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Abstract

Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

by

Itamar Kimchi

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ashvin Vishwanath, Chair

In this doctoral dissertation, we consider the significance of spin-orbit coupling for
the phases of matter which arise for strongly correlated electrons. We explore emer-
gent behavior in quantum many-body systems, including symmetry-breaking orders,
quantum spin liquids, and unconventional superconductivity. Our study is cemented
by a particular class of Mott-insulating materials, centered around a family of two-
and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits
peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent
experiments on these compounds, we show that this unconventional exchange is the
key ingredient in describing their magnetism, and then use a combination of numerical
and analytical techniques to investigate the implications for the phase diagram as well
as the physics of the proximate three-dimensional quantum spin liquid phases. These
long-ranged-entangled fractionalized phases should exhibit special features, including
finite-temperature stability as well as unconventional high-Tc superconductivity upon
charge-doping, which should aid future experimental searches for spin liquid physics.
Our study explores the nature of frustration and fractionalization which can arise in
quantum systems in the presence of strong spin-orbit coupling.
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Chapter 1

Introduction

1.1 Overview: many-electron physics

When the valence electrons in a piece of solid are primarily captured by atomic
orbitals with small spatial extent, large angular momentum quantum number ` and
intermediate principal quantum number n, the strong Coulomb repulsion between
the electrons can restrict the amplitude for two electrons to occupy the same tight
space around a nucleus. At appropriate (commensurate) electron densities, these va-
lence electrons become stuck, as in a traffic jam in a fully packed parking lot, and
cannot efficiently transport heat or electric current. The resulting insulator may be
called a Mott insulator, in contrast to the band insulator which can arise in a Fermi
gas interacting with the periodic crystal potential. Though the distinction between
Mott and Band insulating behavior is not rigorously defined when the translation
symmetries require a unit cell with an even number of electrons, a qualitative dif-
ference remains – the requirement of a theoretical treatment incorporating strong
inter-electron interactions.

Many-body quantum systems in three dimensions are currently believed to be
generically “impossible” to solve; that is, the computational cost (on a classical com-
puter) scale exponentially with the number of interacting particles. Finding the
ground state exactly, in some basis, would require diagonalizing a matrix which is ex-
ponentially large in the system size. Of course even if the wavefunction was magically
obtained, it is not clear how to make sense of a set of exponentially-many amplitudes.
The free particle picture, of fermions filling a band structure or of bosons condensing,
is not only a computational tool but also a qualitative framework which no longer
applies in strongly interacting phases.

Classical physics can often come to the rescue. When symmetries are sponta-
neously broken1, the resulting order parameter is a classical variable which gives a

1Spontaneous symmetry breaking occurs when, as the system size is taken to infinity (the thermo-
dynamic limit), the ground state manifold becomes a set of degenerate wavefunctions whose overlap
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usable handle for describing (and measuring) the system. Interesting questions remain
regarding microscopic (but possibly quite general) mechanisms for the formation of
a given order. Classical pictures are also appropriate for describing the frozen Mott
insulator, where real space localization allow us to forget the wave nature of parti-
cles. Even complicated ordering patterns, of magnetic moments on a lattice, can be
described classically within some zero-fluctuation limit.

Yet other phases of matter are possible still — phases for which the entanglement
among constituent particles is not a perturbative afterthought but rather a necessary
required ingredient. These are not classical. For example, one can write2 a wave func-
tion for particles on the graphene lattice at a density of one-half per site (“half filling”)
forming a Mott insulator (no Dirac cones) without breaking symmetries, but with un-
avoidable fluctuations in local particle number. No obvious experimental realization
exists. Related phases with similar unavoidable short-ranged entanglement, but which
are captured by non-interacting treatments, are topological insulators and topolog-
ical semi-metals (Weyl or Dirac), and offer experimental realizations or promising
candidates. Strongly-interacting variants are still elusive.

The bulk of this thesis will be motivated by a different subject, framed by a
particular lithium-iridium-oxide series of compounds. We shall deal with concrete ex-
periments on real materials, while simultaneously seeking to build a bridge to a class
of quantum phases of matter, even more exotic than those described above. This class,
going by names such as “spin liquids” or “topological order” in certain cases, involves
necessary long-range entanglement among the constituent strongly-interacting par-
ticles. (One picture for its emergence involves condensation of extended string-like
objects.) The resulting effective excitations, i.e. those that emerge at low energies,
can be wildly different – emergent fermions in a system of interacting bosons, or
fractional quantum numbers as in the charge e/3 excitations of a fractional quantum
hall liquid. But because these phases are not described by a (local) classical order
parameter, they are inherently difficult to identify. These phases may be fragile, but
they are mysterious and interesting beyond any potential technological applications.
In setting some foundation stones for a bridge connecting theory and experiment in
this particular Li2IrO3 context, this thesis aims to inspire further work on this or on
other bridges.

remains vanishing even after any finitely-many local transformations (superselection rules). Super-
positions of these states then cannot be physically constructed. Examples include a liquid freezing
into a crystalline solid with its cornerstone atom sitting at the origin instead of epsilon away, or in
a broader sense, a certain cat in a box spontaneously choosing to appear alive instead of in a winter
hibernation.

2I give this particular example here just because it is the subject of one of my other research
projects, on “featureless insulators” (see Proc. Nat. Acad. Sci. 110 (41) 16378-16383 (2013) and
Phys. Rev. Lett. 110, 125301 (2013) for reference[1, 2]). However, the discussion of these subjects
is beyond the scope of this thesis.
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1.2 Entanglement – the quantum information per-

spective

Beyond the traditional interplay between physics, chemistry and material sci-
ence, common in condensed matter physics, an additional set of ingredients has been
increasingly present in the field. These new ingredients originate in quantum informa-
tion science. As well as being technical necessary for much of the research techniques
presented in this thesis, quantum information provides a useful perspective on the
the physics in quantum magnets.

Consider a classical configuration of spins on a discrete lattice, also known as
a (classical) mean field ansatz. This configuration corresponds to a quantum wave
function which is a direct product over single-site wave functions. This ansatz forms
a subspace of variational states within the full quantum Hilbert space. The single-site
wave functions may be taken to be, for instance, S = 1/2 spinor functions, or S = 1
orbital wave functions, or classical S = ∞ vectors. Regardless of that choice, the
resulting many-body wave function is in a deeper sense fully classical.

Quantum fluctuations require states beyond such a mean field ansatz. The strength
of such fluctuations can be considered in a controlled manner, on the level of wave
functions, by introducing a measure of entanglement. Consider two isolated S = 1/2
objects, which in a different context may be called quantum bits (or qubits). The
quantum wave function of this pair of states includes configurations where these qubits
cannot be written as a site-product state regardless of the choice of local S = 1/2
basis, such as the rotationally-symmetric singlet (or valence bond) state. Such en-
tangled configurations can be recorded by writing the wave function as a sum over
products of coefficients in the single-sites basis, rather than as a single term of a pure
product of such coefficients. In the case of the two qubits, this sum of products can
be represented using matrix multiplication of two 2× 2 matrices.

Such matrix multiplication schemes enable us to represent many entangled quan-
tum many-body states. These ansatz states (matrix product states in 1D, tensor net-
work states in certain higher-dimensional schemes) involve some control parameter
for the maximum entanglement between nearby sites, associated with the maximum
dimension of the matrix multiplication, and known as the bond dimension. Non-
ordered states with necessary quantum entanglement can be captured in this scheme,
such as the AKLT state in the topological Haldane phase of the S = 1 1D spin chain,
which can already be captured with maximal bond dimension equal to two, yet rep-
resenting a major qualitative distinction from mean field states with bond dimension
equal to one. This entanglement-controlled approach can also capture some states
with topological order, allowing for possibilities for variational computations (such as
the density-matrix renormalization-group), yielding quantitative as well as qualitative
information on quantum states of entangled spins.
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1.3 Frustration (it’s a good thing)

An additional useful viewpoint on spin liquids is gained by considering the concept
of frustration. This is related to the viewpoint of spin liquids as arising via quantum
melting of magnetic (or other broken symmetry) orders.

The concept of frustration in a quantum Hamiltonian involves a classical analogue
or basis choice. Given a quantum many body Hamiltonian, it can be difficult to
immediately gain intuition for the “effects” of its various non-commuting terms. (A
Hamiltonian is quantum if its terms do not all commute with each other, in contrast
with, for example, an Ising model.) One can often gain intuition by considering a
classical variant. For a Heisenberg model, one can pick a particular quantization axis,
generalize the Heisenberg term to an XXZ interaction with a stronger coupling along
the quantization axis, and consider the XY terms as a perturbation, adding quantum
fluctuations, to the quantization-axis Ising interaction. In general one can take the
large-spin (classical) limit, equivalently restricting the Hilbert space to products (over
sites) of spin coherent states, and treat the Pauli matrices as classical vectors.

One can then study this analogous classical energy function. In many cases, the
degenerate minima of the classical problem are labeled by a global quantity, that is
related to the symmetry of the problem. A ferromagnet spontaneously chooses an
ordering axis. However in some cases, the degeneracy can be extensive, so that the
number of classical lowest-energy configurations grows exponentially with the system
size. (By system size we refer to the measure of the bulk, rather than say the surface,
of the system.) This extensive classical degeneracy is the signal of frustration in the
quantum problem. Even when the Hamiltonian is slightly modified, the extensive
manifold of nearly-degenerate classical configurations offers a wide playground for in-
expensive coherent quantum superpositions. The quantum fluctuations, i.e. the terms
which were missing in the classical energy function, then have the defining effect in
constructing the ground states from within this manifold, using quantum superposi-
tions that can easily entangle even distant objects. Thus, in quantum Hamiltonians
exhibiting frustration, one can hope that truly quantum behavior may arise.

Frustration can also be manifested in computational algorithms. One may want
to write the Hamiltonian in a particular convenient basis, and then to use this basis
to express the time evolution operator U = e−iHt in small discrete time interval steps
(i.e. to “Trotterize”), for example in order to write a path integral. Similarly, one may
want to perform such a discretization, in a particular basis, on the imaginary time
evolution operator e−βH , to compute the partition function. This is an attempted
rewriting of the d-dimensional quantum problem as a (d + 1)-dimensional classical
statistical mechanics problem. It is (one description of) the approach used in quantum
Monte Carlo algorithms, which perform classical Monte Carlo simulations on this
higher dimensional stat mech model. However, the quantum Monte Carlo approach
can fail: the (d + 1)-dimensional operator may fail to be purely real. Then the
amplitudes sampled by Monte Carlo, e−βH , can be negative or even complex. This is
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known as the “sign problem”; it occurs, for example, when there are Berry’s phases in
the resulting action, or often for fermions away from half filling. The occurrence of an
unavoidable sign problem in a bosonic model is generally associated with frustration.

In both of the senses described above, frustration signals the breakdown of classical
treatments, and can often be roughly associated with new kinds of quantum behavior.

1.4 Mean field theories for fractionalization: a han-

dle on spin liquids and descendant supercon-

ductors

Consider a frustrated magnetic Hamiltonian of S = 1/2 spins on a lattice. The
frustration may enable quantum fluctuations to melt any candidate magnetic order-
ing. A mean field treatment which requires spins to gain a expectation value should
then not be used. Indeed, the quantum ground state may be a spin liquid, whose ex-
citations are emergent particles involving many entangled spins. How can one hope to
describe such a phase? One set of approaches consists of so-called slave-particle mean
fields. Here we briefly mention some of these approaches; for references and a more
complete description, the reader is pointed to chapters 3 and 4 of this manuscript.

The approach involves re-writing the S = 1/2 operators on each site using an
enlarged Hilbert space. For example, consider a particle creation operator a† which
has two spin species, a = (a↑, a↓). We may rewrite the spin operator on each site
using

~S =
1

2
a†~σa (1.1)

where ~σ is the vector of the three Pauli matrices, acting on the spinor indices of the
particle a. This enlarged Hilbert space has two important and related properties.
First, there is some local (gauge) freedom in re-writing the a operators. For instance
one could multiply a by an arbitrary phase, without changing the spin operator. Sec-
ond, to restore the physical spin Hilbert space, one must introduce a single-occupancy
constraint,

a†↑a↑ + a†↓a↓ = 1 (1.2)

The constraint can be implemented in the action via a Lagrange multiplier, defined
on every site, which may be considered as a scalar potential. Therefore a description
of the spins via the a particles necessarily has the a particles coupled to a gauge field.

The resulting theory is highly interacting, and in particular offers two drastically
different types of phases: the gauge field may be confining, in which case the a op-
erators do not represent particles free to move across the lattice with a dispersion
relation, and the enlarged Hilbert space is not a useful approach; or the gauge field
may be deconfining, in which case the low energy excitations are not spins but rather
can be associated with the a operators and related emergent “particles”. In this latter
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case, emergent particles are deconfined and the microscopic variables are fractional-
ized, so that this enlarged Hilbert space approach can be a potentially useful starting
point. The fractionalized quantum numbers may be seen for example in a Heisen-
berg magnet: the excitations of magnetically ordered states involve a spin flip which
changes the spin quantum number by an integer 1~, while the emergent a excitations
can carry half-integer spin ~/2.

The many possibilities of the resulting spin-disordered phase can be partially dis-
tinguished, in this mean field approach, by expectation values of operators constructed
of a operators on different sites, such as a†iσ

µaj or aiεσ
µaj, where µ could be zero

(representing the identity matrix) and ε = iσ2 is the 2 × 2 antisymmetric matrix.
These condensed operators define the gauge freedom which remains in the spin liq-
uid phase, giving rise for example to U(1) or Z2 spin liquids. This remaining gauge
freedom allows the symmetries of the original problem to act in a projective manner
on the fractionalized excitations: a symmetry operation can act simultaneously with
some other transformation, and even a product of symmetry operations which acts
as the identity on the microscopic spin variables (i.e. it is a defining relation for the
group) can be taken to act as a gauge transformation, within the “invariant gauge
group”, on the emergent fractionalized excitations.3

We have so far avoided being specific about the statistics of the a particles in this
mean field treatment. It is important to note that the choice of statistics in the mean
field description can be misleading: a phase which may be in some way captured
by the bosonic mean field, could still have low lying deconfined fermions. With this
caveat in mind, let us note some rough basic statements contrasting the approaches
of bosonic and fermionic mean fields.

The Schwinger boson approach, where a is taken to be bosonic, has the advan-
tage of straightforwardly capturing some magnetic orders as well as some spin liquid
phases. The single-occupancy constraint ni = 1 can be generalized to ni = κ, where κ
should be taken to be twice the spin in order to faithfully represent the Hilbert space,
but can be studied to arbitrary values of κ to produce a phase diagram. At large
κ, fluctuations in the boson number become less costly and one often finds that the
boson operators a themselves gain an expectation value and condense, which imme-
diately gives an expectation value to the spin operators, describing a magnetic state.
At small κ, the fluctuations are costly and the spins remain disordered.

The Schwinger fermion approach, where a is taken to be fermionic, has often been
extended to describe doped Mott insulators. It is thus also known as a slave-boson
approach. When doped charges, e.g. holes, are introduced in the magnetic Mott
insulator, the construction of the spin from electron variables as ~S = 1

2
c†~σc suggests

3When considering emergent projective symmetries, it may be helpful to keep in mind one familiar
example of projective representations, namely half-integer spin. The spinor S = 1/2 is a conventional
representation of SU(2), but may also be considered as a projective representation of SO(3). In this
case, rotations by 2π, which act as the identity within SO(3), produce an additional minus sign on
the S = 1/2 spinor.
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a description of the electron as a product of a fermion a which carries spin half,
and a holon which carries the electron’s electric charge. The holon may naively be
taken to be bosonic. If the undoped Mott insulator forms a spin liquid where the
fermions a are deconfined, then introducing charges will produce deconfined holons.
Indeed doped charges may be more mobile in a spin liquid than in an antiferromagnet,
where their roughly-spin-conserving motion leaves behind a trail of mismatched bonds
– the description here may thus also apply for doped magnetic insulators, which may
emulate the properties of a doped spin liquid.

Now consider the behavior of the doped spin liquid in this slave boson approach.
With sufficient doping, the bosonic charged holons can then directly condense, result-
ing in a superconducting phase. What is special about this superconductor? Consider
that the Tc of conventional BCS superconductors is set by the weak residual attrac-
tive interactions, mediated by phonons, which pair electrons into Cooper pairs. Once
the BCS Cooper pairs are formed (in a clean system), the temperature is already
quite low compared to the temperature of their condensation transition. In contrast,
for the doped spin liquid, one merely requires the bosonic holons to condense. This
condensation temperature is not exponentially small, but rather is controlled by the
density of dopants and by their mass, which naively may be comparable to the very
small mass of the electron, resulting in a superconducting transition Tc which theoret-
ically can be quite large. Such a high Tc would of course give just a hint of the exotic
physics lying underneath; but the fractionalization of the frustrated Mott insulator
is expected to at least give rise to unconventional and possibly dramatic signatures
upon charge doping.

Finally we note that though these slave-particle mean field theories are in general
uncontrolled, certain limits offer theoretical control. The Schwinger boson theories
become exact under certain large-N generalizations of spin SU(2) symmetry. The
Schwinger fermion theory remarkably becomes exact for a particular spin model (and
its generalizations), the Kitaev honeycomb model (see arxiv:0506438 for Kitaev’s up-
to-date original manuscript, and arxiv:0904.2771 for a summary). The mean field
description of these models yields a gauge field which is static, and thus permits
the exact solution described by Kitaev (Details are deferred to chapters 3, 4, and
6). Much of this manuscript will explore these Kitaev-type models. The Hamiltonian
involves Ising-like interactions between S = 1/2 degrees of freedom, but with different
quantization axes for the Ising interaction on different bonds across the lattice, varying
in a particular pattern. Any hope of realizing this seemingly-exotic model in a real
solid state system will thus necessarily involve a coupling between spin and the lattice.

1.5 When the electron spin is no longer internal

Special relativity sets special constraints on the otherwise-internal electron spin.
In a fully relativistic (3+1)D field theory, the spin of a particle even uniquely sets
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its statistics (bosonic vs fermionic). When spatial symmetries are broken, the story
gains complications and richness. Relativistic motion exchanges electric into magnetic
fields; clearly it significantly impacts the internal electron spin, in a manner dependent
on its motion. The resulting object is no longer purely internal and need not preserve
the spin rotation SU(2) symmetry. The reduced symmetry permits a much larger
playing field for the behavior of this magnetic quantum degree of freedom.

As can be seen by studying the “hydrogen atom” with arbitrary nuclear charge and
a single electron, a large nuclear charge (as in heavy elements) produces electron orbits
for which relativistic corrections are significant, with energy scaling as the fourth
power of the charge, Z4. These corrections produce a spin-orbit coupling, −L · S.
For an element with large atomic number, such as iridium with Z = 77, spin-orbit
coupling is frequently significant for chemistry and electronic physics. Its interplay
with the electronic correlations – arising from Coulomb interactions which are often
considered to be of “intermediate strength” for d-orbitals of transition metals like
iridium – can be especially rich. Certainly the splitting of band degeneracies by the
spin-orbit coupling, and the subsequent narrowing of the band width, should enhance
the effects of Coulomb interactions to produce effectively stronger correlations. But
this interplay can also exhibit more subtle effects, as discussed later in this thesis.

1.6 The Ir4+ ion in its octahedral cage

The physical systems we will most focus on, which exhibit this large spin-orbit
coupling, will involve the Z = 77 iridium atom, and moreover its appearance in a
particular class of crystalline lattices. Let us thus briefly review the orbital splitting
for the iridium ion which will be an ingredient for much of this thesis. Though this
story is standard in chemistry courses, we include it here since such discussion is
sometimes absent in undergraduate physics curricula. Consider an isolated Ir4+ ion.
It has five valence electrons, occupying the 5d orbitals. Now transport this isolated
ion into a lattice, where it is locally surrounded by 6 oxygen O2− ions. Roughly we
imagine that these oxygens form the vertices of an octahedron, with the iridium ion
at its center.

