRA) preferences and identical, constant
endowment. The only uncertainty in the economy is that agents discount fu-
ture utility randomly; more precisely, the discount factor of an agent evolves
according to some Markov chain.2 We can interpret random discounting in sev-
eral ways. Krusell and Smith (1998) view households as dynasties and justify
random discounting as genetic differences in the population that are passed on
imperfectly from parents to children. Random discounting may also be viewed
as heterogeneity in the wealth portfolio returns due to differences in financial
sophistication or entrepreneurship (Calvet et al., 2007; Cao and Luo, 2017).
Yet another possible interpretation is the liquidity shocks during the lifetime of
agents (Diamond and Dybvig, 1983; Geanakoplos and Walsh, 2017). With the
last interpretation, agents trade a risk-free bond in order to self-insure against
liquidity shocks. In this model I establish two main theoretical results: (i) a
stationary equilibrium always exists if the “average” discount factor is less than
1 (and is unique if the relative risk aversion is bounded above by 1), and (ii) the
stationary wealth distribution obeys the power law in both the upper and lower
tails when agents are born and die with constant probability.3 Furthermore, I
provide an analytical characterization of the Pareto exponents.

I must acknowledge outright that these results are largely expected and
not necessarily surprising. The main contribution of the paper is that I estab-
lish these results rigorously, instead of just providing the intuition or verifying
through numerical simulations as is often the case in this literature. Regarding
(i) existence, although in my model agents solve a standard Samuelson (1969)-
type optimal consumption-savings problem, when agents have random discount
factors, the Bellman operator is not a contraction depending on the level of risk

2In my model I also assume that agents have uncertain lifetime (Yaari (1965)-Blanchard
(1985) perpetual youth model) in order to obtain a stationary wealth distribution, but since
I assume perfect annuity markets, this uncertainty is perfectly insured.

3This “double power law” has been empirically observed in cities (Reed, 2002; Giesen et al.,
2010), income (Reed and Jorgensen, 2004; Toda, 2012), and consumption (Toda and Walsh,
2015; Toda, 2017a).
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aversion.4 Consequently, it is not obvious how to show that the excess demand
function is a continuous function of the interest rate and crosses zero. To attack
this problem, I use a technique recently introduced by Borovička and Stachurski
(2017), who give a necessary and sufficient condition for existence, uniqueness,
and computability of a fixed point of a certain monotone operator. Because
their condition is necessary and sufficient, we can study the behavior of the
fixed point as the interest rate tends to the upper bound for the existence of
a solution, which enables me to show that the excess demand function crosses
zero. Regarding (ii) double power law, I use recent results in Beare and Toda
(2017), who characterize the tail behavior of non-Gaussian, Markovian random
growth processes. As I discuss in the related literature, theoretically rigorous
derivations of power law distributions from random growth models in economics
are mostly limited to i.i.d. processes, which are not applicable in models with
Markovian dynamics and fully optimizing agents.

Finally, I present a numerical example and ask whether there is a positive re-
lationship between the return on wealth and inequality (as suggested by Piketty,
2014), and which parameter is important in determining the Pareto exponent.
In Proposition 4.2 I show that in a small open economy (partial equilibrium
model) with relative risk aversion bounded above by 1, increasing the interest
rate (return on wealth) unambiguously lowers the Pareto exponent, and hence
increases inequality. However, this is not necessarily the case in a general equi-
librium model. While there is a negative relationship between the interest rate
and Pareto exponent when we change the average discount factor, the relation
flips when we change the risk aversion, persistence of the discount factor process,
or average life span of agents. Furthermore, the numerical value of the Pareto
exponent is highly sensitive to the persistence: when we increase the persistence
from 0.9 to 0.995, the Pareto exponent decreases from 31 to 1.5.

1.1 Related literature

In a calibrated life-cycle model with idiosyncratic income risk, Huggett (1996)
shows that the model-generated wealth distribution matches the Gini coeffi-
cient in U.S. but misses the upper tail. Krusell and Smith (1998) find that a
heterogeneous-agent model with idiosyncratic income risk alone cannot gener-
ate enough cross-sectional dispersion in the wealth distribution, but can do so
by making the discount factors random.5 Beare and Toda (2017) prove that in
a CARA Huggett economy with birth and death, the wealth distribution has
exponential tails, which are thin. Quadrini (2000) and Cagetti and De Nardi
(2006) introduce idiosyncratic investment risk in quantitative models and show
that they can match the upper tail of the wealth distribution. See Benhabib
and Bisin (2017) for a more detailed review of this literature.

4To be precise, the Bellman operator is a contraction if γ > 1 and hence a standard proof
applies. The log utility case (γ = 1) is exactly solvable. When γ < 1, the Bellman operator is
not a contraction so proving theorems becomes tricky.

