Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

New insights into North America-Pacific plate boundary deformation from Lake Tahoe, Salton Sea and Southern Baja California


Five studies along the Pacific- North America (PA-NA) plate boundary offer new insights into continental margin processes, the development of the PA-NA tectonic margin and regional earthquake hazards. This research is based on the collection and analysis of several new marine geophysical and geological datasets. Two studies used seismic CHIRP surveys and sediment coring in Fallen Leaf Lake (FLL) and Lake Tahoe to constrain tectonic and geomorphic processes in the lakes, but also the slip-rate and earthquake history along the West Tahoe-Dollar Point Fault. CHIRP profiles image vertically offset and folded strata that record deformation associated with the most recent event (MRE). Radiocarbon dating of organic material extracted from piston cores constrain the age of the MRE to be between 4.1-4.5 k.y. B.P. Offset of Tioga aged glacial deposits yield a slip rate of 0.4-0.8 mm/yr. An ancillary study in FLL determined that submerged, in situ pine trees that date to between 900-1250 AD are related to a medieval megadrought in the Lake Tahoe Basin. The timing and severity of this event match medieval megadroughts observed in the western United States and in Europe. CHIRP profiles acquired in the Salton Sea, California provide new insights into the processes that control pull-apart basin development and earthquake hazards along the southernmost San Andreas Fault. Differential subsidence (> 10 mm/yr) in the southern sea suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline. In contrast to previous models, the rapid subsidence and fault architecture observed in the southern part of the sea are consistent with experimental models for pull-apart basins. Geophysical surveys imaged more than 15 Ñ15⁰E oriented faults, some of which have produced up to 10 events in the last 2-3 kyr. Potentially 2 of the last 5 events on the southern San Andreas Fault (SAF) were synchronous with rupture on offshore faults, but it appears that ruptures on three offshore faults are synchronous with Colorado River diversions into the basin. The final study was used coincident wide-angle seismic refraction and multichannel seismic reflection surveys that spanned the width of the of the southern Baja California (BC) Peninsula. The data provide insight into the spatial and temporal evolution of the BC microplate capture by the Pacific Plate. Seismic reflection profiles constrain the upper crustal structure and deformation history along fault zone on the western Baja margin and in the Gulf of California. Stratal divergence in two transtensional basins along the Magdalena Shelf records the onset of extension across the Tosco-Abreojos and Santa Margarita faults. We define an upper bound of 12 Ma on the age of the pre-rift sediments and an age of 8̃ Ma for the onset of extension. Tomographic imaging reveals a very heterogeneous upper crust and a narrow, high velocity zone that extends 4̃0 km east of the paleotrench and is interpreted to be remnant oceanic crust

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View