The 5d orbital of the Ir valence electrons is sufficiently spread out (unlike say
the 3d orbitals) so that Hund’s coupling is not sufficiently strong to overcome the
Coulomb interaction with nearby ions, especially not these oxygen ions; thus iridium
is in a low-spin state. We can consider its electrons to be non-interacting, and just
draw the energy level diagram for the five independent electrons.

The 5d orbitals are split by the electric field of the nearby oxygens. This effect is
known as the crystal field splitting (though we consider only the local environment,
rather than the entire crystal). For the ideal octahedron of oxygens which we consider
here, it is quite useful to denote the resulting orbitals by considering them as repre-
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sentations of the cubic symmetry of the octahedron.4 These are known here as t2g,
with three pairs (spin-up and spin-down) of levels; and eg, with two pairs of levels.
The cubic symmetry is represented by sets of quadratic polynomials as xy, yz, zx for
t2g, and x2 − y2, 2z2 − x2 − y2 for eg. The t2g orbitals face away from the negatively
charged oxygen ions, and thus are lower in energy than eg.

Five electrons fill the six single-particle energy levels of t2g. In the absence of
any distortions away from cubic symmetry, we can consider the splitting due to the
next energy scale, which is the spin-orbit coupling. For certain other representations,
including in this case the eg levels, the orbital angular momentum operator ~L has
zero expectation value, i.e. it is quenched, so spin-orbit coupling does not split the
energy levels. However in our case of t2g, angular momentum is not quenched, and
we must study the spin-orbit splitting. When projected into the three t2g orbitals,
the angular momentum operators Lk = −iεijkri∂j effectively act as in an L = 1
representation, though with a significant distinction. Computing the action of the
angular momentum raising and lowering operators on Lz = −1, 0, 1 combinations of
the t2g levels, one finds that a raising operator acts to lower Lz and vice versa. (This
behavior is sometimes described as an L = −1 representation.) The result is that
when −λL · S splits t2g into multiplets of definite total angular momentum j = 1/2
and j = 3/2, the j = 3/2 level has lower energy −λ/2 while j = 1/2 has higher energy
λ. The five electrons completely fill the j = 3/2 multiplet and leave a single electron
within the j = 1/2 Kramer’s doublet; the state of the system is then described as an
effective spin-1/2 degree of freedom.

A few words on the magnitudes of these various energy scales: they are not reliably
known. However, some values which are often accepted, in the context of these
materials, are roughly as follows. The crystal field splitting between t2g and eg is
about 4 eV, and the hybridization with oxygen 2p orbitals is suppressed by the charge
transfer gap of about 3 eV. The splitting from spin-orbit coupling, between the j =
3/2 and j = 1/2, is about 3/4 eV, associated with a spin-orbit coupling parameter λ
with magnitude about 0.5 eV. The Coulomb repulsion U is also about 0.5 eV. Note
that the full interaction matrix for the d orbitals involves not only U but also a Hund’s
coupling JH , which is smaller; its magnitude is more uncertain.5 The hopping integral
in the resulting multi-band Hubbard model, on these lattices, might be somewhere
on the rough order of 30 meV.

The relation of the atomic picture presented above to the physics of the bulk
solids is subtle, but a few points can be made. The description above applies in
cases where the electrons of the isolated iridium ions remain mostly localized when

4You can see the cubic symmetry of the octahedron by putting a dot at the center of every face,
and connecting these dots. If needed you may want to review the relationship between triangle faces
and cubic symmetry by recalling the construction of the face-centered-cubic lattice as a stacking of
triangular lattice layers.

5An additional inter-orbital interaction parameter “V ” exists in general but can be expressed
solely in terms of U and JH for these d orbitals.
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it is placed in the lattice, i.e. when the material is insulating. Of course some local
hybridization with oxygen p orbitals does occur. One can also consider the distinc-
tion between insulating behavior arising from Mott (correlation) physics compared
to band (independent-electron) physics. Since we primarily consider lattices with an
even number of sites per unit cell, the distinction is not sharply defined but rather be-
comes one of a crossover between regimes. However, the presence of local moments,
seen in thermodynamic susceptibility measurements as well as in low temperature
scattering probes, suggests that a localized Mott picture can serve as an appropriate
starting point, and moreover that quantitative results are likely better computed in
the strongly correlated, rather than the weakly correlated, regime.

1.7 Overview of this manuscript

The material presented in this manuscript follows a particular logical progression
in presenting the iridates under study, at times focusing on analysis of experiments
and at times on abstract theory. This progression is roughly in correspondance with
the chronological order in which the research results were uncovered.

The story begins with the next chapter, Chapter 2, which considers some experi-
mental evidence for the possibility of a certain model describing 2D layered iridates.
The key immediate historical context for this work is the seminal 2009 Letter of
George Jackeli and Giniyat Khaliullin (Phys. Rev. Lett. 102, 017205, 2009). Chap-
ter 3 then considers certain theoretical implications of this class of models, when
mobile charges are introduced. The interesting predictions serve as one of several
background motivations for this line of research.

The following chapters then turn again to face experiments. A central event in
the story is the synthesis and characterization of a completely new three-dimensional
iridate compound, through work in the groups of James Analytis and Radu Coldea.
First, Chapter 4 presents the culmination of early work (presented in early 2012) on
2D and 3D extensions of the work by Jackeli and Khaliullin. It is then followed by
the experimental report of (with theoretical discussion of early measurements) of this
new 3D iridate compound, in Chapter 5.

Chapter 6 presents a comprehensive theoretical analysis of some exciting theo-
retical possibilities for this class of 3D materials, combining some analysis of experi-
ments together with theoretical tools including a tensor network computation of the
quantum model. The peculiar phases in the phase diagram increase the urgency of
characterizing the appropriate model for the new 3D compounds (a related 3D iridate
was also synthesized at about the same time by Hide Takagi). This is answered in
remarkable fullness by the experimental work, together with the theoretical analysis,
presented in Chapter 7, which uncovers an unconventional spiral magnetic ordering
in the material. The complete theoretical analysis of this magnetic order, for this and
a related 3D compound, is presented in Chapter 8, and gives substantial evidence
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that a variant of the exotic Kitaev model should be close to the model Hamiltonian
of the actual compound.

The content of much of this thesis has been previously presented in various forms.
The publications which are purely or mostly theory have been modified only mildly
for inclusion in this manuscript; the publications which were heavily based on exper-
imental reports, here associated with Chapters 5 and 7, were modified significantly
for this manuscript, to include the theoretical analysis together with its minimal ex-
perimental context. This Introduction serves as Chapter 1. The citations relevant to
Chapters 2–8 are, respectively by chapter number, as follows:

(2) Kitaev-Heisenberg-J2-J3 model for the iridates A2IrO3. I. Kimchi and Y. Z.
You. Physical Review B Rapid Communications 84, 180407(R) (2011).

(3) Doping a spin-orbit Mott insulator: topological superconductivity from the
Kitaev-Heisenberg model and possible application to (Na2/Li2)IrO3. Y. Z. You, I.
Kimchi, A. Vishwanath. Physical Review B 86, 085145 (2012).

(4) Kitaev-Heisenberg models for iridates on the triangular, hyperkagome, kagome,
fcc, and pyrochlore lattices. Itamar Kimchi, Ashvin Vishwanath. Phys. Rev. B 89,
014414 (2014).

(5) Realization of a three-dimensional spinanisotropic harmonic honeycomb iri-
date. K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay, A. Biffin, S. Choi, R.
D. Johnson, R. Coldea, P. Watkins-Curry, G. T. McCandless, F. Gandara, Z. Islam,
A. Vishwanath, J. Y. Chan, A. Shekhter, R. D. McDonald, J. G. Analytis. Nature
Communications 5, 4203 (2014).

(6) Three dimensional quantum spin liquids in models of harmonic-honeycomb
iridates and phase diagram in an infinite-D approximation. Itamar Kimchi, James
G. Analytis, Ashvin Vishwanath. Phys. Rev. B 90, 205126 (2014).

(7) Non-coplanar and Counter-rotating Incommensurate Magnetic Order Stabi-
lized by Kitaev Interactions in γ-Li2IrO3. A. Biffin, R.D. Johnson, I. Kimchi, R.
Morris, A. Bombardi, J.G. Analytis, A. Vishwanath, and R. Coldea. Phys. Rev.
Lett. 113, 197201 (2014).

(8) Unified theory of spiral magnetism in the harmonic-honeycomb iridates α, β, γ-
Li2IrO3. Itamar Kimchi, Radu Coldea, Ashvin Vishwanath. Arxiv: 1408.3640, under
peer review.

Finally, Chapter 9 presents a conclusion and the outlook for future work.
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Chapter 2

Kitaev-Heisenberg-J2-J3 model for
the iridates A2IrO3

In this chapter, a Kitaev-Heisenberg-J2-J3 model is proposed to describe the Mott-
insulating layered iridates A2IrO3 (A=Na,Li), based on the experimental information
available as of early 2011. The model is a combination of the Kitaev honeycomb model
and the Heisenberg model with all three nearest neighbor couplings J1, J2 and J3.
A rich phase diagram is obtained at the classical level, including the experimentally
suggested zigzag ordered phase; as well as the stripy phase, which extends from the
Kitaev-Heisenberg limit to the J1-J2-J3 one. Combining the experimentally observed
spin order with the optimal fitting to the uniform magnetic susceptibility data gives
an estimate of possible parameter values, which in turn reaffirms the necessity of
including both the Kitaev and farther neighbor couplings.

Frustrated spin systems have long served as a relatively simple yet rich source
of exotic phenomena such as spin liquids and unconventional order. The frustration
may arise either geometrically on a lattice incompatible with the spin ordering, or
dynamically from non-commuting competing terms in the Hamiltonian. The nearest
neighbor S = 1/2 Heisenberg model on the kagome lattice is an instance of geometrical
frustration that may even host a quantum spin liquid ground state[3]. Bipartite
lattices such as the honeycomb can still be geometrically frustrated by including
farther than nearest neighbor antiferromagnetic Heisenberg exchange, giving so called
J1-J2-J3 models. Such models on the honeycomb in particular have seen a recent
surge of work[4, 5, 6, 7, 8], though a quantum spin liquid phase may require charge
as well as spin fluctuations[9, 10, 11]. Breaking spin rotational symmetry provides
avenues for dynamical frustration, as in the Kitaev honeycomb model[30], a nearest
neighbor Ising coupling of spin component set by a bond label γ as in Fig. 3.1a. This
seemingly artificial model is exactly solvable with a spin liquid ground state exhibiting
an emergent Majorana fermion with a Z2 gauge background.

A recent and surprising addition to the experimentally relevant J1-J2-J3 models
of frustrated spin systems, the Kitaev coupling has been recently proposed [34, 35]
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to occur in the Mott insulating[31] iridates A2IrO3 (A=Na,Li), where the iridium
ions are arranged in layers of 2D honeycomb lattices. Uniform susceptibility and heat
capacity studies on these materials[31, 32] found Curie-Weiss temperatures of −125 K
for Na2IrO3 and −33 K for Li2IrO3, and a low magnetic ordering temperature of 15 K
for both, suggesting strong frustration. A resonant x-ray scattering measurement[17]
on Na2IrO3 found the ground state has antiferromagnetic order at wavevector M ,
suggested by a first principles calculation[17] to be a zigzag rather than a stripy
configuration (see Fig. 2.2).

Strong spin-orbit coupling splits the iridium t2g states into a filled manifold and
a half filled Kramer’s doublet, an effective spin-1/2 degree of freedom which need
no longer respect the rotational symmetry. Thus the 90◦ angles of the Ir-O-Ir hop-
ping path within the oxygen octahedra, together with d-orbital Hund’s rule coupling
and orbital interactions, are able to give the Kramer’s doublet highly anisotropic
exchanges of the Kitaev form. Higher order hopping paths, direct orbital overlaps,
trigonal distortions and spin-orbit energy splittings within the iridium two electron
propagator all contribute spin interactions other than the Kitaev term, primarily
including antiferromagnetic Heisenberg exchange.

Keeping only the nearest neighbor Heisenberg exchange yields the Heisenberg-
Kitaev model[35, 18, 38, 20], Eq. (2.1) with J2, J3 set to zero, which has been previ-
ously used to describe the A2IrO3 materials[31, 32, 17, 35]. The phase diagram[35, 18]
in the parameter 0 ≤ α ≤ 1 consists of a Neel phase for the Heisenberg model at
small 0 ≤ α < 0.4, the Kitaev spin liquid at large 0.8 < α ≤ 1, and an intermediate
antiferromagnetically ordered stripy phase (see Fig. 2.2). The stripy configuration is
the exact ground state at α = 0.5, solvable by means of a periodic site dependent
spin rotation[35] which turns the Hamiltonian into a Heisenberg ferromagnet in the
rotated spins.

Preserving J2 and J3 to produce the previously unstudied Kitaev-Heisenberg-J2-
J3 model is important for two reasons. First, substantial J2 and J3 are likely to exist
in the materials; density functional theory (DFT) calculations[41] for Na2IrO3 found
J2/J1 ≈ 0.5, and a later tight binding fit of the DFT data including J3 found J2, J3

to be approximately equal[22]. Second, the experimentally suggested zigzag ordered
ground state[17] can not be realized in a Kitaev-Heisenberg model alone. It is found
that an antiferromagnetic J3 term is needed to stabilize the zigzag order. Moderate
Kitaev and J2 couplings stabilize both zigzag and stripy orders. We will also show
that in order to reproduce the experimentally measured uniform susceptibility χ(T ),
the farther neighbor J2 and J3 couplings as well as the Kitaev term are likely needed.
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The Kitaev-Heisenberg-J2-J3 Hamiltonian is

H = J

(1− α)

∑
〈ij〉

+J2

∑
〈〈ij〉〉

+J3

∑
〈〈〈ij〉〉〉

σi · σj
−2α

∑
〈ij〉

σ
γij
i σ

γij
j

 (2.1)

where 〈ij〉, 〈〈ij〉〉 and 〈〈〈ij〉〉〉 stand for the first, second and third nearest neighbor
bonds, and γij is a nearest neighbor bond label, as illustrated in Fig. 3.1a. The model
interpolates between the J1-J2-J3 model at α = 0 and the Kitaev model at α = 1,
maintaining the second and third neighbor coupling strengths J2 and J3 in units of
the nearest neighbor Heisenberg coupling strength.

A recently proposed alternative model for Na2IrO3 based on ab initio calculations[41]
takes the limit where trigonal distortion effects are stronger than spin-orbit coupling,
finding a Hamiltonian with Ising anisotropy and no Kitaev term[22, 23]. Putting this
interesting scenario aside[24], we find that mild ĉ ≡ (1, 1, 1) uniaxial trigonal distor-
tion is consistent with our approach. The effective spin-1/2 Kramer’s doublet remains
well separated from the filled states. Its modified wavefunction creates anisotropies
in the magnetic field coupling (g-factor tensor) and combines with the non-90◦ Ir-O-
Ir hopping path to perturb Eq. (1), possibly enhancing both Kitaev and Heisenberg
terms in addition to creating small Ising S ĉS ĉ and Ising-Kitaev SγijS ĉ terms. Both
modifications are expected from the observed anisotropy in single crystal Na2IrO3

susceptibility[31] and do not change our results.

Γ

1
2
3

J2
J3

Figure 2.1: The honeycomb lattice, with Kitaev label γ for nearest neighbor bonds,
and including second and third neighbor bonds with Heisenberg couplings J2 and J3.

Since there is ample evidence[31, 32, 17] for magnetic ordering in both Na2IrO3

and Li2IrO3 we will leave the calculation of the quantum phase diagram of Eq. (2.1) for
future work, instead turning to the magnetically ordered phases which may be stud-
ied by a purely classical analysis. For each point (α, J2, J3) in the three dimensional
phase diagram we determined the magnetic ordering configurations using a quadratic
(unconstrained) classical spin model[25], which we diagonalized analytically in mo-
mentum space. Since Γ = −Γ and M = −M these two wavevectors automatically
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Figure 2.2: (a) Sample (J2, J3) slice of the classical phase diagram, with phases (I),
(II) and (IV) represented in (b), (c) and (d) respectively. Region (III) contains various
noncollinear spiral configurations. (b) (I) Neel. (c) (II) Zigzag. (d) (IV) Stripy.

give configurations of collinear unit-length normalized spins despite the absence of
the unit-length constraint in the calculation, reaffirming the validity of the classical
solution at these points. Solutions at wavevector K or at generic incommensurate
wavevectors correspond to noncollinear spiral configurations, which we label as a
single phase.

In order to discuss results on the classical phase diagram we introduce standard
nomenclature from the literature. For each ordering wavevector the phases are labeled
by a Roman numeral[4, 5] as follows. Γ: (I) Neel. M : (IV) stripy [35]; and (II)
zigzag [17] (or columnar [8]). All other wavevectors: (III) spiral. Figure 2.3 displays
six (J2, J3) slices of the classical phase diagram at various fixed α.

Quantum fluctuations modify the classical phase diagram in two ways. First,
they create regions of quantum phases such as the plaquette valence bond solid or
the Kitaev spin liquid; the former has been seen in the J1-J2-J3 model[4], while the
latter appears[18, 35] at small J2, J3 starting at α ≥ 0.8. Second, they shift the
boundaries between the magnetically ordered phases. Quantum fluctuations disfavor
the spiral configurations[4, 5] in favor of the collinear ordered phases, shrinking region
(III); they also favor the Neel state (I) over the other orders[35, 4].

The three dimensional phase diagram offers insights otherwise unavailable in its
various limits. The stripy (IV) region in the J1-J2-J3 model at α = 0 is in the same
phase as the fluctuation-free exactly solvable point α = 0.5, J2 = J3 = 0 which may
be understood only within the Kitaev-Heisenberg model[35]. As α increases, both
the stripy and the zigzag phases grow substantially larger. The dynamic frustration
by the Kitaev term and the geometric frustration by the J2 term have similar effects
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on the ordered phases, destabilizing Neel in favor of stripy and zigzag.
It is worth reporting the direction of magnetic ordering in the various phases

(excepting the special points α = 0 and α = 1/2). The direction of the collinear
magnetic ordering in both stripy and zigzag phases is constrained already at the
classical level. For Mz stripy order the spins lie along Sz, as was already determined
by the spin rotation[35] solution of the J2 = J3 = 0, α = 0.5 Hamiltonian. For
zigzag order we found that the spins are constrained to the SxSy plane (see Fig. 2.2).
Thermal and quantum fluctuations (“order from disorder”) force the spins to lie
along a cubic axis within the classically allowed space, in this case the Sx and Sy

axes. Trigonal distortion gives other perturbations: for example for Mz stripy order
it cants the spin axis from Sz toward the distortion axis, and for the Neel phase the
distortion axis may be an energy minimum or maximum within the Bloch sphere. A
linear spin wave analysis found that directions closest to cubic axes are still preferred
by quantum fluctuations. However, anisotropy in the real material likely overcomes
all these effects to determine the ordering direction[17].

Next we discuss the comparisons between experimentally measured susceptibility[31,
32] and exact diagonalization (ED), first describing each in turn. Uniform magnetic
susceptibility data for the sodium and lithium materials at temperatures up to 300 K
was taken from the most recent study[32], with the constant background removed[32].
We used data from temperatures above 150K in order to avoid finite size effects when
comparing to ED. ED using the “fulldiag” ALPS module[26] was performed keeping
all eigenstates to enable comparison with high temperature data. The system diag-
onalized was an eight spin cluster, the unit cell of the α = 1/2 site dependent spin
rotation[35], with periodic boundary conditions. As expected, the eight-spin ED, cor-
responding to a high temperature series expansion with eight-spin clusters, is reliable
to far lower temperatures than the two-spin Curie-Weiss expression which only holds
at T � J . We found that ED finite size effects for eight-spin clusters were only visible
in the susceptibility at low temperatures T . J/2, well below J . The highest J values
needed for good fits were below the 150 K data cutoff, self consistently affirming the
reliability of the ED fits.