5Random discounting is used in Krusell and Smith (1997, 1999), Mukoyama and Şahin
(2006), Erosa and Koreshkova (2007), Hendricks (2007), Krusell et al. (2009), Bachmann and
Bai (2013), Carroll et al. (2017), and Hubmer et al. (2016), among others. In Piketty and
Zucman (2015) agents are subject to idiosyncratic saving shocks. Another common approach
in generating wealth inequality is to assume that agents have heterogeneous but nonstochastic
discount factors (Krueger et al., 2016; McKay and Reis, 2016; McKay, 2017), although this
type of models do not generate Pareto tails without further assumptions.
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Benhabib et al. (2011) provide the first rigorous proof that idiosyncratic
investment risk can generate Pareto tails. They consider an overlapping gener-
ations model in which households face idiosyncratic rates of return on wealth
and earnings at birth (which remain constant in their lifetime). They show that
the equation of motion for inherited wealth follows the so called Kesten (1973)
process, which admits a stationary distribution with a Pareto upper tail. (An
earlier paper by Nirei and Souma (2007) obtains similar results but in their
model agents use a rule-of-thumb consumption policy.) Benhabib et al. (2016)
consider a continuous-time perpetual youth model (agents are born and die
with constant probability) in which agents are subject to idiosyncratic invest-
ment risk generated by a Brownian motion and show that the stationary wealth
distribution is double Pareto (Reed, 2001). Toda (2014) considers a discrete-
time heterogeneous-agent model with Markovian dynamics and shows that the
stationary wealth distribution converges to double Pareto in the continuous-
time limit.6 Using a stylized model in which agents have an affine consumption
rule (so the equation of motion for wealth is a Kesten process), Benhabib et al.
(2017) show that the Pareto exponent is either (i) equal to the Pareto expo-
nent for income, or (ii) entirely determined by the distribution of idiosyncratic
returns on wealth (which may be due to investment risk or random discount
factors). However, they do not provide an example where the affine consump-
tion rule is optimal. Benhabib et al. (2015) show that in a Bewley (1983) model
with i.i.d. idiosyncratic investment risk, the optimal consumption rule is asymp-
totically linear and that the stationary wealth distribution has a Pareto upper
tail. In summary, there are no results in the literature that rigorously show that
random discount factors with Markovian (non-i.i.d.) dynamics generate Pareto
tails.

2 Optimal savings with random discounting

In this section I consider the optimal consumption-savings problem of an agent
who faces a constant interest rate, which I subsequently embed into a general
equilibrium model.

Time is indexed by t = 0, 1, 2, . . . . The agent is endowed with initial wealth
w0 > 0 and nothing thereafter. The agent can save at a constant gross risk-free
rate R > 0. Letting wt be the wealth at the beginning of time t and ct be
consumption, the budget constraint is

wt+1 = R(wt − ct). (2.1)

The period utility function exhibits constant relative risk aversion (CRRA) γ >
0, so

u(c) =

{
log c, (γ = 1),
c1−γ

1−γ . (γ 6= 1)

At any point in time, the agent can be in one of the states indexed by s ∈
S = {1, . . . , S}. The discount factor in state s is denoted by βs > 0.7 The
states evolve according to a time-homogeneous Markov chain with transition

6Krebs (2006) and Toda (2015) also use analytically tractable heterogeneous-agent models
with Markovian dynamics, but they do not consider the wealth distribution.

7As Kocherlakota (1990) argues, there is no need to restrict attention to the case βs < 1.
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probability matrix P = (pss′). Throughout the paper I maintain the following
assumption.

Assumption 1 (Irreducibility). The transition probability matrix P = (pss′) is
irreducible.

Recall that a nonnegative matrix P is irreducible if for any pair (s, s′), there
exists n such that (Pn)ss′ > 0. Intuitively, irreducibility means that one can
move between any two states within finite time with positive probability. The ir-
reducibility assumption is without loss of generality since if P is reducible, there
exist states that are never reached if agents start from some state. Therefore
we can remove such states.

Using the budget constraint (2.1), the agent’s Bellman equation becomes

Vs(w) = max
c

{
c1−γ

1− γ
+ βs E [Vs′(R(w − c)) | s]

}
. (2.2)

The following proposition characterizes the solution to the optimal consumption-
savings problem when γ 6= 1. (The case with log utility (γ = 1) is treated in
Appendix B, which is far simpler.) For a square matrix A, let ρ(A) denote its
spectral radius (the maximum modulus of all eigenvalues of A).

Proposition 2.1. Let R > 0 be the gross risk-free rate. Then the Bellman
equation (2.2) has a fixed point if and only if

R1−γρ(BP ) < 1, (2.3)

where B = diag(β1, . . . , βS) is the diagonal matrix of discount factors. In this

case, the fixed point is unique and takes the form Vs(w) = as
w1−γ

1−γ , where as > 0
solves the nonlinear equation

as =
(

1 + (βsR
1−γ E [as′ | s])1/γ

)γ
. (2.4)

The optimal consumption rule is cs(w) = a
−1/γ
s w.

Proof.

Step 1. If (2.2) has a fixed point, it must be of the form Vs(w) = as
w1−γ

1−γ , where

as > 0 solves (2.4). The optimal consumption rule is cs(w) = a
−1/γ
s w.

By homotheticity the value function must be of the form Vs(w) = as
w1−γ

1−γ
for some as > 0. Substituting this guess into the Bellman equation (2.2), we
get

as
w1−γ

1− γ
= max

c

{
c1−γ

1− γ
+ βs

(R(w − c))1−γ

1− γ
E [as′ | s]

}
. (2.5)

For notational simplicity let ρs = βsR
1−γ E [as′ | s]. Then the maximization

problem in (2.5) becomes

maximize
1

1− γ
(c1−γ + ρs(w − c)1−γ).

The objective function is clearly strictly concave. The first-order condition with
respect to c is

c−γ = ρs(w − c)−γ ⇐⇒ c =
w

1 + ρ
1/γ
s

.
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Substituting this into (2.5), it follows that

c1−γ + ρs(w − c)1−γ = c1−γ + c−γ(w − c) = c−γw = (1 + ρ1/γ
s )γw1−γ ,

so cancelling w1−γ/(1− γ) in the Bellman equation (2.5), we obtain (2.4). The
optimal consumption rule is then

c =
w

1 + ρ
1/γ
s

= a−1/γ
s w.

Step 2. The Bellman equation (2.2) has a fixed point if and only if (2.3) holds.

Define φ : R+ → R+ by φ(t) = (1 + t1/γ)γ and the S × S matrix K by K =
R1−γBP . Then (2.4) is equivalent to a = φ(Ka), where φ is applied element-
wise. Since by Assumption 1 P is irreducible and B is a positive diagonal
matrix, K is irreducible. By Lemma A.1 in the appendix, a necessary and
sufficient condition for the existence and uniqueness of a fixed point is 1 >
ρ(K) = R1−γρ(BP ).

