Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Cortical Networks Underlying Mechanisms of Time Perception

Abstract

Precise timing of sensory information from multiple sensory streams is essential for many aspects of human perception and action. Animal and human research implicates the basal ganglia and cerebellar systems in timekeeping operations, but investigations into the role of the cerebral cortex have been limited. Individuals with focal left (LHD) or right hemisphere (RHD) lesions and control subjects performed two time perception tasks (duration perception, wherein the standard tone pair interval was 300 or 600 msec) and a frequency perception task, which controlled for deficits in time-independent processes shared by both tasks. When frequency perception deficits were controlled, only patients with RHD showed time perception deficits. Time perception competency was correlated with an independent test of switching nonspatial attention in the RHD but not the LHD patients, despite attention deficits in both groups. Lesion overlays of patients with RHD and impaired timing showed that 100% of the patients with anterior damage had lesions in premotor and prefrontal cortex (Brodmann areas 6, 8, 9, and 46), and 100% with posterior damage had lesions in the inferior parietal cortex. All LHD patients with normal timing had damage in these same regions, whereas few, if any, RHD patients with normal timing had similar lesion distributions. These results implicate a right hemisphere prefrontal-inferior parietal network in timing. Time-dependent attention and working memory functions may contribute to temporal perception deficits observed after damage to this network.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View