For each parameter set (α, J2, J3) we diagonalized the system to generate a curve
χ(T ). The Hamiltonian Eq. (2.1) with a magnetic field coupling term has two pa-
rameters in addition to (α, J2, J3), namely the overall scale J and the magnetic field
coupling g µ. Since the effective spin-1/2 turns out to have the same g-factor as an
electron spin, we fix g = 2 and expect µ/µB to remain close to µ/µB = 1. For each
(α, J2, J3) point the curve χ(T ) was fit to the experimental data by the two parameters
J (corresponding to horizontal stretching) and µ/µB (with (µ/µB)2 corresponding to
vertical stretching). The resulting fit was evaluated by a “goodness function,” the
product of three Gaussian distributions, enforcing the following three conditions for
a good fit. First, the magnetic moment µ/µB found by the best fit must be close to
1, with a standard deviation of 0.15. This constraint on µ effectively constrained J
as well. Second, the root-mean-square relative fit residual must be near zero with a
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standard deviation of 10−3. Third, the third neighbor coupling must be smaller or
not much larger than the second neighbor coupling, J3 . J2, relaxed by a standard
deviation of 0.2. The absolute (unscaled) value of this goodness function was used to
produce the shading in Fig. 2.3, with darker shading corresponding to better fits.

Given knowledge of the ground state magnetic order in Na2IrO3 and Li2IrO3,
appropriate values for α, J2 and J3 are found by intersecting the darker shaded regions
in Fig. 2.3 with the domain of the ordered phase. The estimated Na2IrO3 and Li2IrO3

parameters given either stripy or zigzag magnetic order are summarized in Table I.
All material and order combinations yielded fitted values of J in the range J ≈ 60–
150 K, with the likeliest values J ≈ 100 K. The lithium material has less structural
distortion than the sodium material[32], suggesting a larger α, in agreement with the
fitting results if they have the same magnetic order. For zigzag ordered Li2IrO3 we
find α ≈ 0.7, i.e. JK ∼ 4–5 J1 with a numerical value of JK ≈ 130 K. Such a large
Kitaev term relative to the other couplings suggests that the Kitaev spin liquid phase
may be within experimental reach[32]. In particular, doping Li2IrO3 may suppress
its magnetic order to reveal characteristics of a doped Kitaev spin liquid[27].

In conclusion, we propose the Kitaev-Heisenberg-J2-J3 model, determining its or-
dered phases and further using ED fits of susceptibility measurements to demonstrate
its applicability to Na2IrO3 and Li2IrO3. We find that the geometrical frustration due
to J2, J3 and the dynamical frustration due to the Kitaev term both stabilize the same
unconventional stripy and zigzag ordered ground states before the onset of the Kitaev
spin liquid. We extract appropriate values for the spin couplings by first restricting
to the experimentally observed magnetic order in the phase diagram, and then by
requiring good fitting of the susceptibility χ(T ) by ED data. For zigzag ordered
Li2IrO3, a significant Kitaev term JK ≈ 130 K, five times larger than the nearest
neighbor Heisenberg coupling, as well as substantial J2 and J3 couplings, are required
for good agreement with experimental data.

Table 2.1: Parameters for given M -wavevector order

Na2IrO3:
Stripy (IV) α ≈ 0.2–0.3, J2 . 0.5, J3 . 0.2 J ≈ 110 K
Zigzag (II) α ≈ 0.4–0.6, J2, J3 & 0.4 J ≈ 100 K

Li2IrO3:
Stripy (IV) α ≈ 0.5, J2, J3 . 0.3 J ≈ 100 K
Zigzag (II) α ≈ 0.7, J2, J3 & 0.4 J ≈ 90 K
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: (Color online.) Fixed α slices in (J2, J3) showing the magnetically ordered
phases (I, II, III, IV)=(Neel, zigzag, spiral, stripy) and shading corresponding to the
ED χ(T ) fit goodness. Increasing the Kitaev term (i.e. increasing α) enlarges the
extent of the zigzag and stripy phases, which occur at both small and large α. Fits
to Na2IrO3 are shaded in orange (with dotted contour lines) and fits to Li2IrO3 are
in blue (with dashed contour lines); darker shading corresponds to good fitting with
µ/µB ≈ 1 and J2 & J3, while lighter shading corresponds to poor agreement. Given
a magnetically ordered ground state for each of the materials, the range of allowed
parameters is found by intersecting the darker shaded region with the magnetically
ordered phase.
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Chapter 3

Doping a Spin-Orbit Mott
Insulator: Topological
Superconductivity from the
Kitaev-Heisenberg Model and
Possible Application to
(Na2/Li2)IrO3

Motivated by the analysis of experiments presented in the previous chapter, we
now turn to a purely theoretical study of the implications of the possibility of finding
a magnetic material which is described by the Kitaev model, when mobile charges
are introduced. We study the effects of doping a Mott insulator on the honeycomb
lattice where spins interact via direction dependent Kitaev couplings JK, and weak
antiferromagnetic Heisenberg couplings J . This model is known to have a spin liquid
ground state and may potentially be realized in correlated insulators with strong spin
orbit coupling. The effect of hole doping is studied within a t-J-JK model, treated
using the SU(2) slave boson formalism, which correctly captures the parent spin liquid.
We find superconductor ground states with spin triplet pairing that spontaneously
break time reversal symmetry. Interestingly, the pairing is qualitatively different at
low and high dopings, and undergoes a first order transition with doping. At high
dopings, it is smoothly connected to a paired state of electrons propagating with the
underlying free particle dispersion. However, at low dopings the dispersion is strongly
influenced by the magnetic exchange, and is entirely different from the free particle
band structure. Here the superconductivity is fully gapped and topological, analogous
to spin polarized electrons with px + ipy pairing. These results may be relevant to
honeycomb lattice iridates such as A2IrO3 (A = Li or Na) on doping.
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3.1 Introduction

The interplay of electron correlations and strong spin-orbit coupling (SOC) is cur-
rently attracting much attention. Mott insulators with strong SOC, such as transition
metal oxides (TMO) of 5d elements, can display entirely different properties from
those with weak SOC, such as cuprates, manganites and nickelates[28]. For example,
the breakdown of the spin rotation symmetry allows for magnetic Hamiltonians very
different from traditionally studied SU(2) symmetric models. This can introduce a
new source of frustration[29] leading to quantum spin liquid ground states. The Ki-
taev honeycomb lattice model, with spin dependent interactions between spin half
moments, is a remarkable example that admits an exact spin liquid ground state[30].
It has recently been argued to be a natural Hamiltonian for a class of strong SOC
magnets, such as the layered iridates A2IrO3 (A = Na, Li)[31, 32], where Iridium
atoms form the sites of a honeycomb lattice. In the iridium oxides, when an octahe-
dral cage of oxygen atoms surrounds an Iridium ion, a j = 1/2 doublet is proposed
on the Ir site[33], for which a single band Hubbard model with strong spin orbit
couplings can be invoked. In the Mott insulator, Ref. [34, 35] proposed that the spin
couplings include both the isotropic Heisenberg term and the strongly anisotropic
Kitaev coupling:

HHK =
∑
〈ij〉

JSi · Sj − JKS
a
i S

a
j (3.1)

where Sai S
a
j is Ising coupling of the spin component a(= 1, 2, 3) according to the type

of 〈ij〉 bond[30] (see Fig. 3.1a).
Numerical calculations[35, 36] of Eq. (3.1) indicate the Kitaev spin liquid phase ap-

pearing at J = 0 persists in the range 0 ≤ J < JK/8. Although both A2IrO3 (A = Na,
Li) are found to be magnetically ordered[31, 32, 37], their transition temperatures are
relatively low. Recent experimental papers reporting magnetic susceptibility[31, 32]
have suggested that these iridates, particularly Li2IrO3 may be proximate to the
Kitaev spin liquid phase [35, 36, 38]. Fits by exact diagonalization of the model
Eq. (3.1) have reached similar conclusions[39], but indicate that farther neighbor in-
teractions also play a role. On the other hand, Ref. [40, 41] proposed a rather different
magnetic Hamiltonian, arising from large trigonal distortions, and Ref. [42] proposed
a quantum spin-Hall insulator. Future experiments should pin down the magnetic
Hamiltonian in these materials. A different realization of the Hamiltonian Eq. (3.1)
is in perovskite iridate heterostructures of SrIrO3[43], which produces a honeycomb
lattice when grown along the (111) direction.

Motivated by these potential experimental realizations, here we will study the
effects of doping the Heisenberg-Kitaev model, and investigate the conducting state
that arises. To describe the physics of doping, we introduce the t-J-JK model, with
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the hole doping of δ per site,

H = −t
∑
σ〈ij〉

Pc†iσcjσP − µ
∑
σi

c†iσciσ +HHK (3.2)

where the projection operator P removes doubly occupied sites, and the chemical
potential µ is adjusted such that 〈

∑
σ c
†
iσciσ〉 = 1 − δ. The hopping term is nearest

neighbor and spin independent. The symmetry of the honeycomb lattice along with
reflection in the plane forbid a spin dependence in the nearest neighbor hopping,
as evidenced by microscopic considerations[42]. Farther neighbor hoppings can be
spin dependent, but are expected to be smaller and omitted in this minimal model.
However, the spin-orbit interactions are nevertheless retained in the JK term. Similar
Hamiltonian is also studied in Ref. [48, 49].

The t-J-JK model allows us the unique theoretical opportunity of doping a magnet
which is exactly soluble in the insulating limit (at the Kitaev point), and in a spin
liquid phase. The exact solution singles out the correct low energy variables —
spins represented by neutral fermions (spinons), naturally motivating a slave boson
formalism. Unlike in other studies of doped Mott insulators[44, 45], here such a
formalism can be a priori justified.

Our key results are as follows: (i) Doping Kitaev spin liquid leads to a spin
triplet superconductor which spontaneously breaks the time reversal symmetry. (ii)
A first order transition occurs within the superconducting phase on increasing doping,
which separates the two regimes SC1 and SC2. In contrast, in a similar treatment of
the well known square lattice t-J model, d-wave superconductivity appears across the
entire doping range at low temperature, and only quantitative properties are modified
with doping. (iii) In the low doping regime (SC1 phase), quasiparticle dispersions
are controlled by the magnetic exchange, and leads to a time-reversal-broken triplet
superconductor with the same properties as a spin-polarized px+ ipy superconductor,
which is fully gapped in the bulk but have chiral edge states and isolated Majorana
modes in the vortex core[46]. This peculiar superconducting state arises because of
the unusual spinon dispersion of the Kitaev spin liquid. (iv) At higher doping (SC2

phase), the superconductor obtained reflects the bare dispersion of electrons, and can
be smoothly connected to the weak coupling limit, where magnetic interactions lead
to pairing near the Fermi surface.

This paper is structured as follows. We begin by analyzing the quantum order
underlying the Kitaev spin liquid, characterized by the symmetry transformations of
fractionalized excitations, a description known as the projective symmetry group[47]
(PSG). We find that the Kitaev quantum order locks the spin and gauge rotations
together; the two holon species transform like a spin, and spontaneously break time
reversal when condensed. Next we map out the mean field phase diagram within the
SU(2) slave boson formalism as constrained by the Kitaev PSG, exact at zero doping,
and demonstrate that the SC1 and SC2 phases are dominated by different physics.
Controlled by the quantum order, a time-reversal-broken triplet superconductor SC1
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emerges from the doped Kitaev spin liquid. We close with comments on related recent
work[48, 49] and the relevance of our result to experimental realizations.

3.2 Kitaev Spin Liquid

To explore the physics of the t-J-JK model, we start from the well-controlled
undoped and J = 0 limit, where the model reduces to the Kitaev model. Its exact
solution is given by Kitaev[30] and is already well-known. Here we would like to
analyze the symmetry property of the model and its spin liquid ground state.

3.2.1 Symmetries of the Kitaev Model

First, we consider the space group symmetries of the model. The symmetries
are most naturally expressed by embedding the honeycomb within a 3D cubic lat-
tice, exactly in the same manner that the Kitaev honeycomb model arises in three-
dimensional layered iridates. Then the symmetry transformations, which due to spin-
orbit coupling act simultaneously on spin and space, are represented in the same
manner on the spin space and the 3D real space.

Specifically, the space group is generated by two translations T1 and T2, an opera-
tion C6 composed of a 6-fold c-axis rotation followed by a reflection across the lattice
plane (the c = 0 plane), and a reflection σ across the x = y plane, as illustrated in
Fig. 3.1.

T1

T2

C6
Σ

A
B

a

1
2
3

(a)

x
y

z

c

(b)

Figure 3.1: (Color online.) (a) Lattice symmetries of the Kitaev model. The op-
erations C6 and σ act simultaneously on lattice and spin. The three bond types
(a = 1, 2, 3) are colored red, green and blue respectively. (b) A hexagon plaquette
embedded in the cubic lattice. The c-axis is the (111) axis. The 6-fold c-axis rota-
tion is not a symmetry by itself, but becomes a symmetry when combined with the
reflection across the lattice plane.

Besides the space group symmetries illustrated above, the Kitaev model is also
symmetric under time reversal T . Time reversal has no effect on the lattice but acts
as iσ2 followed by complex conjugation K on the spins. While T 2 = −1 on a single
spin, the global time reversal symmetry operation acting on the bipartite honeycomb
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lattice squares to +1. Combining T with the space group yields the full symmetry
group (SG), with the presentation SG =

〈
T ,T1,T2,C6,σ

∣∣T 2 = 1, σ2 = 1, (C6)6 = 1
〉

subject to 13 definition relations, listed in Eq. (3.39).

3.2.2 Symmetries in a Schwinger Fermion Decomposition:
the Projective Symmetry Group

In order to study the Kitaev spin liquid and nearby phases, we must decompose
the spin operator Sαi = 1

2
f †i σαfi into fermionic spinons f †i = (f †i↑, f

†
i↓), with σα being

the Pauli matrices. Compared to the spin operators Sαi , the spinon operators fiσ have
an additional SU(2) gauge structure, best seen by arranging the operators into the
following matrix[125]

Fi =

(
fi↑ −f †i↓
fi↓ f †i↑

)
. (3.3)

Any right SU(2) rotation Fi → FiG : G ∈ SU(2) leaves the physical spin Sαi (and
hence the spin Hamiltonian) unchanged, as can be seen from the following equivalent
expression of Sαi

Sαi =
1

4
TrF †i σαFi. (3.4)

Therefore the right rotation G corresponds to a gauge SU(2) rotation, whose gener-
ators (the SU(2) gauge charges of spinons) are given by

K l
i =

1

4
TrFiσlF

†
i . (3.5)

On the other hand, the left rotation Fi → U †Fi : U ∈ SU(2) corresponds to the spin
SU(2) rotation, whose generators are the spin operators Sαi .

Because of the gauge SU(2) redundancy in the Schwinger fermion representation,
any SU(2) gauge operation leaves the physical spin system invariant. Any operator
acting on the spins, such as a symmetry transformation, may also act within this
SU(2) gauge space. Thus when we fractionalize spins in a Schwinger fermion decom-
position, we must also specify how the symmetry operations of the model act within
the gauge freedom. This extra information, known as the projective symmetry group
[47] (PSG), characterizes the fractionalized phase. Symmetry operations therefore
consist of a symmetry group operation g ∈SG with the corresponding spin operation
Ug and gauge operation Gg, such that the spinons transform as

Fi → U †g (i)Fg(i)Gg(i). (3.6)

The index i labels the site.
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In fact, the spin operation Ug(i) = Ug are always site-independent, so the site
index may be omitted. Ug’s are given by

UT1 = UT2 = 1,

UC6(A) = UC6(B) = σC6 ,

Uσ(A) = Uσ(B) = σσ,

(3.7)

where σC6 = (σ0 + iσ1 + iσ2 + iσ3)/2 and σσ = i(σ1− σ2)/
√

2. σ0 is the 2× 2 identity
matrix. These matrix representations are literally translated from the descriptions of
the symmetry operations on the cubic lattice, see Fig. 3.1b. The antiunitary time re-
versal operation can be represented by a unitary transformation followed by a complex
conjugation K, which transforms the spinons by

Fi → KU †T (i)FiGT (i)K, (3.8)

where the unitary operation acting on the spin reads

UT (A) = UT (B) = iσ2. (3.9)

The complex conjugate operation K flips the sign of the imaginary unit, i.e. Ki =
−iK, while keeping everything else invariant (K2 = 1).

3.2.3 Projective Construction for the Kitaev Spin Liquid

The Kitaev model can be solved exactly[30] by introducing 4 Majorana fermions
χαi (α = 0, 1, 2, 3) on each site, and rewriting the spin operators as Sαi = iχ0

iχ
α
i

under the constraint χ0
iχ

1
iχ

2
iχ

3
i = 1/4. The Majorana fermions are normalized as

{χαi ,χα
′

i′ } = δii′δαα′ in this work. It has been pointed out[51] that under certain SU(2)
gauge choice, the Majorana fermions χαi are related to the Schwinger fermions fiσ by
the following matrix identity

Fi =
1√
2

(χ0
iσ0 + iχ1

iσ1 + iχ2
iσ2 + iχ3

iσ3), (3.10)

or more explicitly as fi↑ = 1√
2
(χ0

i + iχ3
i ), fi↓ = 1√

2
(iχ1

i − χ2
i ). The Majorana fermions

introduced by Kitaev are just another representation of the spinons. All the emergent
SU(2) gauge structure for Schwinger fermions fiσ applies to the Majorana fermions
χαi as well.

The exact ground state can be obtained by the following projective construction[52].
First take the Majorana bilinear Hamiltonian

H = JK
∑
〈ij〉

(
iuaijχ

0
iχ

0
j + iu0

ijχ
a
iχ

a
j − u0

iju
a
ij

)
, (3.11)
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where the bond parameters uαij = 〈iχαi χαj 〉 (α = 0, 1, 2, 3) can be regarded as the mean
field ansatz, self-consistently given by

uαij =


−0.262433 if α = 0,
1/2 if α = a,
0 otherwise.

(3.12)

Here a denotes the type of the bond 〈ij〉. We choose i ∈ A sublattice and j ∈
B sublattice to be the positive bond direction. Given the ansatz Eq. (3.12), the
mean field Hamiltonian Eq. (3.11) produces a graphene-like band structure for χ0 and
degenerate flat bands for χ1, χ2 and χ3, as shown in Fig. 3.2a. Take the Majorana
Fermi liquid ground state and project to the physical Hilbert space by imposing the
condition χ0

iχ
1
iχ

2
iχ

3
i = 1/4, the resulting state is the exact ground state given by

Kitaev.
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Figure 3.2: Mean field band structure of Majorana spinons (a) in the undoped limit,
(b) with doping δt/JK = 0.2. The inset shows the ×500 zoom-in around the K point.

The spin correlation in this state was shown to be short-ranged[53], which identifies
the ground state of the Kitaev model as a quantum spin liquid. However what really
differentiates the spin liquid from a trivial spin disordered paramagnetic state is the
quantum order[54] encoded in the Majorana Fermi liquid from which the spin liquid is
obtained by projection. Given the particular mean-field ansatz parameterized by uαij,
the χ0 fermion has a band structure different from χ1,2,3, so it is no longer possible to
mix χ0 with the other Majorana fermions. Thus the emergent SU(2) gauge structure
of mixing spinon flavors is broken down to the Z2 gauge structure of changing sign
of χα. The broken gauge structure can be imagined as a hidden order of spinon
superconductivity[51]. Although it will not manifest as electron superconductivity in
the spin liquid due to the lack of charge fluctuation, its existence as a quantum order
is real, and will be revealed, once the charge fluctuation is introduced by doping.