Step 3. The transversality condition holds, and hence the above value function
and consumption rule characterize the solution.

Starting from initial wealth w0, let {ct}∞t=0 be the consumption plan gen-

erated by the rule cs(w) = a
−1/γ
s w and let {wt}∞t=0 be the associated wealth

implied by the budget constraint. Since Vs(w) = as
w1−γ

1−γ satisfies the Bellman

equation (2.2), by iteration for all n ∈ N we obtain

Vs0(w0) = E0

[
n−1∑
t=0

β(st)
c1−γt

1− γ
+ β(sn−1)Vsn(wn)

]
,

where β(st) =
∏t
τ=0 βsτ is the product of discount factors along the history

st = (s0, . . . , st). By Toda (2014, Proposition 2), the transversality condition

lim sup
n→∞

E0[β(sn−1)Vsn(wn)] ≤ 0 (2.6)

is sufficient for optimality. If γ > 1, this is trivial since Vs(w) ≤ 0. Suppose that
γ < 1. Since ct ≥ 0, we have wt+1 ≤ Rwt, so wn ≤ Rnw0. Therefore letting
ā = maxs as, we obtain

E0[β(sn−1)Vsn(wn)] ≤ ā (Rnw0)1−γ

1− γ
∑
sn

n−1∏
t=0

(βstpstst+1)

≤ āw
1−γ
0

1− γ
1′(R1−γBP )n1→ 0

as n→∞ because R1−γρ(BP ) < 1 by assumption.

3 General equilibrium

Having solved the optimal consumption-savings problem with random discount
factors, I embed the problem into general equilibrium.
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I consider an infinite horizon endowment economy with heterogeneous (but
ex ante identical) agents. The economy is populated by a continuum of agents
with mass 1 indexed by i ∈ [0, 1] with CRRA preferences as in the previous
section. Agents have constant and identical endowment y > 0 of a perishable
good every period. In this model one can show that agents solve an optimal
consumption-savings problem as in Proposition 2.1. Since the optimal consump-

tion rule is cs(w) = a
−1/γ
s w, using the budget constraint (2.1) the equation of

motion for wealth is w′ = R(1 − a−1/γ
s )w. By taking the logarithm, the log

wealth evolves according to a random walk, which does not have a stationary
distribution if agents are infinitely lived.

In order to obtain a stationary wealth distribution, as in Yaari (1965) and
Blanchard (1985), I assume that agents are born and die with probability p > 0
each period (perpetual youth model). This mechanism for generating a station-
ary (Pareto) distribution was first discovered by Wold and Whittle (1957) in the
case of deterministic growth and was generalized to the case of i.i.d. Gaussian
growth and non-Gaussian, Markovian growth by Reed (2001) and Beare and
Toda (2017), respectively. A big advantage of using a perpetual youth model
is that heterogeneous-agent models with homogeneous problems (scale invari-
ant problems such as optimal consumption-portfolio problems with homothetic
preferences) still admit a stationary distribution, unlike models with infinitely
lived agents.8 It is possible, however, to replace the birth/death assumption
by others, though at the expense of losing tractability. For example, one may
assume that agents face a borrowing constraint. In that case it is often the
case that the optimal consumption rule is still asymptotically linear and one
obtains a Pareto upper tail as in Acemoglu and Cao (2015) and Benhabib et al.
(2015). Since the goal of this paper is to provide a clean analysis with general
Markovian dynamics, I maintain the perpetual youth assumption.

Because agents die with probability p, if an agent has discount factor βs > 0
in state s, the “effective” discount factor is β̃s = βs(1 − p). Letting R > 0
be the equilibrium gross risk-free rate, under perfect annuity markets agents
face an effective risk-free rate R̃ = R

1−p . Since by Assumption 1 the transition

probability matrix P is irreducible, by the Perron-Frobenius theorem P ′ has
a unique positive eigenvector π such that

∑S
s=1 πs = 1 corresponding to the

Perron root 1, which is the stationary distribution of P . I assume that the
initial states of newborn agents are drawn from π, so at any point in time the
fraction πs of agents is in state s.

Since there is no income risk (only mortality risk, which is covered by annu-
ities), agents can just sell off their future endowments. Hence the initial wealth
of a typical agent is

w0 = y

∞∑
t=0

R̃−t =
R̃

R̃− 1
y (3.1)

if R̃ > 1 (and infinite if R̃ ≤ 1). An alternative way to see this is as follows.
Letting at be the savings (risk-free asset holdings) at the end of period t, the

8Recent applications of the perpetual youth model in the context of power law distributions
can be found in Toda (2014), Toda and Walsh (2015, 2017a), Arkolakis (2016), Benhabib
et al. (2016), Gabaix et al. (2016), Nirei and Aoki (2016), Aoki and Nirei (2017), Cao and
Luo (2017), and Kasa and Lei (2017).
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budget constraint becomes

ct + at = y + R̃at−1.

Adding the present discounted value of future income
∑∞
t=1 R̃

−ty = 1
R̃−1

y to

both sides, defining wt = ct + at, and setting a−1 = 0, we obtain wt+1 =
R̃(wt − ct), which is the same as the budget constraint (2.1) with initial wealth
(3.1).

With this definition of wealth, each agent solves an optimal consumption-
savings problem studied in Proposition 2.1. Now we can formally define the
stationary equilibrium.

