Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Expression of natural killer receptor alleles at different Ly49 loci occurs independently and is regulated by major histocompatibility complex class I molecules.

  • Author(s): Tanamachi, D
  • Hanke, T
  • Takizawa, H
  • Jamieson, A
  • RAULET, David H.
  • et al.
Abstract

Ly49 receptor genes are expressed by subsets of natural killer (NK) cells in an overlapping fashion, accounting for the capacity of NK subsets to attack host cells that have selectively downregulated self-major histocompatibility complex (MHC) class I molecules. It was shown previously that most NK cells express only one or the other allele of a given Ly49 gene, while a smaller population expresses both alleles. However, the methods used to detect monoallelic and biallelic cells were nonquantitative. Here, new allele-specific antibodies were used to provide the first quantitative examination of biallelic and monoallelic expression of Ly49A and Ly49G2. The results demonstrate conclusively that most Ly49A(+) and Ly49G2(+) NK cells express the corresponding gene in a monoallelic fashion, with a smaller subset expressing both alleles. Unexpectedly, biallelic Ly49A(+) NK cells were more numerous than predicted by completely independent allelic expression, suggesting some heterogeneity among NK progenitors in the potential to express a given Ly49 gene. The data also show that cells expressing one allele of Ly49G2 may express Ly49A from the same or opposite chromosome with equal likelihood, indicating that the expressed allele is chosen independently for different Ly49 genes. Finally, the data demonstrate that biallelic expression of Ly49A or Ly49G2 occurs least frequently in mice that express ligands for these receptors (H-2(d) mice), and most frequently in class I-deficient mice. Thus, biallelic expression of Ly49 genes is regulated by interactions of NK cell progenitors with MHC class I molecules.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View