3.2.4 Projective Symmetry Group of the Kitaev Spin Liquid

More precisely, the quantum order[54] of the Z2 spin liquid is characterized by
the PSG of the mean field ansatz. The PSG of Kitaev spin liquid can be determined
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starting from the fact that χ0 is a special flavor which should not be mixed with other
flavors, any PSG operation must at least preserve the flavor of χ0. χ0 appears in the
F matrix as F ∼ χ0σ0, while F transforms under PSG operations as F → U †gFGg, so
apart from some sign factor, χ0σ0 → ±χ0U †gGg. Therefore, to preserve the flavor of
χ0, Gg = ±Ug is simply required to hold for all g ∈ SG: the gauge operation Gg must
always follow the spin operation Ug up to a sign factor. From the spin operations Ug
given in Eq. (3.7) and Eq. (3.9) it is not difficult to figure out the gauge operations
Gg, which read

GT1 = GT2 = 1,

GC6(A) = −GC6(B) = σC6 ,

Gσ(A) = −Gσ(B) = σσ,

GT (A) = −GT (B) = iσ2.

(3.13)

The matrices σC6 and σσ were defined right below Eq. (3.7). The sublattice-dependent
sign factors are determined as follows. Both C6 and σ switch the sublattice A and
B, carrying uαAB to uαBA under the lattice transformation. However, uαij = −uαji is odd
under the reversal of bond direction, so in order to keep it unchanged, the sign must
be rectified by the gauge operation that follows, therefore both GC6 and Gσ have
a sign difference between the sublattices. However for the time reversal operation,
under complex conjugate i → −i, so uαAB = 〈iχαAχαB〉 → 〈−iχαAχαB〉 = −uαij, thus the
gauge transform GT must also carry the sublattice-dependent sign to compensate the
sign generated by the complex conjugate.

A prominent property of the PSG of the Kitaev spin liquid is that Ug and Gg

are always the same (up to a sign), which implies that the spin and gauge degrees of
freedom are locked together by the underlying quantum order in the spin liquid state.
As a result, the PSG operation U †gFGg literally carries out the rotations and reflections
by treating χ0 as a scalar and χ ≡ (χ1,χ2,χ3) as a pseudo vector. Therefore C6

actually permutes χ3 → χ2 → χ1 → χ3, and σ exchanges χ1 ↔ χ2, with some
additional sign factors (see Tab. 3.1), thus giving exactly the right transforms to
preserve all the mean field ansatz, which can be checked straightforwardly.

In conclusion, the PSG of the Kitaev spin liquid is defined by Eq. (3.6) in general
(and by Eq. (3.8) for the time reversal operation), with the spin and gauge transforms
specified by Eq. (3.7), Eq. (3.9) and Eq. (3.13). Its effect on the Majorana spinons are
concluded in Tab. 3.1. This PSG belongs to the class (I)(B) according to the PSG
classification of Z2 spin liquid on the honeycomb lattice (see Appedix 3.5 for details
of the classification).

All the PSG’s in this class have the common property that the gauge charge
is reversed under time reversal just the same as the spin. To see this, substitute
Eq. (3.10) into Eq. (3.4) and Eq. (3.5), and write the spin and gauge charge operators
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Table 3.1: The PSG transforms of Majorana fermions.

g : T1,2 C6 σ T
χ0
A → χ0

A χ0
B χ0

B χ0
A

χ1
A → χ1

A χ3
B −χ2

B χ1
A

χ2
A → χ2

A χ1
B −χ1

B χ2
A

χ3
A → χ3

A χ2
B −χ3

B χ3
A

χ0
B → χ0

B −χ0
A −χ0

A −χ0
B

χ1
B → χ1

B −χ3
A χ2

A −χ1
B

χ2
B → χ2

B −χ1
A χ1

A −χ2
B

χ3
B → χ3

B −χ2
A χ3

A −χ3
B

in terms of Majorana fermions as

Si =
i

2

(
χ0
iχi −

1

2
χi × χi

)
,

Ki =
i

2

(
χ0
iχi +

1

2
χi × χi

)
,

(3.14)

Applying the PSG transformation rules of the time reversal: χαA → χαA, χαB → −χαB
(see Tab. 3.1) and i → −i, it is easy to show that both the spin and gauge charge
operators are odd under time reversal

Si
T→ −Si,Ki

T→ −Ki. (3.15)

Therefore, there are in principle two ways to to break the time reversal symmetry in
the Kitaev spin liquid: one is to polarize the spin and the other is to condense the
gauge charge. The spin polarization can be achieved by applying an external magnetic
field in the (111) direction (perpendicular to the lattice plane), which drives the
gapless Kitaev spin liquid into the gapped non-Abelian phase[30, 36]. In the following,
we will explore the second possibility, namely the gauge charge condensation. This
can be achieved by introducing the gauge charge through doping the spin liquid.
According to the SU(2) slave boson theory, the condensed holon will pick out an
SU(2) gauge direction and break the time reversal symmetry spontaneously.

3.3 Doping the Kitaev model within SU(2) Slave

Boson Theory

3.3.1 SU(2) Slave Boson / Schwinger Fermion Representa-
tion

We now consider doping (say) holes into the insulating magnet, while preserving
the strong onsite correlations that penalize double occupancy. As discussed above,
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the exact solution of the Kitaev spin liquid is naturally expressed within a particular
kind of Schwinger fermion / slave boson representation. The most naive way is to
directly assign the spinons to the electrons ciσ = bifiσ with additional U(1) slave
boson bi to carry the electric charge. However this approach completely neglects the
SU(2) gauge redundancy in the spin liquid: annihilation of a spin up electron by c↑
can be accomplished (in the spin sector) either by the annihilation of up spinon f↑
or by the creation of down spinon f †↓ (to neutralize the up spin into spin singlet),
so the electron operator must be a linear combination of both[45, 57], formulated as
ci↑ = 1√

2
(b†i1fi↑ − b

†
i2f
†
i↓), ci↓ = 1√

2
(b†i1fi↓ + b†i2f

†
i↑), or equivalently as[125]

Ci =
1√
2
FiBi, (3.16)

where Ci, Fi and Bi are 2× 2 matrices of operators

Ci =

(
ci↑ −c†i↓
ci↓ c†i↑

)
,Bi =

(
b†i1 −bi2
b†i2 bi1

)
, (3.17)

and Fi is given by Eq. (3.3) in terms of Schwinger fermions or equivalently by Eq. (3.10)
in terms of Majorana fermions. The holon creation operators b†i1 and b†i2 carry different
SU(2) gauge charges, but the same electric charge as a hole ci.

Let |0〉slave be the vacuum state of both spinons and holons, s.t. fiσ|0〉slave =
biν |0〉slave = 0. Then on each site, there are only three physical states in the Hilbert
space:

|0〉 =
1√
2

(
b†i1 + b†i2f

†
i↑f
†
i↓

)
|0〉slave,

c†i↑|0〉 = f †i↑|0〉slave,

c†i↓|0〉 = f †i↓|0〉slave.

(3.18)

Here |0〉 denotes the electron empty state. The double occupied state is automatically
ruled out from the physical Hilbert space in the SU(2) slave boson formalism.

Each empty site has one holon, therefore the doping δ is: δ = 1
N

∑
i(b
†
i1bi1 +b†i2bi2),

where N denotes the total number of sites. Adopting Gutzwiller approximation, the
spin operator will be written as Sai = iχ0

iχ
a
i (1− δ).

3.3.2 SU(2) Gauge Charge

As both spinons and holons carry the SU(2) gauge charges, the gauge SU(2)
generators K l

i (l = 1, 2, 3) are generalized from Eq. (3.5) to

K l
i =

1

4
TrFiσlF

†
i −

1

4
Tr σ3B

†
iσlBi, (3.19)
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or explicitly written as (with implicit sum over dummy indices)

K l
i = −1

2
(iχ0

iχ
l
i +

i

2
εlmnχ

m
i χ

n
i + biνσ

l
νν′b

†
iν′), (3.20)

where εlmn is the Levi-Civita symbol. It can be verified that [K l
i ,Fi] = 1

2
Fiσl,

[K l
i ,Bi] = −1

2
σlBi, therefore [K l

i ,Ci] = 0, showing that K l
i are indeed the genera-

tors of gauge SU(2) transforms that leave the electron operators unchanged.
The physical state, as enumerated in Eq. (3.18), are SU(2) gauge invariant. There-

fore the SU(2) singlet condition K l
i = 0 should be imposed. This condition is equiv-

alent to the single occupancy condition for both spinons and holons, as is evidenced
from K3

i = (1− f †i↑fi↑ − f
†
i↓fi↓ − b

†
i1bi1 + b†i2bi2)/2 = 0.

The PSG operations are naturally extended to the holons, such that they trans-
form as

Bi → G†g(i)Bg(i), (for g 6= T )

Bi → KG†TBiK.
(3.21)

In particular, under the time reversal operation,(
bA1

bA2

)
T→
(
−bA2

bA1

)
. (3.22)

One can see the holon SU(2) gauge charges transform under time reversal in a way
similar to the physical spins. Therefore one could expect that the condensation of
holons will spontaneously breaks the time reversal symmetry.

3.3.3 Mean Field Phase Diagram

The exact solution of the Kitaev spin liquid at zero doping involves an enlarged
hilbert space with spinons and holons which implements a particular PSG. We expect
these deconfined excitations, which transform under symmetry operations as defined
by the Kitaev-limit PSG, to survive into finite doping. At small finite doping the
SU(2) slave boson mean field with this particular PSG becomes inexact, but should
still provide the most accurate treatment possible.

Using Eq. (3.16), the t-J-JK model can be written in terms of spinons and holons
(for simplicity we set J = 0, finite J is discussed in Appendix 3.7). Then use the
mean field treatment by introducing the following mean field parameters:

uαij = 〈iχαi χαj 〉, wνij = 〈ib†iνbjν〉, (3.23)

we arrive at the mean field Hamiltonian (see Appendix 3.6 for detailed deductions)

HMF =
∑
〈ij〉

Uα
ijiχ

α
i χ

α
j +W ν

ij(ib
†
iνbjν + h.c.)

+
∑
i

aliK
l
i − µb

†
iνbiν ,

(3.24)
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where summation is implied over repeated indices α = 0 . . . 3, ν = 1, 2 and l = 1 . . . 3.
The hopping amplitudes for fermions Uα

ij and for bosons W ν
ij should be determined

self-consistently from

Uα
ij =− t

4

2∑
ν=1

(wνij + c.c.)

+ JK(1− δ)2(uaijδ0α + u0
ijδaα),

W µ
ij =− t

4

3∑
α=0

uαij.

(3.25)

The index a denotes the direction of 〈ij〉. The boson chemical potential µ is cho-
sen such that

∑
i,ν〈b

†
iνbiν〉 = δN . The SU(2) gauge charge operators are given in

Eq. (3.20). The gauge potentials ali are chosen to enforce the SU(2) gauge singlet
constraint on average 〈K l

i〉 = 0. In the undoped limit, Eq. (3.24) reduces to the
mean field description of the spin liquid exact solution. With finite doping, the hid-
den superconductivity of spinons will be rendered into the true superconductivity of
electrons once the holons condense.

We would like to stress that the quantum order of the Kitaev spin liquid puts a
strong constraint on the possible form of the mean field ansatz. This quantum order
is described by the Kitaev spin liquid PSG as discussed previously. We assume that
this PSG is respected by the mean field solution throughout, and that symmetry
breaking occurs only through holon condensation. At small dopings this is required
by continuity to the Kitaev solution. The most general parameterization of the mean
field ansatz under the PSG restriction is as follows. First assign on the type-3 bond

u0
ij = u0,u1

ij = u2
ij = ub,u

3
ij = ua,

w1
ij = w2

ij = w.
(3.26)

Then the mean field parameters on the other bonds are obtained by using the PSG
operation to carry the above assignment throughout the lattice. u0, ua, ub and w are
real numbers that parameterize the mean field ansatz.

Based on the parameterization, a self-consistent mean field solution of Eq. (3.24)
gives the phase diagram shown in Fig. 3.3. We show results for J = 0. Introducing
J < JK/8, to remain within the boundary of the spin liquid phase[35, 36], has little
effect on the phase diagram (discussed in Appendix 3.7).
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Figure 3.3: (Color online) Mean field phase diagram for t = 10JK and J = 0. The
low doping Kitaev spin liquid (KL) phase and the high doping Fermi liquid (FL)
phase are separated by first order transition. Once holons condense, two classes of
superconducting (SC1 and SC2) phases appear. The bar below shows the Chern
number of the superconducting state.

3.3.4 Spin Liquid and Adjacent Phases

In the undoped limit, one recovers the Kitaev spin liquid mean field parameters:
ub = w = 0, and u0 and ua are determined by the following self-consistent equations

ua = −1

2
tanh

βJKu0

2
,

u0 = − 1

3N

∑
k∈BZ

|Γ(k)| tanh
βJKua|Γ(k)|

2
,

(3.27)

where Γ(k) = eiky + 2e−iky/2 cos(
√

3kx/2), and N is the number of sites. At zero
temperature, the solution is u0 = −0.262433 and ua = 1/2, corresponding to the
exact ground state of the Kitaev model. So the SU(2) slave boson mean field theory
is asymptotically exact in the small doping limit. At the mean field level, a finite
temperature transition is found at Tc = JK/4, above which (T > Tc) all the mean
field parameters vanish, u0 = ua = ub = w = 0. The confining gauge fluctuation
will recombine spinons and holons into electrons, resulting in a paramagnetic (PM)
phase.

With increasing doping, mean field parameters ub and w grow in proportional to
δ, and eventually trigger a first order phase transition at δc ' 2uaJK/t, see Fig. 3.4.
The transition is driven by the competition between the kinetic energy of holes (t
term) and the magnetic energy of spins (JK term). The magnetic energy favors the
Kitaev spin liquid state, in which the mobility of χ1,2,3 fermions is sacrificed (as they
form degenerate flat bands). For larger doping, more kinetic energy can be gained
by allowing χ1,2,3 fermions to move in the same way as χ0, as u0 ' ua ' ub, so
that the flat band gets dispersed as shown in Fig. 3.2b. In the large doping limit,
all flavors of Majorana fermions move with the same amplitude, providing identical
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graphene-like band structures, which can be recombined into band electrons, labeled
by Fermi liquid (FL) in Fig. 3.3. As discussed below, the nature of superconductivity
is very different depending on the normal state, Kitaev spin liquid or FL, from which
it emerges.

0.5 1.0 1.5 2.0 2.5 3.0
∆t�JK

-0.2
0.0
0.2
0.4
0.6

u
u0
ua
ub

KL FL

Figure 3.4: (Color online.) Mean field parameters u0, ua, ub v.s. doping δ at zero
temperature. The arrow indicates the 1st order transition between KL/SC1 phase
and FL/SC2 phase. The calculation is done at t = 10JK and J = 0.

3.3.5 Holon Condensation and Superconductivity

At low temperature, the holons condense to their band minimum at zero-momentum,
leading to the following condensate amplitude (ν = 1, 2)

〈bAν〉 = zν , 〈bBν〉 = izν , (3.28)

with the density |z1|2 + |z2|2 = δ following the doping level. The electron pair-
ing is found between opposite sublattices (because the intra-sublattice coupling of
χα is forbidden by PSG): ∆AB,b(k) = cᵀkAεσbc−kB, (b = 0, 1, 2, 3) where ckA(B) =
(ckA(B)↑, ckA(B)↓)

ᵀ denote the electron operators in the momentum space and ε = iσ2

is the anti-symmetric matrix[58]. Using Eq. (3.16), the pairing is expressed in terms
of the mean field parameters:

∆AB,b(k) =
αb
2

3∑
a=1

dabe
ik·ra , (3.29)

where r1 = (−
√

3/2,−1/2), r2 = (
√

3/2,−1/2), r3 = (0,−1) denote the three dis-
placement vectors from site A to site B, and b labels the singlet (b = 0) or triplet
(b = 1, 2, 3) channels. αb = zᵀεσbz with z = (z1, z2)ᵀ refer to the holon condensate
amplitude, and dab = u0 − ua + 2(ua − ub)δab parameterize the the spinon pairing
amplitude. The electron superconductivity is a joint effect of holon condensation and
spinon pairing.

Obviously α0 = 0 for whatever z, so ∆AB,0 = 0, thus the electron paring is purely
triplet. This demonstrates the spin-gauge locking effect of the Kitaev spin liquid, that
a singlet in the spin space will be rendered by the PSG to a singlet in the SU(2) gauge
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space (seen from the expression of αb). However gauge charges can not condensed
to a singlet state due to their bosonic nature, thus the single pairing is ruled out, as
long as the quantum order persists.

The superconductivity transition temperature in the phase diagram shown with
the dashed line is estimated as follows. At small doping, the phase stiffness ρb = tbδ
is proportional to doping, where tb = 3t(u0 + ua + 2ub)/8, and Tc is estimated from
the Kosterlitz-Thouless transition[59] temperature Tc = πρb/2. At large doping, the
mean field gap is small which controls Tc ∼ ∆f , where ∆f ' JK(u2

0 +u2
a)

1/2(1− δ2)/4.
In between, we interpolate via the formula[60] T−1

c = (πρb/2)−1 + ∆−1
f . Note, due to

the absence of a finite temperature transition of the two dimensional free bosons, a
naive mean field transition temperature is not specified.

3.3.6 Symmetry and Topological Properties

The mean field Hamiltonian of the Kitaev spin liquid appears surprising at first,
since the only Majorana fermion with extended hopping is χ0, the real part of f↑,
which seems to single out one spin species and break the time reversal symmetry.
Actually, this is a gauge artifact. The SU(2) rotations between fiσ and ciσ will restore
the time reversal symmetry on the electron level for the spin liquid. However, the
SU(2) gauge redundancy is parameterized by holon fields biν and must be resolved as
the holon condenses. So, as has been discussed from the PSG prospective, the holon
condensation must break the time reversal symmetry spontaneously, leading to a class
D superconductor[46], denoted as SC1, with uniform magnetization 〈S〉 ∼ z†σz.

Let us elaborate on the microscopic mechanism which gaps the χ0 Majoranas in
SC1. If we view the charge and spin as separate excitations, one may expect the
same spectrum as the Kitaev spin liquid, i.e. gapless χ0 Majorana modes, to persist
into the superconductor. However, the time reversal symmetry, which protects this
gaplessness in the spin liquid, is lost in the superconductor. This can lead to an energy
gap for χ0 (as shown in Fig. 3.2b), tied to the strength of the condensate. Because
the uniform SU(2) gauge charge provided by the holon condensate offsets the SU(2)
gauge potential al (l = 1, 2, 3) from zero, in order to preserve the overall gauge
singlet condition. It is found that al ' δJK increases with doping. For small doping
δ, we treat al/JK as a perturbation. Integrating out the gapped Majorana modes
χ1,2,3 generates next nearest neighboring (nnn) (Fig. 3.5b) hopping of χ0 fermions
through a 3rd order perturbation correction, as illustrated in Fig. 3.5a. The effective
Hamiltonian for χ0 reads

Heff = JKη
∑
〈ij〉

iχ0
iχ

0
j + v

∑
〈〈ij〉〉

iχ0
iχ

0
j , (3.30)

where v = a1a2a3/(8J2
Ku

2
0) and 〈〈ij〉〉 denotes the oriented nnn bond, with the bond

direction specified in Fig. 3.5b. According to the Kitaev spin liquid PSG (see Tab. 3.1),
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the nnn coupling term is time reversal odd (since i→ −i), and is allowed only because
time reversal symmetry is broken by the gauge charge condensation here.

The resulting χ0 Hamiltonian Eq. (3.30) is a Majorana version of the Haldane
model[61]. It is known that the nnn coupling gaps the Dirac cones and leaves one
unit of Chern number in the ground state. This requires all al to be nonvanishing.
It is actually energetically favorable for the holon condensate (i.e. magnetization) to
be in the (111) (or equivalent (±1± 1± 1)) direction, corresponding to a1 = a2 = a3

which maximizes the spinon gap m = 3
√

3|v| ∼ |a1a2a3|. Therefore in the small
doping limit, the ground state is a fully-gapped topological superconductor with +1
Chern number, which implies a gapless chiral Majorana edge mode and a Majorana
zero mode in the vortex core. This is the same topology as a px + ipy superconductor
of spin polarized fermions[46]; here the “spin-polarization” arises from the peculiar
dispersion of fermions in the Kitaev spin liquid. At larger doping the Chern number
changes, as shown in Fig. 3.3. The transition +1→ −2 in the SC1 phase corresponds
to a band gap closing at M point due to the softening of χ1,2,3 modes.
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Figure 3.5: (Color online.) (a) The path of 3rd order perturbation. The 4 Majorana
fermions on each site are denoted by their flavor indices. The effective second nearest
neighbor hopping of χ0 fermion is bridged by two nearest-bond hopping of χ1,2,3. The
on-site flavor changing process is assisted by the time-reversal-broken gauge potential.
(b) Gray dashed arrows indicate the directions of the second nearest neighboring bond.