Definition 3.1 (Stationary equilibrium). A stationary equilibrium consists of

an effective gross risk-free rate R̃ > 1, value functions {Vs(·)}Ss=1, consumption

rule {cs(·)}Ss=1, and the distribution of wealth and states Γ(w, s) such that

1. (Agent optimization) Given R̃, Vs(·) satisfies the Bellman equation (2.2)
and cs(w) is the argmax,

2. (Market clearing) The risk-free asset market clears, so∫
w dΓ(w, s) = w0, (3.2)

where w0 is the initial wealth (3.1), and

3. (Stationarity) Γ(w, s) is the stationary distribution of the law of motion

(w, s) 7→

{
(Gsw, s

′), (with probability (1− p)pss′)
(w0, s

′), (with probability ppss′)

where Gs = R̃(1− a−1/γ
s ) is the gross growth rate of wealth and a = (as)

is as in Proposition 2.1 with βs, R replaced with β̃s, R̃.

The intuition for the market clearing condition (3.2) is as follows. In a
stationary equilibrium, the aggregate wealth must be constant. Since in this
model there is no production and goods are perishable, the aggregate wealth
must coincide with initial wealth, which is (3.2).

In order to prove the existence of equilibrium, I maintain the following as-
sumption.

Assumption 2 (Random discounting). Let βs > 0 be the discount factor in
state s, β̃s = βs(1 − p), and B = diag(β̃1, . . . , β̃S). Then ρ(BP ) < 1. Further-

more, {βs}Ss=1 take distinct values.

The assumption that {βs}Ss=1 are distinct is without loss of generality since
we can merge states with identical discount factors. The assumption ρ(BP ) < 1
ensures that the equilibrium risk-free rate R̃ exceeds 1, which makes the initial
wealth (3.1) finite. This condition holds, for example, if β̃s < 1 for all s. To see
this, if β̃s ≤ β̄ < 1 for all s, then

ρ(BP ) ≤ ρ(β̄IP ) = β̄ρ(P ) = β̄ < 1.9

9In general, if 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B). See Horn and Johnson (1985, Theorem
8.4.5).
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However, it may be possible that agents are very patient in some state (β̃s > 1)
as long as they are impatient enough in other states so that ρ(BP ) < 1.

Before proving the existence of equilibrium, let us rewrite the equilibrium
condition (3.2) in a more convenient form. Let Ws be the aggregate wealth held
by agents in state s. Since the initial state is independently drawn from the
stationary distribution π = (π1, . . . , πS)′ of the transition probability matrix P ,
by accounting we must have

Ws′ = pπs′w0 + (1− p)
S∑
s=1

pss′GsWs.

Letting G = (G1, . . . , GS)′ and W = (W1, . . . ,WS)′, in matrix for this equation
becomes

W = pw0π + (1− p)P ′ diag(G)W

⇐⇒W = pw0

( ∞∑
n=0

Mn

)
π = pw0(I −M)−1π

provided that the spectral radius of the (nonnegative and irreducible) matrix
M = (1− p)P ′ diagG is less than 1. (If the spectral radius is 1 or larger, then
each element of W is infinite.) Therefore the market clearing condition (3.2)
becomes

S∑
s=1

Ws = w0 ⇐⇒ f(R̃) = p1′(I − (1− p)P ′ diagG)−1π − 1 = 0, (3.3)

where 1 = (1, . . . , 1)′.
The following theorem establishes the existence of equilibrium (and unique-

ness if γ < 1).

Theorem 3.2. Suppose that Assumptions 1 and 2 hold. Then there exists a
stationary equilibrium. If γ < 1, the equilibrium is unique.

Proof. For notational simplicity let us write βs, R instead of β̃s, R̃.

Step 1. Let

Ω =
{
R > 0

∣∣R1−γρ(BP ) < 1
}

=

{
(0, ρ(BP )

1
γ−1 ), (γ < 1)

(ρ(BP )
1

γ−1 ,∞) (γ > 1)

be the set of gross risk-free rates for which the fixed point a(R) = (as(R))Ss=1 in
Proposition 2.1 exists. Then each as(R) is continuous on Ω.

For notational simplicity let us write a instead of a(R). By the proof of
Proposition 2.1, a = (a1, . . . , aS) can be obtained by iterating a 7→ φ(Ka). Now

φ(Ka)s =

(
1 +

(
βsR

1−γ
S∑
s=1

pss′as′

)γ)1/γ

=

(
1 +

(
βse

(1−γ)r
S∑
s=1

pss′as′

)γ)1/γ

,

9



where r = logR. By Lemma A.2, the class of all log-convex functions is closed
under addition, multiplication, and raising to any positive power. Since the
exponential function is log-convex, if each as is a log-convex function of r, so
is φ(Ka)s. Since convexity is preserved by taking pointwise limits, and by the
proof of Proposition 2.1 we can compute the fixed point by iterating from any
point (in particular, a = (1, . . . , 1), whose elements are log-convex), it follows
that each element as of the fixed point a is also log-convex in r = logR. Since
a convex function is continuous in the interior of its domain and Ω is an open
interval, each as(R) is continuous on Ω.

Step 2. A stationary equilibrium exists.

By Assumption 2 we have ρ(BP ) < 1. Since R1−γρ(BP ) < 1 at R = 1,

we have 1 ∈ Ω. Noting that Gs = R(1 − a−1/γ
s ) < R because as > 0, we have

M = (1− p)P ′ diagG ≤ (1− p)RP ′ element-wise with some strict inequalities.
By Footnote 9, we get ρ(M) ≤ (1− p)R and ρ(M) ≤ 1− p < 1 at R = 1. Since
π is an eigenvector of P ′ corresponding to the eigenvalue 1, we obtain

f(R) = p1′(I −M)−1π − 1 = p1′

( ∞∑
n=0

Mn

)
π − 1

< p1′

( ∞∑
n=0

(1− p)nRn(P ′)n

)
π − 1 = p1′

( ∞∑
n=0

(1− p)nRn
)
π − 1

=
p

1− (1− p)R
− 1 =

(1− p)(R− 1)

1− (1− p)R
. (3.4)

Substituting R = 1, we get f(1) < 0. Since by the previous step each as(R)
is continuous, so is f on its domain. Therefore to show the existence of an
equilibrium, it suffices to show that f(R) > 0 for some R > 1. Let

Ω1 = {R ≥ 1 |R ∈ Ω} =

{
[1, ρ(BP )

1
γ−1 ), (γ < 1)

[1,∞), (γ > 1)

Ω2 = {R ∈ Ω1 | (1− p)ρ(P ′ diagG) < 1}

be the sets of effective gross risk-free rate such that the initial wealth and the op-
timal consumption rules are well defined, and in addition the stationary wealth
distribution is finite, respectively. Clearly Ω2 ⊂ Ω1. By continuity, Ω2 is an
open subset of [1,∞) that contains 1 by the previous discussion. Let Ω3 be the
connected component of Ω2 that contains 1. There are several cases to consider.

Case 1: Ω3 ( Ω1. In this case let R̄ = sup Ω3. By continuity, it must
be (1 − p)ρ(P ′ diagG) = 1 at R = R̄. Since (I − M)−1 =

∑∞
n=0M

n for
M = (1− p)P ′ diagG, by (3.3) we obtain f(R)→∞ as R ↑ R̄.

In the remaining cases, assume that Ω3 = Ω1.

Case 2: γ > 1. In this case by assumption Ω3 = Ω1 = [1,∞) so we can make
R arbitrarily large. Let a

¯
= mins as and s

¯
be the corresponding state. Then

Gs ≥ G
¯

= R(1− a
¯
−1/γ) for all s. Using (2.4), for any R > 1 we have

a
¯

1/γ = 1 + (βs
¯
R1−γ E [as′ | s

¯
])1/γ ≥ 1 + (βs

¯
R1−γa

¯
)1/γ .

10



Multiplying both sides by Ra
¯
−1/γ > 0 and rearranging terms, we obtain

G
¯

= R(1− a
¯
−1/γ) ≥ (βs

¯
R)1/γ .

Hence M = (1−p)P ′ diagG ≥ (1−p)(βs
¯
R)1/γP ′, so ρ(M) ≥ (1−p)(βs

¯
R)1/γ →

∞ as R → ∞, which implies that the assumption Ω3 = Ω1 is never satisfied
because by definition ρ(M) < 1 for R ∈ Ω3. Hence this case never occurs.

Case 3: γ < 1. Since ρ(BP ) < 1, we have R̄ := ρ(BP )
1

γ−1 > 1. First let us
show that as(R)→∞ for all s as R→ R̄.

Since γ < 1, Ta = φ(Ka) = φ(R1−γBPa) is increasing in R. Therefore the
fixed point a(R) is also increasing in R, so ā = limR↑R̄ a(R) exists in [0,∞]S .
Since φ is continuous and a(R) = φ(R1−γBPa(R)) for all R ∈ (0, R̄), letting
R ↑ R̄ we obtain ā = φ(R̄1−γBPā). Therefore ā is a fixed point of T̄ : a 7→
φ(R̄1−γBPa). By the definition of R̄, we have R̄1−γρ(BP ) = 1. Since condition
(a) of Lemma A.1 is violated for K = R̄1−γBP , the vector ā cannot be finite.
Therefore ās′ =∞ for at least one s′. Since φ(t) ≥ t, we have ā = T̄nā ≥ Knā
for all n. Since P is irreducible, so is K. Therefore for any s, we can take n such
that (Kn)ss′ > 0, so ās ≥ (Kn)ss′ ās′ = ∞. Since ās = ∞ for all s, it follows
that as(R)→ ās =∞ as R→ R̄.

Since Gs = R(1−a−1/γ
s ) and as →∞ as R→ R̄, we have Gs → R̄. Therefore

M = (1− p)P ′ diagG → (1 − p)RP ′, so by the same derivation as in (3.4), we
obtain

f(R̄) =

{
(1−p)(R̄−1)
1−(1−p)R̄ , ((1− p)R̄ < 1)

∞. ((1− p)R̄ ≥ 1)

In the former case, f(R̄) > 0 because 0 < p < 1 and R̄ > 1. In the latter case,
f(R̄) > 0 trivially.

Step 3. The equilibrium is unique if γ < 1.

We have already seen that if 0 < γ < 1, then each element as(R) of the

fixed point a(R) is increasing in R. Since 1 − a−1/γ
s is increasing, so is Gs =

R(1−a−1/γ
s ) for each s. Since the nonconstant terms of f(R) in (3.3) are positive

multiple of the elements of (P ′ diagG)n (which are all increasing in R and some
of them strictly so because P ′ is irreducible), it follows that f(R) is strictly
increasing. Therefore f(R) = 0 has at most one solution and the equilibrium is
unique.

Remark. It is well-known that γ < 1 (elasticity of intertemporal substitution
larger than 1) is a sufficient condition for equilibrium uniqueness in a variety of
economies.10 With γ > 1 it is easy to construct examples of multiple equilib-
ria.11

10Hens and Loeffler (1995) consider an Arrow-Debreu economy with additive utility; Achdou
et al. (2017) consider a continuous-time Huggett economy with no borrowing.

11See Kubler and Schmedders (2010) and Toda and Walsh (2017b) for examples in Edge-
worth box economies. Although I have not tried to construct an example of multiple equilibria
with γ > 1, it seems possible to do so by using the approach in Toda (2017b).

11



4 Wealth distribution

4.1 Theoretical results

What does the stationary wealth distribution look like? Since agents are born
and die with probability p, the stationary age distribution is geometric with
mean 1/p. While an agent is alive, his wealth follows a random growth process.