3.4 Discussion and Conclusion

3.4.1 Overdoped Regime and Weak Coupling BCS

In the overdoped FL phase where correlations are weak, the superconductivity
(SC2) can be studied under the BCS paradigm by treating HHK as an interaction
and decomposing it into the Cooper channel. In the small J limit, The instability is
found in the spin-triplet pairing channel, because the spin model is ferromagnetic. To
first order in weak coupling both the time reversal invariant superconductor (the two
dimensional analog of He3 B phase) and the time reversal symmetry broken triplet
superconductor (the analog of the He3 A phase) are degenerate. To next order, the
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calculation in Ref. [48] showed that the time-reversal-invariant p-wave superconductor
is preferred. Beyond weak coupling it is hard to decide which of these two possibilities
is realized, a problem that is well known from He3 physics[67]. Here, our choice of PSG
selects the time reversal (T ) broken state, while a different choice would yield the T
symmetric state. Therefore we mention both these possibilities as potentially relevant
to the material at hand at high doping. In either case, the SC2 phase is dominated
by the Fermi liquid physics and is separated by a first order transition from the spin-
liquid-controlled time-reversal-broken SC1 phase elaborated in this work. Because of
the distinct underlying mechanism, its is not surprising that SC1 and SC2 can be
quite different in many aspects.

3.4.2 Conclusion

A time-reversal-broken spin-triplet topological superconductor was found in the
doped Kitaev spin liquid within the SU(2) slave boson formalism. A first order quan-
tum transition around δc ∼ JK/t separates the spin triplet superconductor into two
distinct classes: SC1 (controlled by JK) is governed by the spin liquid physics and
reflects the underlying quantum order, while SC2 (controlled by t) is a more conven-
tional BCS-type superconductor. Although both ultimately trace their origins to the
magnetic couplings, the detailed mechanisms are rather different. This is in sharp
contrast to the t-J model in the context of cuprates, where, at least qualitatively,
d-wave superconductivity is realized throughout.

A promising candidate material is A2IrO3 (A = Na, Li) [31, 32, 37], although
experiments suggest magnetic ground state, rather than spin liquid. However, it has
been argued that doped charges are more mobile in spin liquids, as compared to
antiferromagnetic states where they interfere with the ordered pattern[44]. Therefore
one may hope that the results derived here also hold for magnetic ground states that
are proximate to the Kitaev phase. Our main prediction is that doping these systems
should lead to spin triplet topological superconductors with superconducting Tc a
fraction of the magnetic exchange. Assuming JK ∼ 100 - 150K [31, 32, 39] a crude
estimate of maximum superconducting transition temperature is 15 - 20K. Although
we are not aware of doping studies on this class of materials, the related iridium
perovskite Sr2IrO4, a 5d cuprate analog [34, 65] has been doped in the bulk[66], and
recent years have witnessed significant progress in doping techniques. We hope our
results will spur future experiments in this direction.

3.5 Appendix: Z2 Projective Symmetry Group on

Honeycomb Lattice

Here we present the classification of Z2 projective symmetry group (PSG) on
Honeycomb lattice without spin rotational symmetry (but preserving time several
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symmetry). 144 solutions of algebraic PSG were found.
On the Honeycomb lattice, each unit cell is labeled by its integer coordinates x1

and x2 along the translation axes of T1 and T2. A spin site is further specified by
its sublattice label A or B within the unit cell, see Fig. 3.1a. The symmetry group
operators act on the lattice by

T1(x1,x2) = (x1 + 1,x2),

T2(x1,x2) = (x1,x2 + 1),

C6(x1,x2,A) = (x1 − x2,x1,B),

C6(x1,x2,B) = (x1 − x2 − 1,x1,A),

σ(x1,x2,A) = (x2,x1,B),

σ(x1,x2,B) = (x2,x1,A).

(3.31)

The sublattice label is omitted if a formula holds in both sublattices. Later we will
refer to the principal unit cell by omitting the unit cell index, i.e. (0, 0,A) ≡ (A),
(0, 0,B) ≡ (B). The representation of symmetry operators in the spin space will be
given after further discussion in Eq. (3.7).

The symmetry group of a general spin model on the Honeycomb lattice is gener-
ated by 5 generators T , T1, T2, C6 and σ with the following 13 definition relations

T1T2T
−1
1 T−1

2 = 1, (3.32)

T T1T T−1
1 = T T2T T−1

2 = 1, (3.33)

C6T1C
−1
6 T−1

1 T−1
2 = C6T2C

−1
6 T1 = 1, (3.34)

σT1σ
−1T−1

2 = σT2σ
−1T−1

1 = 1, (3.35)

T 2 = C6
6 = σ2 = 1, (3.36)

T C6T C−1
6 = 1, (3.37)

T σT σ−1 = 1, (3.38)

C6σC6σ = 1. (3.39)

In general each definition relation takes the form of · · · g2g1 = 1, where · · · g2g1 denotes
a sequence of symmetry group operations. Then according to Eq. (3.6), under the PSG
operation, the spinon matrix Fi transforms as

Fi → U †g1U
†
g2
· · ·F···g2g1(i) · · ·Gg2 (g1(i))Gg1(i). (3.40)

Because the bunch of operations · · · g2g1 actually result in the identity operation,
so they must not affect the spin degree of freedom: U †g1U

†
g2
· · · = σ0 and must also

restore the original lattice site: · · · g2g1(i) = i, hence the PSG operation becomes a
pure gauge operation

Fi
···g2g1−→ Fi · · ·Gg2 (g1(i))Gg1(i). (3.41)
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All the pure gauge operations that leaves the mean field ansatz invariant constitute
a subgroup of the PSG, known as the invariant gauge group (IGG). So we must have
· · ·Gg2 (g1(i))Gg1(i) ∈ IGG. Here we are interested in the classification of Z2 spin
liquid, so we will focus on the case that IGG = Z2. Thus for each definition relation
· · · g2g1 = 1, there is a corresponding PSG representation

· · ·Gg2 (g1(i))Gg1(i) = ηm, (3.42)

where ηm = ±σ0 will be used to denote the sign factors hereon. For the 13 definition
relations, we introduce 13 sign factors η1, η2, · · · , η13 to denote the corresponding IGG
elements. In the following, we may write the PSG representation Eq. (3.42) in short
as · · ·Gg2Gg1 = ηm by omitting the site labels so as to save the space.

However special attention should be paid to the time reversal operation, because
it involves the complex conjugate operator K which does not commute with Gg in
general. As can be seen from Eq. (3.8), K must be placed right after each GT . For
example, T C6T C−1

6 = 1 should be represented as

GT (i)KGC6(i
′)GT (i′)KG−1

C6
(i′) = η11, (3.43)

where i′ = C−1
6 (i). Here we have used the rule that Gg−1(g(i)) = G−1

g (i) to simplify
the inverse operations.

To classify the PSG’s one should take care of the gauge redundancy in the solution
of Gg. Two PSG’s are gauge equivalent if their solutions of Gg are related by a set

of local SU(2) gauge transform Gg(i) → W †
g(i)Gg(i)Wi : Wi ∈ SU(2). To reduce the

gauge redundancy, gauge fixing will be used while solving the equations of Gg. First
of all, the relative gauge between the unit cells can be fixed by setting GT2(x1,x2) =
σ0, and GT1(x1, 0) = σ0, then Eq. (3.32) can be represented as GT1(x1,x2 + 1) =
η1GT1(x1,x2), which gives the solution for translations

GT1(x1,x2) = ηx21 ,GT2(x1,x2) = σ0. (3.44)

Substitute Eq. (3.44) into the PSG representation of Eq. (3.33): GTKGT1K =
η2GT1 and GTKGT2GTK = η3GT2 , we obtain

GT (x1 + 1,x2)KGT (x1,x2)K = η2,

GT (x1,x2 + 1)KGT (x1,x2)K = η3,
(3.45)

while on the other hand, fromGTKGTK = η8, we knowKGT (x1,x2)K = η8G
−1
T (x1,x2),

so Eq. (3.45) becomes

GT (x1 + 1,x2) = η2η8GT (x1,x2),

GT (x1,x2 + 1) = η3η8GT (x1,x2).
(3.46)

The solution is
GT (x1,x2) = ηx12 η

x2
3 η

x1+x2
8 GT (0, 0). (3.47)
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Similarly by inserting Eq. (3.44) into the PSG representation of Eq. (3.34): GC6GT1 =
η4GT2GT1GC6 , GC6GT2 = η5G

−1
T1
GC6 , and Eq. (3.35): GσGT1 = η6GT2Gσ, GσGT2 =

η7GT1Gσ, we find

GC6(x1 + 1,x2) = ηx1−x21 η4GC6(x1,x2),

GC6(x1,x2 + 1) = η−x11 η5GC6(x1,x2),

Gσ(x1 + 1,x2) = ηx21 η6Gσ(x1,x2),

Gσ(x1,x2 + 1) = ηx11 η7Gσ(x1,x2),

(3.48)

whose solutions are

GC6(x1,x2) = η
x1(x1−1)/2−x1x2
1 ηx14 η

x2
5 GC6(0, 0),

Gσ(x1,x2) = ηx1x21 ηx16 η
x2
7 Gσ(0, 0).

(3.49)

However, it worth mention that η4, η5, η6 and η7 are not independent[55]. Because
in their equations, either GT1 or GT2 only appears once, which means if we fix the
inter-unit-cell gauge in a different way such that GT1 → −GT1 or GT2 → −GT2 , the
above four η’s will be affected. But this does not affect the mean field ansatz, as
all the ansatz are given in the bilinear form which are invariant under this Z2 gauge
transform. Therefore, make use of this Z2 gauge freedom, one can set two out of the
four η’s to identity, say η4 = η5 = σ0.

Substitute Eq. (3.44), Eq. (3.47), and Eq. (3.49) into the PSG representation of the
rest of the definition relations, we find some constrains between the η’s. For example,
from Eq. (3.36) one can obtain

Gσ(A)Gσ(B) = Gσ(B)Gσ(A) = (η6η7)x1+x2 η10. (3.50)

The left-hand-side is independent of (x, y), so must the right-hand-side be, there-
fore we must have η6η7 = σ0, which means η6 = η7. Similarly from Eq. (3.37) and
Eq. (3.38) we find η2 = η3 = η8 and from Eq. (3.39) we find η5 = η6, so eventually
η4 = η5 = η6 = η7 = σ0.

Now all the Gg(x1,x2) has been reduced to Gg(0, 0) with in a single unit cell,
concluded as follows

GT1(x1,x2) = ηx21 ,

GT2(x1,x2) = σ0,

GT (x1,x2) = GT (0, 0),

GC6(x1,x2) = η
x1(x1−1)/2−x1x2
1 GC6(0, 0),

Gσ(x1,x2) = ηx1x21 Gσ(0, 0).

(3.51)

The remaining task is to determine GT (0, 0), GC6(0, 0) and Gσ(0, 0) from the following
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equations

GT (A)KGT (A)K = GT (B)KGT (B)K = η8, (3.52)

GT (B)KGC6(A)GT (A)K = η11GC6(A), (3.53)

GT (A)KGC6(B)GT (B)K = η11GC6(B), (3.54)

GT (B)KGσ(A)GT (A)K = η12Gσ(A), (3.55)

GT (A)KGσ(B)GT (B)K = η12Gσ(B), (3.56)

Gσ(A)Gσ(B) = Gσ(B)Gσ(A) = η10, (3.57)

(GC6(B)Gσ(A))2 = (GC6(A)Gσ(B))2 = η1η13, (3.58)

(GC6(B)GC6(A))3 = (GC6(A)GC6(B))3 = η1η9. (3.59)

The solution of the above equations leads to 144 algebraic PSG’s which will be clas-
sified below. There are only two remaining SU(2) gauge freedom: the local gauge
transform on site A or site B in the unit cell.

We start from the solution of GT . Let GT = a0σ0 + ia1σ1 + ia2σ2 + ia3σ3 be the
most general form of a SU(2) matrix (with aµ ∈ R). Plug into the left-hand-side of
Eq. (3.52), one finds

GTKGTK =(a2
0 + a2

1 − a2
2 + a2

3)σ0

+ 2ia2(a3σ1 + a0σ2 − a1σ3).
(3.60)

So if η8 = −σ0, the solution is a2 = ±1, a0 = a1 = a3 = 0, i.e. GT = ±iσ2. Note
that iσ2K as a whole is SU(2) gauge invariant, thus the remaining gauge freedoms
are preserved (even though σ2 seems to be a special direction). While if η8 = σ0, the
solution is a2 = 0, a2

0 + a2
1 + a2

3 = 1. One can choose GT (A) = GT (B) = σ0. In this
case, the SU(2) gauge freedoms on both sites are fixed.

Class (I): η8 = −σ0. Then GT (A) = iσ2, GT (B) = iη14σ2, where η14 = ±σ0 is a
new sign factor. Substitute into Eq. (3.53,3.54,3.55,3.56), one finds η11 = η12 = −η14,
with no restriction on GC6 and Gσ. Fix the relative gauge between sites A and B by
Gσ(A) = σ0, then from Eq. (3.57), Gσ(B) = η10. Plug into Eq. (3.58),

GC6(B)2 = GC6(A)2 = η1η13. (3.61)

According to the sign of η1η13, the class (I) is further divided into two subclasses.
Class (I)(A): η1η13 = σ0. Then the solution of Eq. (3.61) reads GC6(A) = σ0,

GC6(B) = η15. Substitute into Eq. (3.59), one finds η15 = η1η9.
The solutions in the class (I)(A) are summarized as

GT (A) = iσ2,

GT (B) = iη14σ2,

GC6(A) = σ0,

GC6(B) = η1η9,

Gσ(A) = σ0,

Gσ(B) = η10,

(3.62)
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which are controlled by η1, η9, η10, η14, providing 24 = 16 PSG’s.
Class (I)(B): η1η13 = −σ0. Then from Eq. (3.61), the general solution of GC6

is a linear combination of iσ1, iσ2, iσ3. Because the global gauge freedom has not
been fixed, so using this freedom, one can set GC6(A) = iσ1. Further assume
GC6(B) = η1η9(iσ1 cos θ1 + (iσ2 cos θ2 + iσ3 sin θ2) sin θ1), and plug into Eq. (3.59),
one finds cos 3θ1 = 1, sin 3θ1 = 0, whose solution is θ1 = 0,±2π/3, and there is no
restriction on θ2.

The solutions in the class (I)(B) are summarized as

GT (A) = iσ2,

GT (B) = iη14σ2,

Gσ(A) = σ0,

Gσ(B) = η10,

GC6(A) = iσ1,

GC6(B) = η1η9iσ1 exp(iσ2θ1e
iσ1θ2),

(3.63)

which are controlled by η1, η9, η10, η14, θ1, providing 24 × 3 = 48 PSG’s. Here θ2 ∈
[0, 2π) is a free angle.

Class (II): η8 = σ0. ThenGT (A) = GT (B) = σ0. Therefore Eq. (3.53,3.54,3.55,3.56)
become

KGC6(A)K = η11GC6(A),

KGC6(B)K = η11GC6(B),

KGσ(A)K = η12Gσ(A),

KGσ(B)K = η12Gσ(B).

(3.64)

The general solution of KGgK = Gg is Gg = eiσ2θ, while the general solution of
KGgK = −Gg is Gg = iσ3e

iσ2θ. According to the sign of η11 and η12, the class (II) is
further divided into four subclasses.

Class (II)(A1): η11 = η12 = σ0. Then the general solution of Eq. (3.64) reads
GC6(A) = eiσ2θ1 , GC6(B) = η1η9e

iσ2θ2 , Gσ(A) = eiσ2θ3 , Gσ(B) = η10e
iσ2θ4 . Then

according to Eq. (3.57), θ4 = −θ3. Substitute into Eq. (3.58), we obtain e2iσ2(θ2+θ3) =
e2iσ2(θ1−θ3) = η1η13, which implies e2iσ2(θ1+θ2) = σ0, then Eq. (3.59) can be reduced to
eiσ2(θ1+θ2) = σ0, thus θ2 = −θ1. While θ1 and θ3 are related by

θ1 = θ3 +

{
0 η1η13 = σ0,
π/2 η1η13 = −σ0.

(3.65)
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The solutions in the class (II)(A1) are summarized as

GT (A) = σ0,

GT (B) = σ0,

GC6(A) = eiσ2θ1 ,

GC6(B) = η1η9e
−iσ2θ1 ,

Gσ(A) = eiσ2θ3 ,

Gσ(B) = η10e
−iσ2θ3 ,

(3.66)

which are controlled by η1, η9, η10, η13, providing 24 = 16 PSG’s. Here θ3 can be any
angle, and θ1 follows from Eq. (3.65).

Class (II)(B1): −η11 = η12 = σ0. The solution of Gσ is the same as the
class (II)(A1), however the general solution of GC6 becomes: GC6(A) = iσ3e

iσ2θ1 ,
GC6(B) = −η1η9iσ3e

iσ2θ2 . From Eq. (3.58) one finds η1η13 = −σ0. While from
Eq. (3.59), e3iσ2(θ1−θ2) = 1, thus (θ1 − θ2) = 0,±2π/3.

The solutions in the class (II)(B1) are summarized as

GT (A) = σ0,

GT (B) = σ0,

GC6(A) = iσ3e
iσ2θ1 ,

GC6(B) = −η1η9iσ3e
iσ2θ2 ,

Gσ(A) = eiσ2θ3 ,

Gσ(B) = η10e
−iσ2θ3 ,

(3.67)

which are controlled by η1, η9, η10, (θ1 − θ2), providing 23 × 3 = 24 PSG’s. Here θ2

and θ3 can be any angles, and (θ1 − θ2) = 0,±2π/3.
Class (II)(A2): −η11 = −η12 = σ0. Then the general solution of Eq. (3.64)

reads GC6(A) = iσ3e
iσ2θ1 , GC6(B) = −η1η9iσ3e

iσ2θ2 , Gσ(A) = iσ3e
iσ2θ3 , Gσ(B) =

−η10iσ3e
iσ2θ4 . Then according to Eq. (3.57), θ3 = θ4. Substitute into Eq. (3.58), then

combining with Eq. (3.59), one finds θ2 = −θ1, and θ1 and θ3 are related by Eq. (3.65).
The solutions in the class (II)(A2) are summarized as

GT (A) = σ0,

GT (B) = σ0,

GC6(A) = iσ3e
iσ2θ1 ,

GC6(B) = −η1η9iσ3e
iσ2θ1 ,

Gσ(A) = iσ3e
iσ2θ3 ,

Gσ(B) = −η10iσ3e
iσ2θ3 ,

(3.68)
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which are controlled by η1, η9, η10, η13, providing 24 = 16 PSG’s. Here θ3 can be any
angle, and θ1 follows from Eq. (3.65).

Class (II)(B2): η11 = −η12 = σ0. The solution of Gσ is the same as the class
(II)(A2), however the general solution of GC6 becomes GC6(A) = eiσ2θ1 , GC6(B) =
η1η9e

iσ2θ2 . From Eq. (3.58), it is found that η1η13 = −σ0. And Eq. (3.59) gives
e3iσ2(θ1+θ2) = 1, so (θ1 + θ2) = 0,±2π/3.