In fact, substituting the optimal consumption rule cs(w) = a
−1/γ
s w into the

budget constraint, individual wealth follows w′ = Gsw, whereGs = R̃(1−a−1/γ
s )

is the growth rate of wealth in state s. Thus the stationary wealth distribution
will be the same as that of a random growth process w′ = Gsw initialized at

w0 = R̃
R̃−1

y and evaluated at a geometrically distributed time with mean 1/p.

In general, consider the random growth process for wealth

wi,t+1 = Gi,t+1wit,

where wit is the wealth of agent i at time t and Gi,t+1 is the gross growth
rate of wealth between time t and t + 1. Assuming that agents are born and
die with constant probability p > 0 and the distribution of the growth rate
Gi,t+1 conditional on time t information depends only on the current state
s = sit, Beare and Toda (2017) show that the stationary cross-sectional wealth
distribution has Pareto tails and characterize the tail exponents. Let

D(z) = diag(E
[
ez logG

∣∣ s = 1
]
, . . . ,E

[
ez logG

∣∣ s = S
]
)

be the diagonal matrix of conditional moment generating functions of log growth
rates. Then the upper and lower tail Pareto exponents are determined such that

ρ(PD(α1)) = ρ(PD(−α2)) =
1

1− p

whenever such −α1 < 0 < α1 exist in the interior of the domain of ρ(PD(z)). In
our case, the growth rates are deterministic given the current state, namely Gs =

R̃(1− a−1/γ
s ). Therefore the upper and lower tail Pareto exponents α1, α2 > 0

satisfy

ρ(P diagG(α1)) = ρ(P diagG(−α2)) =
1

1− p
(4.1)

whenever such α1, α2 > 0 exist, whereG = (G1, . . . , GS)′ andG(α) = (Gα1 , . . . , G
α
S)′

is the vector of element-wise powers. The following theorem, which is the main
result of this paper, shows that such α1, α2 > 0 exists under weak conditions.

Theorem 4.1. Suppose that S ≥ 2, Assumptions 1 and 2 hold, and the transi-
tion probability matrix P = (pss′) has positive diagonal elements, so pss > 0 for
all s. Then there exist unique α1, α2 > 0 that satisfy (4.1). Consequently, the
stationary wealth distribution has Pareto upper and lower tails with exponents
α1, α2.

Proof. Uniqueness is proved in Beare and Toda (2017). By the market clearing
condition (3.3), we obtain

0 = f(R̃) = p1′(I −M)−1π − 1 = p1′

( ∞∑
n=0

Mn

)
π − 1,

12



where M = (1− p)P ′ diagG and Gs = R̃(1− a−1/γ
s ).

Suppose for the moment that Gs > 1 for some state s and let Ms(z) be the
S × S matrix whose (s, s)-th element is pssG

z
s > 0 and all other elements are 0.

By Footnote 9, we obtain

ρ(P diagG(0)) = ρ(P ) = 1 <
1

1− p
,

ρ(P diagG(z)) ≥ ρ(Ms(z)) = pssG
z
s →∞

as z →∞ because Gs > 1. Since the spectral radius is continuous, there exists
α1 > 0 such that ρ(P diagG(α1)) = 1

1−p . By the same argument, if Gs < 1 for

some s, then there exists α2 > 0 such that ρ(P diagG(−α2)) = 1
1−p . Hence there

exist α1, α2 > 0 that satisfy (4.1).
Therefore to complete the proof it remains to show that

minGs < 1 < maxGs.

First let us show minGs < maxGs. If not, then Gs is constant, and so is as
because Gs = R̃(1− a−1/γ

s ). Letting as = a, by (2.4) we have

a =
(

1 + (β̃sR̃
1−γa)1/γ

)γ
,

which is a contradiction because S ≥ 2 and {βs}Ss=1 are distinct by Assumption
2. Therefore minGs < maxGs.

If Gs ≥ 1 for all s, then there exists s such that Gs > 1. Since diagG ≥ I
with some strict inequality for diagonal entries, it follows that

0 = f(R̃) > p1′

( ∞∑
n=0

(1− p)n(P ′)n

)
π − 1

= p1′

( ∞∑
n=0

(1− p)n
)
π − 1 =

p

1− (1− p)
− 1 = 0,

which is a contradiction. Therefore minGs < 1. If Gs ≤ 1 for all s, by the same
argument we obtain the contradiction 0 = f(R̃) < 0. Therefore maxGs > 1.

Recently Piketty (2014) and Piketty and Zucman (2015, Section 15.5.4) have
argued that the condition r > g (the rate of return on wealth exceeding the
growth rate of the economy) exacerbate income and wealth inequality. However,
this argument is rather informal and seems to ignore general equilibrium effects.
Using my model we can address this issue formally. The proposition below shows
that if the relative risk aversion is bounded above by 1, then in a small open
economy a higher interest rate increases inequality.

Proposition 4.2. Let everything be as in Theorem 4.1. Suppose that γ < 1
and consider a small open economy, so the gross risk-free rate R > 0 is given.
Then ∂α1/∂R < 0, so higher interest rate implies lower Pareto exponent (more
inequality).

Proof. Let

F (z,R) = ρ(P diagG(z))− 1

1− p
,

13



where G = (G1, . . . , GS) and Gs = R̃(1 − a
−1/γ
s ). By (4.1), the upper tail

Pareto exponent satisfies F (α1, R) = 0. Beare and Toda (2017) show that

∂F/∂z(α1, R) > 0. By the proof of Theorem 3.2, Gs = R̃(1−a−1/γ
s ) is increasing

in R, so by Footnote 9 we have ∂F/∂R > 0. Therefore by the implicit function
theorem, we obtain ∂α/∂R = −(∂F/∂R)/(∂F/∂z) < 0.

Because my model is a general equilibrium model, the risk-free rate R is
endogenous. Therefore it is not clear how the interest rate R and the Pareto
exponent α1 change when we change exogenous model parameters. Below, I
explore this issue using a numerical example.

4.2 Numerical example

As a numerical example, I consider parameter values and a discount factor
process similar to Hubmer et al. (2016). The relative risk aversion coefficient is
γ = 1.5. The discount factor follows the AR(1) process

log βt = (1− ρ)µ+ ρ log βt−1 + σεt, εt ∼ N(0, 1), (4.2)

where µ = −0.0836, ρ = 0.992, and σ = 0.0021.12 To convert this process into a
finite-state Markov chain, I use the discretization method proposed by Farmer
and Toda (2017)—which is more accurate and generally applicable than other
discretization methods—with a 9-point even-spaced grid and treat this Markov
chain as the true process. Finally, I set the death probability p = 0.025 so that
the mean life span (which should be interpreted as the average years in the
labor market) is 40. For each guess of effective gross risk-free rate R̃, I compute
the market clearing condition (3.3) by solving for the fixed point in (2.4), and
then solve the equation f(R̃) = 0 numerically. Finally, I compute the upper and
lower tail Pareto exponents by solving (4.1) for α1, α2.

With the above parameter values, in equilibrium the effective gross risk-
free rate is R̃ = 1.1095, the gross risk-free rate is R = 1.0818, and the upper
and lower tail Pareto exponents are α1 = 2.2183 and α2 = 1.6058, respec-
tively. Figure 1 shows the log tail probabilities (log Pr(wit > w) for w > w0

and log Pr(wit < w) for w < w0) from a simulation with 100,000 agents and
T = 20/p = 800 periods. Consistent with the double power law, the log tail
probabilities show a tent-shaped pattern. The Pareto exponents estimated by
maximum likelihood using 10% of the extreme tail observations are α̂1 = 2.1543
and α̂2 = 1.6531, which are close to the theoretical values.

Next, I conduct a comparative statics exercise by changing model param-
eters. The main questions here are whether there is a positive relationship
between the interest rate and inequality, and which parameter is important in
determining the Pareto exponent. I consider four cases: (i) change the relative
risk aversion in the range γ ∈ [0.1, 10], (ii) change the average discount factor
in the range µβ ∈ [0.86, 0.98], (iii) change the persistence of the AR(1) process

12Hubmer et al. (2016) specify the AR(1) process in levels (βt instead of log βt), which
has the undesirable property that βt eventually becomes negative with probability 1. When
the log discount factor follows the AR(1) process (4.2), using the property of the lognormal

distribution, the unconditional mean and variance of βt becomes µβ = e
µ+ σ2

2(1−ρ) and σ2
β =

(e
σ2

1−ρ − 1)e
2µ+ σ2

1−ρ , respectively. The parameter values µ, σ are chosen so as to match µβ =
0.92 and σβ = 0.0019 in Hubmer et al. (2016).
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Figure 1: Log tail probabilities.

in the range ρ ∈ [0.5, 0.995], and (iv) change the birth/death probability in the
range p ∈ [0.01, 0.1] (average life span in the range [10, 100]). In each case I fix
all other parameters at the baseline values. Figure 2 shows the results.

The left panels show the effect of changing model parameters (relative risk
aversion γ, average discount factor µβ , persistence ρ, and average life span 1/p)
on the equilibrium gross risk-free rate. The right panels do the same for the
upper tail Pareto exponent α1. Recalling that smaller Pareto exponent implies
more inequality, Piketty (2014)’s claim would be supported if the gross risk-free
rate R and Pareto exponent α1 move in opposite directions when we change
parameters. However, this is the case only when we change the average discount
factor µβ . In general there is no clear relationship between the interest rate and
inequality due to general equilibrium effects.

The right panels in Figure 2 also show which parameter is important in
determining inequality. The average discount factor µβ has a modest effect
on α1. Increasing the life span 1/p decreases the Pareto exponent but only
moderately. The relative risk aversion (reciprocal of elasticity of intertemporal
substitution) has a large effect on inequality: when agents are close to risk-
neutral, the Pareto exponent α1 is close to 1 (Zipf’s law), and roughly linearly
increases with γ. The persistence ρ of the AR(1) process has a huge impact on
the Pareto exponent: even when we restrict attention to the highly persistent
case, the Pareto exponent ranges from α1 = 31 when ρ = 0.9 to α1 = 1.5 when
ρ = 0.995.

5 Concluding remarks

Using a simple dynamic general equilibrium model with random discount factors
and lifetime alone, in this paper I proved that the stationary wealth distribution
has Pareto tails and provided an analytical characterization. Since my model
does not feature any idiosyncratic income risk, as the example in Benhabib
et al. (2017) suggests, income risk does not likely matter for determining the top
wealth inequality (although it is, of course, important for the wealth inequality
in the middle of the distribution). Furthermore, the equilibrium Pareto expo-
nent is highly sensitive to the persistence of the discount factor process. These
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(b) Effect of γ on α1.
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(c) Effect of µβ on R.
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(d) Effect of µβ on α1.
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(e) Effect of ρ on R.
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(f) Effect of ρ on α1.
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(g) Effect of 1/p on R.
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Figure 2: Comparative statics results.
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somewhat negative results may force applied researchers to be more clear about
the mechanism that generates the amount of inequality they wish to explain. In
a general equilibrium model, there is no clear relationship between the return on
wealth and the Pareto exponent when we change the model parameters because
interest rate and inequality are endogenously determined.

A Mathematical results

Lemma A.1. Let γ > 0, K be an S × S nonnegative irreducible matrix, and
X = RS+. Define T : X → X by

(Tx)s = (1 + ((Kx)s)
1/γ)γ .

Then the following statements are equivalent:

(a) ρ(K) < 1.

(b) T has a fixed point in X.

(c) There exists a g ∈ X such that {Tng}∞n=1 is convergent in X.