The solutions in the class (II)(B2) are summarized as

GT (A) = σ0,

GT (B) = σ0,

GC6(A) = eiσ2θ1 ,

GC6(B) = η1η9e
iσ2θ2 ,

Gσ(A) = iσ3e
iσ2θ3 ,

Gσ(B) = −η10iσ3e
iσ2θ3 ,

(3.69)

which are controlled by η1, η9, η10, (θ1 + θ2), providing 23 × 3 = 24 PSG’s. Here θ2

and θ3 can be any angles, and (θ1 + θ2) = 0,±2π/3.
Now all the 144 algebraic PSG’s has been classified. Given Eq. (3.13), one can

check η8 = GTKGTK = −σ0 and η1η3 = (GC6(A)Gσ(B))2 = (−σC6σσ)2 = −σ0, which
match the criterion of the class (I)(B). So the PSG of Kitaev spin liquid belongs to
the class (I)(B) with η1 = −η9 = −η10 = −η14 = σ0 and θ1 = 2π/3.

Finally our classification is related to the previous work[55] in the following table.
The number of PSG’s in the class (II)(ii)(B)(β) was miscounted in Ref. [55] as 24,
which should be 8 instead.

Table 3.2: Relation between the new classification and the previous one.

This work Ref. [55]
(I)(A) (I)(A)
(I)(B) (I)(B)

(II)(A1) (II)(i)(A) + (II)(i)(B)(α)
(II)(B1) (II)(ii)(B)(α)
(II)(A2) (II)(ii)(A) + (II)(ii)(B)(β)
(II)(B2) (II)(i)(B)(β)
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3.6 Appendix: Mean Field Decomposition

Rewrite the hopping term on a single bond in terms of Fi and Bi matrices as∑
σ

(
c†iσcjσ + h.c.

)
= Trσ3C

†
iCj

=
1

2
Tr σ3B

†
iF
†
i FjBj.

(3.70)

According to Eq. (3.10),

F †i Fj =
1

2

3∑
α=0

χαi χ
α
j σ0+

1

2

3∑
α=1

(
iχ0

iχ
α
j − iχαi χ0

j +
3∑

β,γ=1

iεαβγχβi χ
γ
j

)
σα.

(3.71)

Here we may simplify the expression by dropping the second term, and use F †i Fj '∑3
α=0 χ

α
i χ

α
j σ0. There are two reasons. First, consider the dihedral group D2 =

{1, eiπS
1
i , eiπS

2
i , eiπS

3
i }, which is a symmetry of the model Hamiltonian, and should

not be broken in the spin liquid or Fermi liquid phase. Under these D2 operations,
Majorana fermions undergo sign changes, say for example eiπS

3
i : χ0

i → χ0
i , χ

1
i →

−χ1
i , χ

2
i → −χ2

i , χ
3
i → χ3

i , which can be seen from the behavior of spin operators
S1
i → −S1

i , S
2
i → −S2

i , S
3
i → S3

i . Then any term that change the flavor of Majorana
fermions acquires a minus sign under at least one of the D2 operations. So the
D2 symmetry preserves the flavor of Majorana fermions, and terms like χ0

iχ
α
j and

iεαβγχβi χ
γ
j are not allowed. Secondly, in the time reversal broken phase like the

superconducting phase, the D2 symmetry is broken. But in this case the bosons
condense to a state described by Eq. (3.28), which does not support any boson gauge
current, i.e. Tr 〈σ3B

†
iσαBj〉 = 0 (α = 1, 2, 3). So the second term in Eq. (3.71) can

not make a contribution to the mean field Hamiltonian in any case, and thus can
be neglected for the sake of simplicity. Therefore the electron hopping term can be
written as

Ht = − t
4

∑
〈ij〉

3∑
α=0

iχαi χ
α
j Tr σ3B

†
i (−iσ0)Bj

= − t
4

∑
〈ij〉

3∑
α=0

iχαi χ
α
j

2∑
ν=1

(
ib†iνbjν + h.c.

) (3.72)

For the Kitaev spin coupling term HJ , we first rewrite the spin operator to match
Kitaev’s convention by combining it with the neutral gauge charge K = 0,

Sai → Sai +Ka
i ' (iχ0

iχ
a
i )(1− δ). (3.73)



44

The single-occupancy projector (1 − δ) is appended to project out the holon gauge
charge terms in Ka

i . Physically (1 − δ) represents the probability that one electron
actually appears on site so that the spin operator can make a effect. Substitute
Eq. (3.73) into HJK ,

HJK = JK(1− δ)2
∑
〈ij〉

iχ0
iχ

0
j iχ

a
iχ

a
j , (3.74)

where a denotes the type of the bond 〈ij〉.
Then by introducing the mean field parameters in Eq. (3.23) and following the

standard slave boson mean field approach, Eq. (3.72) and Eq. (3.74) can be decom-
posed to the mean field Hamiltonian Eq. (3.24) through Hubbard-Stratonovich trans-
form, with additional Lagrangian multipliers to enforce the doping and SU(2) gauge
constraints.

3.7 Appendix: Case of Finite J

Starting from the t-J-JK model, H = Ht +HHK with

Ht = −t
∑
〈ij〉σ

Pc†iσcjσP + h.c.− µ
∑
iσ

c†iσciσ,

HHK = J
∑
〈ij〉

Si · Sj − JK

∑
〈ij〉

Sai S
a
j .

(3.75)

Following the SU(2) slave boson theory, introducing the mean field parameters: uαij =

〈iχαi χαj 〉, wνij = 〈ib†iνbjν〉, one obtains the mean field Hamiltonian

HMF =
∑
〈ij〉

(
3∑

α=0

Uα
ijiχ

α
i χ

α
j +

2∑
ν=1

W ν
ij(ib

†
iνbjν + h.c.)

)

+
∑
i

(
3∑
l=1

aliK
l
i − µ

2∑
ν=1

b†iνbiν

)
,

(3.76)

where the fermion bond strength reads

Uα
ij =− t

4

2∑
ν=1

(wνij + c.c.)

+ (1− δ)2

(
u0
ij(JKδαa − JH(1− δα0))

+
3∑

β=1

uβij(JKδβa − JH)δα0

)
,

(3.77)
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and the boson bond strength reads

W ν
ij = − t

4

3∑
α=0

uαij. (3.78)

The index a denotes the type of bond 〈ij〉. The boson chemical potential µ is chosen
such that

∑
i,ν〈b

†
iνbiν〉 = δN . The gauge potential ali is adjusted to ensure the gauge

singlet condition 〈K l
i〉 = 0.

The mean field phase diagram can be obtained by solving the mean field Hamil-
tonian HMF self-consistently. All phase diagrams contains SC1 phase with Chern
number +1 at small doping limit and SC2 phase at large doping, separated by the
first order transition at δc. Tab. 3.3 list the values of δc for different settings of t and J .
J/JK = 1/8 corresponds to α = 0.8 according to the convention J = 1− α, JK = 2α.
We conclude that small Heisenberg coupling will not affect the phase diagram much
on the mean field level.

Table 3.3: Kitaev spin liquid-FL transition point.

t/JK JH/JK δc
0 0.064

10 1/8 0.056
0 0.12

5 1/8 0.11
0 0.22

2 1/8 0.20

On the type-3 bond, parameterize the mean field ansatz by u0
ij = u0, u1

ij = u2
ij =

ub, u
3
ij = ua, w

1
ij + w2

ij = w. Then

U0
ij = −tw

2
+ (1− δ)2((JK − J)ua − 2Jub). (3.79)

The evolution of fermion mean field parameters with doping at zero temperature
is shown in Fig. 3.4. The first order transition between the Kitaev spin liquid and
the Fermi liquid phases happens when U0

ij = 0 (at this point, the χ0 band becomes
completely flat and can not gain more energy from the magnetic interaction). It
is found that the mean field solution follows w = δ and ub ' tδ/(3JK) at zero
temperature, then the first order transition point δc can be roughly estimated from
the equation

tδc
2

= (1− δc)2

(
(JK − J)ua −

2Jtδc
3JK

)
. (3.80)

Considering the case of J = 0 and large t, the transition point will be simply given
by δc = 2uaJK/t, where the value of ua ∼ 0.3 can be determined by the mean field
solution.
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Chapter 4

Kitaev-Heisenberg models for
iridates on the triangular,
hyperkagome, kagome, fcc, and
pyrochlore lattices

The context for this work was the experimental relevance for this line of projects
at the time this project began, when only the 2D layered honeycomb materials were
known to exist. Specifically, the Kitaev-Heisenberg (KH) model has been proposed
to capture magnetic interactions in iridate Mott insulators on the honeycomb lattice,
by Chaloupka, Jackeli and Khaliullin [PRL 105, 027204 (2010)].

In this work, we look to possible future extensions. We show that analogous in-
teractions arise in many other geometries built from edge-sharing IrO6 octahedra,
including the pyrochlore and hyperkagome lattices relevant to Ir2O4 and Na4Ir3O8

respectively. The Kitaev spin liquid exact solution does not generalize to these lat-
tices. However, a different exactly soluble point of the honeycomb lattice KH model,
obtained by a four-sublattice transformation to a ferromagnet, generalizes to all of
these lattices and even to certain additional further neighbor Heisenberg couplings.
A Klein four-group ∼= Z2×Z2 structure is associated with this mapping (hence Klein
duality). A finite lattice admits the duality if a simple geometrical condition is met.
This duality predicts fluctuation free ordered states on these different 2D and 3D
lattices, which are analogs of the honeycomb lattice KH stripy order. This result
is used in conjunction with a semiclassical Luttinger-Tisza approximation to obtain
phase diagrams for KH models on the different lattices. We also discuss a Majorana
fermion based mean field theory at the Kitaev point, which is exact on the honeycomb
lattice, for the KH models on the different lattices. We attribute the rich behavior
of these models to the interplay of geometric frustration and frustration induced by
spin-orbit coupling.
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4.1 Introduction

Long viewed as a perturbative correction, relativistic spin-orbit coupling has in
recent years been increasingly asserting its role within condensed matter physics. It
took center stage with topological insulators, time reversal invariant states of electrons
with no strong interactions that use spin-orbit coupling to generate nontrivial topol-
ogy in the band structure[185, 121, 120]. Electron correlations may amplify[184, 206]
the effects of spin-orbit coupling (SOC), enriching the taxonomy of possible phases.
Thus Mott insulating states of heavy magnetic ions could realize novel Hamiltonians,
which may be hitherto unexplored or not thought to describe real materials.

One such S=1/2 Hamiltonian has been proposed by Jackelli and Khaliullin[129,
106] to occur in the honeycomb iridates Na2IrO3 and Li2IrO3. It includes the Kitaev
exchange, a nearest neighbor ising coupling of spin component γ ∈ {x, y, z} set by the
spatial orientation of the bond[134, 146]. The pure Kitaev honeycomb Hamiltonian is
exactly solvable with a quantum spin liquid (QSL) ground state of a gapless Majorana
coupled to Z2 fluxes[146]. The proposed magnetic model for these iridates includes
the Kitaev as well as SU(2) symmetric Heisenberg coupling, yielding the Kitaev-
Heisenberg S = 1/2 Hamiltonian[106]. It may be written as

HKH =
∑
〈ij〉

η
[
(1− |α|) ~Si · ~Sj − 2αS

γij
i S

γij
j

]
(4.1)

with η = ±1 and −1 ≤ α ≤ 1. Here η sets the sign of Heisenberg exchange, and
negative α gives the same sign for both exchanges. Pairs of endpoints of the two
α-segments for η = +1,−1 are identified as a single point by the product ηα =
+1 (FM Kitaev) and similarly ηα = −1 (AF Kitaev), forming an (η,α) parameter
ring[107]. We will primarily focus on this idealized Hamiltonian but also consider
some extensions such as farther neighbor couplings.

The phase diagram of HKH on the honeycomb lattice is known from a combination
of exact diagonalization[106, 107], other numerical methods[190, 131] and the presence
of exactly soluble points. In addition to the exact solution using majorana fermions
of the Kitaev Hamiltonians α = ±1, and the obvious SU(2)-symmetric ferromagnet
(η = −1,α = 0), a four sublattice site-dependent spin rotation[106] transforms HKH

at η = +1,α = 1/2 into a ferromagnet in the rotated basis. The original spins are
then “stripy” ordered. Neel order from the Heisenberg antiferromagnet is unfrus-
trated on the bipartite honeycomb, and was recently shown[107] to map under this
transformation to a physical parameter regime hosting the spin pattern known as
“zigzag”.

This zigzag phase was determined in recent experiments[110, 161, 217] to be the
low temperature ordering pattern of Na2IrO3. The zigzag order was earlier the-
oretically found to be most stabilized by combining Kitaev interactions and the
further neighbor[91, 187] exchanges J2, J3 which naturally arise across a honey-
comb hexagon[169, 116], and which together fit the available experimental data in
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comparisons to exact diagonalization[143]. Indeed, within a classical approximation
to the phase diagram (Luttinger-Tisza described below), the zigzag phase within
the pure Kitaev-Heisenberg model lies nearly at the boundary of the large zigzag-
ordered region stabilized by J2, J3 exchanges[128]. Interestingly, the zigzag phase
in its J1 − J2 − J3 limit and in its Eq. 5.1 limit may offer experimentally relevant
distinguishing characteristics[107, 202].

So far only the honeycomb iridates Na2IrO3 and Li2IrO3 have been studied in
the context of the Kitaev-Heisenberg model. Despite initial worries that trigonal
distortion would invalidate the derivation of the Kitaev exchange discussed below,
recent resonant inelastic x-ray scattering results[95] support the validity of the strong
spin-orbit coupling approach. For the sodium iridate Na2IrO3, attempts to extract
the magnetic Hamiltonian from fits to experiments including susceptibility and spin
wave spectra[197, 198, 110, 143, 161, 217, 107] and to electronic properties[112, 202]
have so far proved unable to distinguish between substantial Kitaev exchange and a
complete lack of it. Few experimental results on magnetic behavior in the lithium
iridate Li2IrO3 are currently available, though the relatively small magnitude of the
Curie Weiss scale extracted from susceptibility suggests the Kitaev exchange may be
strong[198, 143].

Beyond the possible Kitaev-Heisenberg physics in the layered honeycomb iri-
dates, other iridates have also attracted much attention. Layered compounds in-
clude the Mott insulator Sr2IrO4[139, 138] and its bilayer variant Sr3Ir2O7[105, 174],
both with ordered SOC magnetic moments. Notable examples with a fully three di-
mensional structure include the 2-2-7 pyrochlore iridates, where changing the A site
rare earth metal yields radically varying properties[214, 206, 165, 184]; the sodium
iridate Na4Ir3O8 spin liquid candidate, with Ir on the pyrochlore-descendent hyper-
kagome lattice[181]; and a recently epitaxially-stabilized iridium spinel Ir2O4 with
empty cation sites[149] leaving Ir on a pyrochlore lattice. Despite the variety of
elemental composition and geometrical structure in this list, there is a simple but
fundamental distinction separating the latter two compounds from the others listed.

In this manuscript we show that the iridates Na4Ir3O8 and Ir2O4, as well as pos-
sible compounds in certain other geometries, may be described by generalizations of
the Hamiltonian Eq. 5.1 to the relevant lattices (hyperkagome for Na4Ir3O8 and py-
rochlore for Ir2O4). The key quantum chemistry ingredients which can generate the
interactions HKH have been already pointed out by Jackeli and Khaliullin[129] but the
extension to three dimensional lattices, as well as to these compounds, has not been
previously exposed. We begin by recalling the derivation of HKH and systematically
extending it to other geometries in two and three dimensions; it applies when oxygen
octahedra are edge-sharing, yielding lattices that are in a certain sense subsets of
the fcc. We then proceed to investigate the phase diagram of HKH on these lattices,
using primarily analytical approaches. We generalize the honeycomb four-sublattice
transformation into a duality on graphs and lattices with Kitaev labeled bonds in
any dimension, and even with certain further neighbor pure Heisenberg couplings;



49

we shall refer to it as the Klein duality since, as we shall show, it is structured by
the Klein four-group ∼= Z2 × Z2. We give a simple algorithm determining which
graphs admit the duality, based on this Klein group structure. The Klein duality
gives stripy phases as FM-duals. Diagonalizing the classical version of HKH with
spins of unconstrained length (i.e. the Luttinger-Tisza approximation), we identify
unconventional ordering patterns and also find hints of quantum magnetically dis-
ordered phases, most interestingly on the hyperkagome. The Luttinger-Tisza phase
diagrams are shown in Fig. 4.1. To directly capture Majorana fermion quantum spin
liquids analogous to the Kitaev honeycomb QSL, we decompose spins into Majorana
combinations of Schwinger fermions, a mean field treatment which is exact for the
Kitaev honeycomb model, finding on all other lattices fermionic QSLs which break
time reversal and carry gapless excitations, but which are not exact solutions. For the
honeycomb and hyperkagome pure Kitaev Hamiltonians, the lattice fragments under
a bond type γ into disjointed localized clusters, giving flat bands in the Majorana
mean field as well as in the Luttinger-Tisza approximation, which hints at a possible
analogy between the honeycomb Kitaev QSL and the Kitaev Hamiltonian ground
state on the hyperkagome.

We focus on two candidate materials, while also considering other related com-
pounds. The recently epitaxially fabricated Ir2O4 is a spinel without the A cation,
leaving the iridium ions on a pyrochlore lattice with oxygens positioned appropri-
ately, as described below; Ir2O4 was found to be a narrow gap insulator[149]. The
spin liquid candidate Na4Ir3O8 is an iridate with S = 1/2 moments on the three
dimensional hyperkagome lattice, which exhibits no magnetic order down to at least
2K[181]. In addition to these two iridates, this study may also capture compounds in
which iridium is replaced by a transition metal ion with strong spin orbit coupling,
intermediate correlations and valency appropriate for a magnetic effective spin one
half model (see below). Recently, the osmium oxides CaOs2O4 and SrOs2O4 were
computationally predicted[207] to be stabilized in the spinel structure relevant to
Kitaev-Heisenberg physics; if they indeed exist in this geometry, HKH should form at
least part of their magnetic Hamiltonian. Kagome and triangular lattice iridates may
be seen as appropriate layers within epitaxially stabilized Ir2O4, coupled together in
a nontrivial manner. Triangular lattice iridates could potentially also be stabilized
as analogues of the cobaltates[150] NaxCoO2, where Co is on a triangular lattice; the
preferred valency would exist uniformly only in the limit x → 0, but small x should
offer interesting perturbations as well as likely separate layers of triangular lattices.
However, no triangular lattice iridate with the relevant edge sharing octahedra struc-
ture is currently available; a compound of the type NaxIrO2 may or may not turn out
to be stabilized.

In addition to the honeycomb Kitaev-Heisenberg model, other previous work has
investigated Hamiltonians related to HKH on other lattices. Chen and Balents[108]
studied spin Hamiltonians on the hyperkagome lattice for Na4Ir3O8, in the strong
and weak SOC limits (relative to octahedral distortions). Within the strong SOC
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Figure 4.1: Phase diagrams using the Klein duality as well as the Luttinger-Tisza
approximation (LTA). Phase diagrams are shown for the Kitaev-Heisenberg Hamil-

tonian, HKH = η (1− |α|) ~Si · ~Sj − 2ηαS
γij
i S

γij
j with η = ±1, on the various lattices.