(d) The sequence {Tng}∞n=1 is convergent in X for all g ∈ X.

(e) T has a unique fixed point g∗ in X and limn→∞ Tng = g∗ for all g ∈ X.

Proof. ((a) =⇒ (e)) Define φ : R+ → R+ by φ(t) = (1 + t1/γ)γ . If γ ≤ 1, then

0 ≤ φ′(t) = γ(1 + t1/γ)γ−1 1

γ
t1/γ−1 = (t−1/γ + 1)γ−1 ≤ 1,

so φ is Lipshitz continuous with order 1. Since the conditions of Borovička and
Stachurski (2017, Proposition 4.1) are satisfied, the conclusion holds.

If γ > 1, then

φ′′(t) = (γ − 1)(t−1/γ + 1)γ−2

(
− 1

γ
t−1/γ−1

)
< 0,

so φ is increasing and concave. Since the conditions of Borovička and Stachurski
(2017, Proposition 4.2) are satisfied, the conclusion holds.

((e) =⇒ (d) =⇒ (c)) Trivial.
((c) =⇒ (b)) Let x(n) = Tng. By definition, we have x(n+1) = φ(Kx(n)),

where φ is applied element-wise. Letting n→∞, since by assumption x(n) → x∗

for some x∗ ∈ X and φ is continuous, we obtain x∗ = φ(Kx∗) = Tx∗. Therefore
x∗ is a fixed point of T .

((b) =⇒ (a)) Let g∗ ∈ X be a fixed point of T . Since φ(t) > 0, clearly
g∗ � 0. Since φ(t) > t for t > 0, we have Tx � Kx for all x � 0. In
particular, g∗ = Tg∗ � Kg∗. By the Perron-Frobenius theorem, there exists
v � 0 such that v′K = ρ(K)v′. Left-multiplying v′ to the above inequality, we
obtain v′g∗ > ρ(K)v′g∗, so ρ(K) < 1 because v′g∗ > 0.

Lemma A.2 (Kingman, 1961). The class of all log-convex functions is closed
under addition, multiplication, and raising to any positive power.
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Proof. Since the sum and positive multiple of convex functions are convex, it
suffices to show that the sum of log-convex functions is log-convex. Let f, g be
log-convex. Then for any x1, x2 and t ∈ (0, 1), we have

log f(x) ≤ (1− t) log f(x1) + t log f(x2) =⇒ f(x) ≤ f(x1)1−tf(x2)t,

where x = (1− t)x1 + tx2. The same inequality holds for g. Hence by Hölder’s
inequality, we obtain

f(x) + g(x) ≤ f(x1)1−tf(x2)t + g(x1)1−tg(x2)t

≤ (f(x1) + g(x1))1−t(f(x2) + g(x2))t,

so f + g is log-convex.

B Log utility

In this appendix I solve the model with log utility, so u(c) = log c. The following
proposition shows that the optimal consumption rule does not depend on the
interest rate.

Proposition B.1. Suppose that Assumptions 1 and 2 hold. Then the optimal
consumption rule is c = w/bs, where (b1, . . . , bS)′ = b = (I − BP )−11 and
1 = (1, . . . , 1)′.

Proof. For notational simplicity let us write βs, R instead of β̃s, R̃. By the
structure of the problem, we can guess that the value function is of the form
Vs(w) = as + bs logw. Substituting this guess into the Bellman equation (2.2),
we get

as + bs logw = max
c
{log c+ βs E [as′ + bs′ logR(w − c) | s]} . (B.1)

The first-order condition with respect to c is

1

c
= βs

E [bs′ | s]
w − c

⇐⇒ c =
w

1 + βs E [bs′ | s]
.

Substituting this c into (B.1) and comparing the coefficient of logw, we obtain

bs = 1 + βs E [bs′ | s] , (B.2)

so the optimal consumption rule is c = w/bs. Since ρ(BP ) < 1, (I −BP )−1 ex-
ists and equals

∑∞
n=0(BP )n, which is a positive matrix. Letting b = (b1, . . . , bS)′

and expressing (B.2) in vector form, we obtain

b = 1 +BPb ⇐⇒ b = (I −BP )−11.

Substituting this into (B.1) and expressing in matrix form, we obtain a = BPa+
d ⇐⇒ a = (I − BP )−1d for some vector d. To show the transversality
condition, by the same argument as in the proof of Proposition 2.1, we obtain

E0[β(sn−1)Vsn(wn)] ≤ (asn−1
+ bsn−1

logRnw0)
∑
sn

n−1∏
t=0

(βstpstst+1
).
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Since logRnw0 grows linearly in n and

∑
sn

n−1∏
t=0

(βstpstst+1
) ≤ 1′(BP )n1

decays to 0 exponentially in n since ρ(BP ) < 1, the transversality condition
holds.

As in the CRRA case, a stationary equilibrium exists and the stationary
wealth distribution has Pareto tails if agents are born and die with probability
p > 0.

Theorem B.2. Suppose that Assumptions 1 and 2 hold. Then the log utility
economy has a unique stationary equilibrium. If in addition pss > 0 for all s,
then the conclusion of Theorem 4.1 holds if we define Gs = R̃(1− 1/bs).

Proof. As in the proof of Theorem 3.2, the equilibrium condition is (3.3), where
G = (G1, . . . , GS)′ and Gs = R̃(1 − 1/bs). By the proof of Proposition B.1,
clearly bs does not depend on R and bs > 1 for all s. Therefore f(R̃) is con-
tinuous and strictly increasing in R̃, f(1) < 0 by (3.4), and f(R̃) > 0 for large
enough R̃ as in the proof of Theorem 3.2, so there exists a unique equilibrium.
The proof that the stationary wealth distribution has Pareto tails is identical
to Theorem 4.1.
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