Note that the parameter space is a ring: for the α parameter segments shown here
the endpoints should be identified, i.e. writing the parameter as (η,α), identify the
points (-1,-1)∼=(+1,+1) and also identify the points (-1,+1)∼=(+1,-1). Rich phase di-
agrams are found. 2D and 3D stripy magnetic phases (blue), found on all lattices,
are exact and fluctuation free by the Klein duality at the FM SU(2) point (yellow
star) η=+1,α=1/2. On the kagome and hyperkagome lattices, outside the FM SU(2)
points, the FM and stripy orders are given non-unit-length spins by the LTA (gray
shading), suggesting frustration. Extensive degeneracy of LTA ordering wavevectors
hints at a non-spin-ordered “quantum” phase, labelled ”Q”: where the Hamiltonians
hosting Q phases have been solved, exactly[146] for the honeycomb at α=±1 and
numerically[213, 130] for the kagome at η=+1,α=0, they have turned out to host
non-magnetic phases. The hyperkagome hosts Q points at the Heisenberg antiferro-
magnet and its Klein dual, as well as at the pure Kitaev Hamiltonians, because any
single Kitaev bond type fragments the hyperkagome into disjoint clusters (Fig. 4.4).
The 120◦ triangular lattice and Neel and zigzag honeycomb orders are found with
normalized spins. Apparent ordering with LTA non-normalized spins is found at in-
commensurate wavevectors on the triangular lattice and in the cluster-ferrimagnet
and cluster-antiferromagnet (AF) regimes on the hyperkagome. Kagome, fcc and py-
rochlore lattices also host frustrated regimes with no definitive ordering within the
LTA, as described in the text (gray).
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case they considered the single superexchange pathway via oxygen ions generating
the single point HKH at α = 1/2, for which they found that classical configurations
of stripy patterns were completely unfrustrated 1. Superexchange via oxygen ions
generating anisotropic spin interactions for the SOC Kramers doublet in Na4Ir3O8

was also considered by Micklitz and Norman[179, 172] in electronic structure compu-
tations and associated microscopic tight binding parametrization. Recently Reuther,
Thomale and Rachel[188] studied a family of related Hamiltonians including on tri-
angular lattices formed by second neighbors of the honeycomb, with an associated
hidden ferromagnet. Very recently the classical HKH Hamiltonian was studied on
the triangular lattice by Rousochatzakis, Rossler, Brink and Daghofer[191]. Their
study included a classical Monte Carlo computation suggesting the intriguing possi-
bility that Kitaev exchange can stabilize an incommensurate vortex lattice of the Z2

topological defects of the Heisenberg antiferromagnet 120◦ order.

4.2 Kitaev couplings in lattices beyond the honey-

comb

Generating the Kitaev coupling requires a subtle recipe with ingredients from
chemistry, geometry, and a hierarchy of energy scales, as we now recall[129, 106, 107].
Spin orbit coupling is key, together with (intermediate) correlations; let us focus
on iridium. The iridium ions should retain their 5d electrons in localized orbitals,
and exist in the 4+ valence. Each iridium should be surrounded by six oxygen ions
(or other electronegative ions with valence p-orbitals), which form the vertices of an
octahedron cage, shown in Fig. 8.5. The octahedral crystal field splits the 5d orbitals
into an empty eg pair and a triplet of t2g orbitals with five electrons and one hole.
Strong spin-orbit coupling further splits t2g down to a half-filled Kramer’s doublet, the
spin-1/2 degree of freedom defining the low energy manifold. The final key ingredient
is the geometrical structure: edge sharing octahedra with 90◦ Ir-O-Ir bond angles.

In perturbation theory from the Mott insulator limit, virtual hopping of holes from
iridium t2g orbitals through intermediate oxygen p orbitals generate the low energy
spin Hamiltonian. There are multiple relevant exchange paths[106, 107]. When holes
hop through intermediate oxygens and meet on an iridium d-orbital, the resulting
coupling is a pure Kitaev term, and is proportional to JH/ ((Ud − 3JH)(Ud − JH)) ≈
JH/U

2
d . The iridium Coulomb exchange Ud and Hund’s rule coupling JH together

specify all of the multi-band interaction parameters, due to the symmetries of d-
orbitals. A second exchange path, with two holes meeting on an oxygen or cycling
around the Ir-O square, contributes a combination of Kitaev and Heisenberg cou-
plings equal to HKH at α = 1/2, with a coefficient and sign η depending on the oxy-

1We now know that even the quantum Hamiltonian is exactly soluble with its ground state free
of fluctuations, via the Klein duality.
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gen p-orbitals charge-transfer gap and Coulomb repulsion. Direct iridium wavefunc-
tion overlap gives a pure Heisenberg coupling. Recently[107], an additional pathway
through the higher eg orbitals has been proposed to be relevant as well, contributing
HKH at η = −1, α = 1/2. The interplay of these exchanges suggests α may not be
computable microscopically.

Generalizing this derivation to geometries beyond the honeycomb requires pre-
serving the edge sharing octahedra with 90◦ Ir-O-Ir bonds. Many commonly studied
iridates such as the layered perovskites and the “2-2-7” pyrochlores have corner shar-
ing octahedra and thus are not captured by this derivation. Fig. 8.5 shows two
adjacent octahedra, with edges color coded by the spin component coupling they
generate when the octahedra of neighboring Ir ions share that edge. It is evident
that all twelve octahedra edges may be shared while still maintaining 90◦ bonds and
three-fold symmetries (coupled space and spin rotations). Tiling octahedra which
touch along edges builds a face-centered cubic (fcc) lattice of the octahedra centers.

We thus find that in two and three dimensions, all lattices whose graph of nearest
neighbor bonds is a subset of the nearest neighbor bonds of the fcc, including the
fcc itself, may host analogues of the Kitaev exchange. Possible geometries include
the kagome and triangular lattices in two dimensions, and the face-centered cubic,
pyrochlore (as realized in spinel-based compounds) and hyperkagome geometries in
three dimensions. These are shown in Fig. 4.3. These six are commonly studied
lattices which are such subsets of the fcc, but an infinite number of lattices may
be added to this list. The materials discussed above all have these edge-sharing
octahedral structures and their magnetic Ir ions form one of these lattices. As for the
honeycomb iridates, reduced crystal symmetry distorting Ir-O angles away from 90◦

will generate other magnetic exchanges. Despite apparently strong > 10% distortions
of the bond angle in the sodium honeycomb iridate and a slew of experiments on
this material, a Kitaev exchange comparable to or even stronger than the Heisenberg
exchange is still consistent with current experimental results, suggesting a hopeful
outlook for the other materials.

Note that the quantum chemistry considerations pictured in Fig. 8.5 tightly con-
strain the possible lattice realizations of Eq. 5.1. Specifically, these constraints are
tighter than those imposed by naive symmetry considerations of SOC. For example,
it is natural to define an implementation of SOC that couples spin component Sz to
bonds along ẑ, i.e. locks the Bloch sphere to real space. This would generate Eq. 5.1
on the simple cubic lattice with SzSz coupling along ẑ bonds, as well as on the square
lattice with γ = x, y. But the exchange pathways of Ir t2g orbitals forbid this scenario.
Instead, the analysis above shows that for t2g orbitals as in iridium, SOC couples spin
component Sz to the fcc lattice bonds lying normal to ẑ. The simple cubic lattice
version of HKH cannot be generated, and a compound structured as layers of a square
lattice would collapse its Kitaev exchange to uniform ising couplings along all square
lattice bonds.

The honeycomb and hyperkagome lattices share a common feature distinguishing
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Figure 4.2: Edge-sharing IrO6 Octahedra generating Kitaev exchange. Iridium ions
(spheres) are each coordinated by six oxygen ions forming vertices of octahedra. Oc-
tahedra of neighboring Ir ions share edges. Dotted (purple) lines show the iridium-
oxygen-iridium hopping paths, which form a square with 90◦ angles. As described in
the text, these superexchange paths generate an ising interaction between the iridium
effective spins, which couple a spin component x, y or z depending on the orientation
of the shared octahedra edge (shown in red, green and blue). Ir lattices hosting this
Kitaev exchange must arise from a regular tiling of these edge-sharing octahedra.

them from the other lattices: if we only keep bonds of a single Kitaev type γ, the
lattice fragments into localized disconnected clusters. On the honeycomb, each cluster
contains two sites, and forms the unit cell. On the hyperkagome, each cluster contains
three sites, arranged into a line segment. For a given bond label γ, the twelve site unit
cell fragments into four disjointed clusters, whose line segments are oriented parallel
within each of two pairs and perpendicular between the pairs. The structure on the
hyperkagome unit cell is shown in Fig. 4.4. As discussed below, this fact has dramatic
repercussions for the Kitaev Hamiltonians in both the Luttinger-Tisza approximation
and in the Schwinger fermion Majorana mean field (which on the honeycomb describes
the Kitaev QSL). In both cases, certain excitations only propagate within a single
Kitaev bond type γ, and the localized disconnected clusters imply these excitations
must have completely flat bands.

4.3 Klein duality and hidden ferromagnets

4.3.1 Connections to previous work

Exactly solvable quantum Hamiltonians are rare in dimension higher than one.
It is quite remarkable that the stripy phase at η = +1, α = 1/2 found for the
honeycomb Kitaev-Heisenberg model[106] is exact, a hidden ferromagnet exposed by
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Figure 4.3: Kitaev-Heisenberg lattices. Iridium ions arranged in these lattices may
generate the Kitaev spin exchange, coupling component x, y, z on bonds colored red,
green, blue respectively. A blue colored bond connecting two Ir sites implies that the
respective IrO6 octahedra share a blue edge as in Fig. 8.5. We also list examples of
possible relevant iridium compounds which form these lattices.

the site dependent spin rotation which quadruples the unit cell2. Unlike Neel order on
even bipartite lattices, this stripy antiferromagnetic order is exact and fluctuation-free
at α = 1/2.

This ”four sublattice rotation trick” has been known by Khaliullin and Okamoto
for t2g orbitals in a cubic environment since as early as 2002[136]. It was used for
Kitaev-Heisenberg-like Hamiltonians in ferromagnetic titanates[136, 137] as well as
in other systems, including an explicit transformation on the triangular lattice[135] 3

to find the dual of 120◦ order for CoO2. It was then applied to the honeycomb lattice
by Chaloupka, Jackeli and Khaliullin in their derivation of the Kitaev-Heisenberg
model for the honeycomb iridates[106]. However, its general structure has not been
previously elucidated. We will now show that this duality transformation may be
defined on general graphs with Kitaev γ bond labels and that it has the structure
of the Klein four-group, isomorphic to Z2 × Z2. This will then lead to a geometrical
condition specifying which lattices and finite graphs admit the Klein duality, a result
especially useful for designing finite graphs for numerical studies.

2Spin exchanges with lower symmetry may even be mapped to antisymmetric Dzyaloshinskii-
Moriya exchanges.

3In this work[135], see especially the discussions related to Fig. 1 (p.170) and Fig. 5 (p.194).
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4.3.2 Deriving the Klein transformation on graphs with Ki-
taev bond labels

We begin by defining a general unitary transformation, and then we will show
that under certain special conditions it acts as a duality transformation on Eq. 5.1.
Throughout this paper, by a “duality transformation” we refer to a mapping between
Hamiltonians that maps a set of Hamiltonians (and the associated phase diagram) to
itself (of course without mapping each particular Hamiltonian to itself). Consider a
lattice or finite graph in any dimension which connects S = 1/2 spins, and assume
each bond (i, j) carries a Kitaev type label

γi,j ∈ {1,x, y, z}. (4.2)

The set γ ∈ {x, y, z} corresponds to Kitaev coupling Sγi S
γ
j on that bond, where

{x, y, z} identifies a set of orthogonal axes in the spin Bloch sphere. The Hamil-
tonian on the bond may have other terms such as Heisenberg coupling and various
anisotropies; but the transformation will turn out to be most useful if the coupling
includes only Kitaev and Heisenberg terms, as in Eq. 5.1. The label γi,j = 1 can
be assigned to a bond that does not have a Kitaev exchange (only Heisenberg and
possible anisotropies), such as a second or third neighbor interaction. In general such
farther neighbor interactions supplementing HKH will frustrate the transformation,
so when making use of the Klein duality the lattice should usually be considered to
be just the pure nearest neighbor Kitaev-Heisenberg model HKH , where all bonds
carry γ ∈ {x, y, z}. But we will show below that certain farther neighbor Heisen-
berg interactions do preserve the duality structure, and may be fruitfully included as
γ = 1.

Let us proceed by describing the relevant transformations on individual sites.
Assign each site a label

ai ∈ {1,X,Y ,Z} (4.3)

which will specify a unitary transformation on that site, specifically rotation by π
around the Bloch sphere axis Sa for a ∈ {X,Y ,Z}, and no rotation for the identity
element a = 1. Note that π rotation around Sa flips the sign of the spin components
perpendicular to a, so that the rotation ai = Z multiplies the (x, y, z) components of
Si by the sign structure g[Z] = (−1,−1, 1), and also that g[1] = (1, 1, 1).

Now, observe that both bond labels γi,j and site labels ai may be interpreted as
elements of the single set {1,X,Y ,Z}. We may turn this set into a group by defining
a multiplication rule. A possible definition is suggested by the multiplication of the
associated sign structures g, which entails for example g[X]g[Y ] = g[Z], suggesting
we should define X Y = Z. The resulting multiplication table is defined by

X2 = Y 2 = Z2 = XY Z = 1 (4.4)

with 1 acting as the identity. This is the presentation of the group with generators
(X,Y ,Z) and relations (X2,Y 2,Z2,XY Z), known as the Klein four-group. The
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Klein group is abelian and with four elements is the smallest non-cyclic group; it is
isomorphic to Z2 × Z2.

There is an alternative, geometrical, way to define multiplication on the elements
ai and γi,j. We define the geometric multiplication (∗) of a site i and one of its bonds
(i, j) to be the site reached by traversing the bond, i∗ (i, j) = j. The associated Klein
group elements ai and γi,j inherit this geometric multiplication as

ai ∗ γi,j = aj. (4.5)

The Klein group product (×) and the geometric multiplication (∗) are consistent on
a bond if they give the same answer, ai ∗ γi,j = ai × γi,j. We say the transformation
given by site labels {ai} is the Klein transformation if the geometrical multiplication
is consistent with Klein group multiplication on every bond in the lattice.

If the transformation site labels ai, aj across a bond are consistent with the Klein
group product, i.e.

ai × γi,j = aj (4.6)

or equivalently (since elements in the Klein group square to the identity)

ai × aj = γi,j , (4.7)

then the transformation changes the form of a Kitaev-Heisenberg coupling in an
especially simple way. This is simply because the sign flips g[a] multiply by the Klein
group rules, so the diagonal spin exchange

∑
α J

α
i,jS

α
i S

α
j transforms by

Jαi,j → g[ai]αg[aj]αJ
α
i,j = g[γi,j]αJ

α
i,j (4.8)

where g[a]α ∈ ±1 is component number α of the vector g[a] of ±1 signs. The trans-
formation flips the sign of the components of J perpendicular to the bond type label.
For Kitaev Heisenberg exchange, this means that the Heisenberg coefficient flips sign
and the Kitaev coefficient gains twice the (old) Heisenberg coefficient.

Even if the transformation labels on two sites are consistent with the Klein group
product on that bond, it might seem improbable that the ai rotation labels can be
chosen across the entire lattice in a pattern that is Klein group consistent on all
bonds. Such consistency for all bonds is necessary for the transformation to change
the Hamiltonian uniformly. Now the Klein group structure shows its worth. The
condition on the transformation {ai} — consistency between geometric and Klein
group multiplication on each bond — can be expressed as a condition which refers
only to the lattice: that the γi,j encountered in any closed path multiply to the
identity 1. In other words, all closed loops on the lattice must be composed of the
identity operators 1,X2,Y 2,Z2,XY Z. Then the transformation may be consistently
defined by Klein group multiplication of bond labels on a any path,

aj =

 ∏
`∈pathi→j

γ`

 ai. (4.9)
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4.3.3 Geometrical condition for the Klein duality

We have shown that the existence of the Klein duality can be expressed as a
condition on the lattice. Using the Klein group structure, we can write this condition
as follows. Any closed loop, containing Nx x-bonds, Ny y-bonds and Nz z-bonds, must
satisfy

Nx, Ny, Nz all even or all odd. (4.10)

The three Nis can be all even because Klein group elements square to the identity, or
all odd because XY Z = 1. If this condition Eq. 4.10 is satisfied on all closed loops
then the Klein duality can be constructed consistently as follows: choosing a reference
site i which for simplicity will be unchanged in the duality, ai = 1, assign any site
j a rotation label aj as simply the Klein group product of the Kitaev bond labels γ
on any path from i to j. The constraint Eq. 4.10 ensures this duality construction
is consistent regardless of the choice of paths i to j. The Klein duality then maps
Eq. 5.1 to itself, transforming the parameters α and η according to Fig. 4.5.

It is easy to see that the Klein duality indeed exists on all of the infinite lat-
tices shown in Fig. 4.3; because the Klein group is abelian, it is sufficient to check
that the condition is satisfied on small local loops. For example, triangle faces have
Nx = Ny = Nz = 1. The condition also holds on other lattices such as the simple cu-
bic that can host symmetric Kitaev exchange but cannot generate it via t2g-p orbital
superexchange. Adding pure Heisenberg (γ = 1) further neighbor interactions gener-
ally spoils the Klein duality, though if all the resulting loops satisfy Eq. 4.10, the Klein
duality survives unscathed and moreover does not modify the pure Heisenberg γ = 1
interactions, even while it flips the sign of Heisenberg interactions on Kitaev-labeled
bonds. This occurs, for example, with J3 Heisenberg exchanges on the honeycomb
and kagome lattice, connecting sites on opposite corners of a hexagon. The family of
Hamiltonians preserved by the duality is then enlarged to JK − J1 − J3, ie nearest
neighbor Kitaev-Heisenberg plus third neighbor Heisenberg. This JK−J1−J3 family
of Hamiltonians maps to itself (non-trivially) under the Klein transformation, with
J3 unchanged.

For graphs and finite lattices with periodic boundary conditions (PBC), consid-
ering small local loops is insufficient; loops traversing the PBC may break Eq. 4.10
and spoil the Kitaev duality. Such winding loops must be checked explicitly. Here
the condition Eq. 4.10 should serve much practical use, as finite sized versions of the
Fig. 4.3 lattices with PBC are useful for numerical studies, and it may otherwise be
difficult to construct or identify the choice of PBC which admit the Klein duality. In
many cases the appropriate PBC involve nontrivial twists that, in a continuum limit,
appear as cutting and gluing operations on the boundaries.
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4.3.4 The Klein duality on HKH, Klein self-dual points and
Klein Z2 symmetry

In order to describe the action of the Klein duality on the parameter space of
Eq. 5.1 , let us first discuss the η,α snd other parametrizations. In Eq. 5.1 , the sign
η = ±1 is the sign of the Heisenberg exchange and the sign of α is minus the relative
sign between the Kitaev and Heisenberg exchanges. This is a compatible extension
of the α parametrization introduced in Ref [106]; restricting to η = +1, 0 ≤ α ≤ 1
gives the original parameter space[106] with antiferromagnetic (AF) Heisenberg and
ferromagnetic (FM) Kitaev interactions. It is clear that both the FM and AF pure
Kitaev Hamiltonians are each described by two parameter points, which must be
identified,

(η = +1,α = +1) ∼= (η = −1,α = −1)

(η = +1,α = −1) ∼= (η = −1,α = +1). (4.11)

Identifying (i.e. gluing) these pairs makes the (η,α) parameter space into a circle.
In the axis shown at the top of Fig. 4.5, the two α segments (for η = +1,−1)
are connected both in the middle where they are drawn to almost touch and also
at their distant endpoints (where arrows are drawn). Comparing to the angular
parametrization presented in Ref. [107], η = +1(η = −1) is the right(left) side of
the circle, and α = −1, ..., +1,−1, ..., +1 increases going clockwise. (We will also
sometimes refer to both FM and AF pure Kitaev Hamiltonians simultaneously, in
which case the notation α = ±1 is unambiguous.) Note that the η,α parametrization,
though (piecewise) linear, is non-analytic at α = 0,±1, which may be an issue for
certain numerical computations.

Now we may discuss how the Klein duality acts on Eq. 5.1 . In other words, the
Hamiltonian Eq. 5.1 with certain parameters η,α is equivalent to the Hamiltonian
Eq. 5.1 on the rotated spins but with different parameters η′,α′. The duality is shown
by the blue lines in Fig. 4.5. Note that where the blue lines are roughly vertical, the
duality approximately just flips the sign of both η and α, i.e. just flips the sign of
the Heisenberg term. In general it flips the sign of the Heisenberg term but also adds
twice the (old) Heisenberg term to the Kitaev term,

JH ~Si · ~Sj + JKS
γij
i S

γij
j −→ (−JH)~Si · ~Sj + (JK + 2JH)S

γij
i S

γij
j . (4.12)

Note that with Eq. 5.1 as written, changing α also changes the overall energy scale;
this can be avoided by dividing Eq. 5.1 by (1 − |α|), so that the magnitude of the
Heisenberg term remains fixed at 1.

On Eq. 5.1 the duality always takes η → −η, but acts on α in a nonlinear way,
approximately shown by the changing slope of the blue lines in Fig. 4.5. The relation
between α and α′ is given implicitly by

α′α = (1− cα′)(1− cα) , cα ≡
{

0 α ≤ 0
2α α ≥ 0

. (4.13)
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As is clear from Fig. 4.5, the relation may be written explicitly as a simple piecewise
function,

α′ =


1

α+2
−1 ≤ α ≤ 0

1−2α
2−3α

0 ≤ α ≤ 1
2

1
α
− 2 1

2
≤ α ≤ 1

. (4.14)

The family of Hamiltonians Eq. 5.1 can be generalized by modulating the strength
of couplings on different bonds in arbitrary ways; the Klein rotation generalizes as
well to arbitrary configurations of coupling strengths. Generically it will no longer
map one simple family of Hamiltonians to itself, but it may still offer hidden exactly
solvable points, such as by mapping Eq. 5.1 with toric code anisotropies of the Kitaev
coupling strength into a mixed ising-Heisenberg ferromagnet with an exact ground
state. Specifically, given Kitaev bond strengths of (1 − a/2, 1 − a/2, 1 + a) on the
three bond types, the location of the hidden ising ferromagnet shifts to η = +1,
α = 1/(2− a/2).

Duality relations in condensed matter physics typically map order to disorder
or strong coupling to weak coupling, such as the duality relating the paramagnetic
and ferromagnetic phases in the transverse field (quantum) ising model. The Klein
rotation is a duality in the sense of mapping a family of Hamiltonians to itself, but it is
not amenable to this typical interpretation. First, there is no sense of weak and strong
coupling regimes within the parameter space of Eq. 5.1 . Second, this parameter
space forms a ring, and rather than a single self-dual point, it offers two distinct
Hamiltonians which are self-dual under the Klein duality. Third, as is rigorously
known for the honeycomb lattice and suggested by the LTA for the other lattices
below, the self-dual pure Kitaev Hamiltonians lie in the interior of a phase rather
than signifying a phase boundary.

The Hamiltonians at the two Klein self dual points may alternatively be inter-
preted as possessing an enlarged symmetry group. The additional symmetry is gener-
ated by the Klein duality and has Z2 characteristic. It thus acts in a highly nontrivial
manner on spins on different sites. Phases that preserve this Klein Z2 symmetry must
contain this highly nontrivial structure; there is currently one known example of such
a phase, the Kitaev honeycomb spin liquid. If any lattice turns out to host a magneti-
cally ordered phase which does not spontaneously break the Klein Z2 symmetry, such
a phase would have a complex pattern of noncoplanar spin order. This is unlikely,
but there may also be phases which break the Klein Z2 symmetry but do not break
too many other symmetries, yielding a ground state manifold that naturally splits
into the two Klein Z2 broken portions. Determining which or whether any of these
scenarios holds on any particular lattice is left for future work.



60

4.4 Exactly soluble stripy phases as Klein duals of

the ferromagnet

The most obvious consequence of the existence of the Klein duality is seen by
applying the duality on the Heisenberg ferromagnet. At the resulting parameter
point η = +1, α = 1/2, the ground state manifold of the quantum Hamiltonian
is known exactly and consists of simple product states, parametrized by the full
SU(2) symmetry. The ground states may be found by taking a ground state of the
Heisenberg ferromagnet, and applying the rotations defined by the Klein duality on
this magnetic order. The result is the stripy collinear magnetic order. We will use
the name stripy to refer to the FM-dual phase on lattices in any dimension, both
to preserve the analogy to the honeycomb and also because, as shown below, the
3D-stripy orders can have some “stripy” features in their own right.

Away from the SU(2) symmetric point the symmetries reduce to the lattice SOC
operations. The stripy ordering breaks the three-fold rotation symmetry, present in
all Kitaev lattices as in Fig. 4.3, that simultaneously permutes the suitably chosen
Euclidean directions x̂ → ŷ → ẑ → x̂, the same axes on the Bloch sphere and also
the Kitaev bond labels x → y → z → x. The appropriate coordinate system is set
by an IrO6 octahedron, in which the ordering is along one of the three directions
(1, 0, 0), (0, 1, 0), (0, 0, 1) i.e. x̂, ŷ, ẑ. ẑ-type stripy order has z-bonded spins aligned
parallel and x or y bonded spins aligned antiparallel. The collinear spin axis is then
fixed to Sz, though the direction of the ordered moment will likely be determined by
other effects in any material realization.

The stripy orders on the various lattices share common features but also host
distinguishing characteristics. On the two dimensional lattices, which always appear
as layers perpendicular to the (1, 1, 1) axis in the IrO6 coordinate system, the ordering
breaks the (SOC version of) 120◦ lattice rotation symmetry. On the triangular lattice
it is literally alternating stripes (i.e. lines of sites) of up spins and down spins. On
the honeycomb lattice, each stripe is composed of the two-site clusters that lie on a
given line; this order is also known as “IV” in the J1-J2-J3 literature. On the kagome
lattice, stripy order gives the same configuration on each unit cell (is wavevector Γ)
of two spins up and one spin down, meaning it is ferrimagnetic with a nonzero net
magnetization. At the exact α = 1/2 point the spins are saturated and the net
magnetization is 1/3 that of the ferromagnet.

In three dimensions, the 3D-stripy orders involves alternating planes of up spins
and down spins. For say ẑ stripy order the planes are normal to ẑ. On the face
centered cubic (fcc) lattice, the planes are faces of the fcc cube. On the pyrochlore
lattice, the stripy order acquires an additional feature: spin-up planes are broken up
into chains aligned in one particular direction, and spin-down planes are composed of
chains aligned in the perpendicular direction. On the hyperkagome lattice this feature
persists, and moreover the chains are broken into oriented linear clusters: for z-stripy
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order the z-type three-spin-chain clusters of Fig. 4.4 are oriented uniformly within
the spin-up planes, and also uniformly but in a perpendicular orientation within the
spin-down planes. The 3D-stripy orders are shown in Fig. 4.6.

4.5 Luttinger-Tisza approximation phase diagrams

Except for the Heisenberg ferromagnet and its Klein dual point as described above,
the Kitaev-Heisenberg Hamiltonians are frustrated 4. The resulting sign problem for
quantum Monte Carlo renders their quantum phase diagrams, especially for the three
dimensional lattices, exceedingly difficult to compute. The Hamiltonians Eq. 5.1 on
the various lattices are quite unique in that they all offer an exact solution at a
nontrivial point in the phase diagram, the Klein dual to the ferromagnet. To explore
the remainder of the phase diagrams we must use approximation methods, as we shall
now describe.

For an initial survey of the phase diagrams we employ the Luttinger-Tisza Ap-
proximation (LTA), also known as the spherical model[164, 163, 92, 132]. It is a
semiclassical approximation in that it improves upon the classical Hamiltonian, in-
corporating some notion of quantum fluctuations and a reduced ordered moment.
While the classical version of a Hamiltonian has the hard constraint that the ordered
moment (i.e. the spin vector) on each site must have magnitude S, quantum fluc-
tuations are expected to relax this constraint. Implementing this constraint only on
average with a single global Lagrange multiplier, the Hamiltonian Eq. 5.1 becomes
free quadratic and the lowest energy configuration of the classical spins may simply
be found by a Fourier Transform and a diagonalization of the spin and sublattice
indices.

The LTA always computes a lower bound to the energy of the classical model;
this inequality becomes a strict equality when the LTA minimum energy configuration
happens to obey the unit length constraint. In turn, classical configurations of spins
with length S give upper bounds to the true ground state energy of a spin-S quan-
tum Hamiltonian[93], simply by defining site-product wave functions which by the
variational principle have at least the ground state energy. When a non-normalized
configuration is chosen by the LTA, its energy is lower than the classical minimum
energy which in turn is generally higher than the quantum ground state energy, so the
energy of the LTA configuration can match the true ground state energy. Relaxing the
unit length constraint indeed allows the classical ordered moments to fluctuate, and in
some ways improves upon the constrained classical Hamiltonian as an approximation
to the quantum Hamiltonian.

On a Bravais lattice and for the case with SU(2) spin rotation symmetry, so-
lutions with normalized spins can always be constructed from the LTA minimum

4the antiferromagnet and its Klein dual on the bipartite honeycomb are of course exceptions as
well.
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eigenvalues[132]. For momenta q satisfying q = −q there is a family of degenerate
orders but even for arbitrary incommensurate momenta there are coplanar spiral so-
lutions with normalized spins, with the first(second) spin component modulated by
the real(imaginary) part of exp[iqr]. However, when SU(2) spin rotation symme-
try is broken such as by SOC, there may only be one low energy spin component
and this approach can fail, requiring q = −q to construct states with unit length
normalized spins. On lattices with multiple sites per unit cell, the LTA may assign
different lengths to sites in the unit cell, which again points to frustration, though
if the spins have nearly the same length then we expect that ordering pattern to be
robust[?]. Note that even when classical solution do exist, when the LTA identifies
extensive ground state degeneracy or includes degenerate ground state configurations
with vanishing ordered moment, it suggests quantum fluctuations will melt any mag-
netic order. In such cases determining the ground state requires a full quantum anal-
ysis. Thus while the Luttinger-Tisza approximation cannot characterize non-classical
phases, it is a useful first approach for identifying features in the phase diagram.

The LTA phase diagrams are shown in Fig. 4.1. Here we discuss general features;
see the Appendix for details. Stripy phases are found surrounding the FM-dual point
in all of the lattices; they are exact ground states at η=+1,α=1/2 even within the
LTA. However, the kagome and hyperkagome lattices exhibit an interesting frustra-
tion: while spins are uniformly normalized at the SU(2) FM-dual point, away from
α = 1/2 the energy is minimized when spins within the unit cell are of different
lengths. As it must by the Klein duality, this frustration is observed in the ferro-
magnet phase as well. Evidently for the kagome and hyperkagome, but not for the
pyrochlore or the other lattices, even small SU(2) breaking within the ferromagnetic
phase creates substantial frustration visible in the LTA.

At certain points in the phase diagram, all wavevectors in the BZ offer spin config-
urations with the same minimum energy, so that the lowest band is flat. While subex-
tensive degeneracies occur generically at certain parameter points and are expected
to be completely lifted by boundary conditions, such extensive degeneracies, marked
by “Q” in Fig. 4.1, likely signify a new phase. What could the new phase be? There
are only two Hamiltonians hosting LTA extensive degeneracies for which the quantum
ground state is known: the honeycomb Kitaev model (α = ±1) which is exactly solu-
ble, hosting the Kitaev QSL with Majorana fermionic spinons; and the kagome Heisen-
berg antiferromagnet, which was recently found by DMRG simulations[213, 130] to
host a QSL phase, consistent with a bosonic Z2 QSL[193]. The ground states of
pyrochlore and hyperkagome Heisenberg antiferromagnets, which also have LTA flat
bands, are not conclusively known but have been proposed to be plaquette or dimer
valence bond solids (VBS) as well as various fractionalized QSLs[94, 152, 220, 147].

There are thus two conclusions to draw about the other Q points in Fig. 4.1.
First, by the Klein duality, any lattice hosting a phase with no magnetic order in its
AF Heisenberg model also has the same type of phase surrounding the η=−1,α=1/2
point, with FM Heisenberg and AF Kitaev exchanges. For example, the recent dis-
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covery of the kagome AF Heisenberg QSL then immediately yields the Klein dual of
this QSL at the dual point; this Klein dual QSL will likely have distinct physical prop-
erties in its response to external fields. Second, by analogy with the known Q points
mentioned above, we may guess that the pure Kitaev models on the hyperkagome
also host a quantum phase with no magnetic order, either a VBS or a QSL.

It is especially encouraging that the LTA flat bands within the honeycomb and
the hyperkagome pure Kitaev models arise via the same mechanism. Consider that
LTA flat bands in the AF Heisenberg models occur due to the lattice specific band
structure from a hopping model with π flux. For the pure Kitaev models α = ±1, a
given spin component such as Sz hops only on z-type bonds. As mentioned above,
for the honeycomb and hyperkagome lattices, turning off y and x bonds splits the
lattice into an extensive number of localized disconnected segments, as shown for
the hyperkagome in Fig. 4.4. Localization in the disjointed clusters yields the flat
bands. Moreover, unlike for the Heisenberg case where (in the relevant lattices we
study) there are gapless excitations where the flat lowest band touches higher ones,
for the Kitaev cases the disjointed clusters yield a band structure where all bands are
completely flat and fully gapped, in the hyperkagome case also fourfold degenerate
at each wavevector due to four clusters in the unit cell.

Returning to the survey of the LTA phase diagrams, we find other regions with
strong frustrations. On the kagome and pyrochlore lattices, over wide regions of pa-
rameter space the LTA fails spectacularly: in the regimes labeled “frustrated”, the
unit cell in both lattices has two spins aligned antiparallel but with the remaining
one (kagome) or two (pyrochlore) spins chosen to have exactly zero ordered moment
by the LTA. Viewing the LTA as an enhancement of classical solutions which incor-
porates quantum fluctuations, we see that here the expected quantum fluctuations
are sufficiently strong to eliminate some of the ordered moments, pointing to espe-
cially strong quantum frustration. A related regime on the fcc, a Bravais lattice,
finds subextensive degeneracy involving incommensurate momenta, that would form
spiral orders but with only one low energy spin component cannot achieve correctly
normalized spins across the spiral.

Finally, on the hyperkagome the LTA finds two regimes with apparent magnetic
order with unconventional spin configurations. Though in both cases the spins cross
the unit cell are not chosen to have the same ordered moment, this is expected with
such a large unit cell, and the LTA configurations should serve as good starting points
for quantum Hamiltonian ground states, likely with quantum fluctuations greatly
reducing the ordered moment. For η=+1 and α < 0 we find that for z-type order,
z-clusters all have the identical spin ordering “(up, down, up)”, resulting in an AF
state with a nonzero net magnetization which we thus term the “cluster-ferrimagnet”.
The Klein dual of this order, for large α at η=−1, has the same “(up, down, up)”
pattern in each z-cluster except clusters are flipped on alternating planes, so there
is zero net magnetization; we term it the “cluster-AF” state. These two Klein dual
orders are shown in Fig. 4.7 and Fig. 4.8.
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4.6 Searching for analogues of the Kitaev Majo-

rana spin liquid beyond the honeycomb

All the lattices in Figure 4.3 except the honeycomb have coordination number
larger than three, spoiling the Kitaev honeycomb spin liquid exact solution. However,
similar Majorana QSL phases could still occur for the Kitaev Hamiltonians on the
other lattices, only without an exact solution and with nonzero correlation length.
Since it is generally highly difficult to determine whether the true ground state of a
spin Hamiltonian forms a QSL, we will not attempt to answer this question. Instead,
we will study possibilities for similar Majorana QSLs on the other lattices using an
appropriate choice of mean field.

The exact solution of the Kitaev honeycomb model in terms of Majorana fermion
operators is a specific case of a Schwinger fermion decomposition mean field, which
becomes exact for this model[218, 102, 180]. To search for similar Majorana QSLs
on the other lattices, we thus employ this mean field. Spins are decomposed into
bilinears in four Majorana species χ0,1,2,3 as

Sa → iχ0χa with {χa,χb} = δa,b. (4.15)

This mapping is exact under the single fermion occupancy constraint χ0
iχ

1
iχ

2
iχ

3
i = 1/4.

On the honeycomb lattice this constraint commutes with the pure Kitaev Hamilto-
nian, but that does not occur on the other lattices. The Z2 gauge freedom in defining
the Majorana operators enables a choice of attaching gauge transformations to the
physical symmetry operations, called a projective symmetry group (PSG)[210]; see
the Appendix for details. The PSG of the Kitaev honeycomb model was previously
studied[218] and determined to be flux-free, with (χ1,χ2,χ3) transforming as a pseu-
dovector and each bond permitting Majorana bilinear expectation values only for two
Majoranas of the same species a, yielding a total of three mean field parameters:

u0
γ ≡ u0, uaa ≡ ua, u

b6=a
a ≡ ub (4.16)

with
uαγ[v] ≡ 〈iχαj χαj+v〉 (4.17)

where b is a bond. ub is set to zero for the pure Kitaev model. The resulting mean
field Hamiltonian is

HMF = −1
2

∑
i,v[i],α sign[v]ναγ[v]iχ

α
i χ

α
j

νaγ = η
(
(1− |α|)− 2αδaγ

)
u0

ν0
γ =

∑
a J

a
γu

a
γ = η ((2− 2α− 2|α|)ub − 2αua) (4.18)

where Jaγ is the coupling of spin component a on a γ-bond, i is a site, v[i] are the
bonds of site i and sign[v] is the orientation of the bond v within the PSG. This
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orientation determines how operators on the bond transform under symmetries. On
the honeycomb, bonds are oriented from sublattice A to B. The bond orientations
used in the PSGs for the triangular and the kagome lattice are depicted in Ref. [193]
(though that work dealt with bosonic QSLs, the bond orientation diagrams we take
are the same). For the triangle, it is known as the zero flux PSG. For the kagome,
this zero flux PSG is known as

√
3×
√

3 or Q1 = −Q2. The PSG analysis for this type
of mean field has not been successfully carried out on the 3D lattices; the pyrochlore
does not appear to give a unique decomposition[201]. On the hyperkagome however
one of the four spins in each tetrahedra is removed, so we can consistently choose the
orientation A → B → C → A within a triangular face in Fig. 4.4, giving a unique
PSG (given a choice of hyperkagome chirality[181]).

The mean field Hamiltonian HMF is a free Majorana bilinear Hamiltonian, so its
ground state is immediately known by computing its band structure. The qualitative
properties of this band structure carry the primary information, though the band
structure energy scales contain the unknown mean field parameters u. The param-
eters u can be determined self-consistently from the band structure by computing
the Majorana propagator, as a Matsubara frequency integral of the inverse of the
frequency-dependent Hamiltonian kernel. We have carried out the self consistency
computation on the triangular and honeycomb lattice, using the Kitaev-type majo-
rana flux-free PSG which is defined on these two lattices, and find that the mean fields
evolve with α smoothly away from the Kitaev limit, with no first order transitions.

Regardless of the exact values of the mean field parameters, choosing the mean
field to be analogous to the Kitaev honeycomb QSL already determines key proper-
ties of the resulting states on the various lattices. First, all the lattices except for
the honeycomb possess cycles with an odd number of bonds, such as triangles; this
immediately requires the Kitaev Majorana mean field to spontaneously break time
reversal symmetry[215]. These time reversal broken spin liquids might not display
typical characteristics of time-reversal broken states. For example, on the triangular
lattice, even though time reversal as well as 2π/6 rotation each independently flip the
flux pattern in triangular faces, the combined operation of time reversal with 2π/6
rotation is still preserved as a single symmetry operation, so the Hall conductance
vanishes. Second, lattices with an odd number of sites per unit cell necessarily have a
spinon Fermi surface; the even-unit-cell lattices of pyrochlore and hyperkagome may
or may not host gapped spinons.

Third, certain qualitative features of the band structure are determined by the
choice of mean fields, such as the consideration of only nearest neighbor bonds and
the PSG. There are four Majorana fermion species per site; for a pure Kitaev Hamil-
tonian, χ1,2,3 have bands related to each other by the 120◦ SOC combined spin-spatial
rotation, while χ0 has a generally different dispersion. For the honeycomb model, χ0

has a Majorana analogue of the Dirac cone, i.e. relativistic with zero mass, while
χ1,2,3 all have completely flat bands separated from zero energy by a complete gap.
The kagome lattice χ1,2,3 also has a flat band but it lies at zero energy i.e. at the



66

Fermi energy, yielding the Fermi surface which necessarily arises here. The flatness
results from a localized unpaired Majorana mode on one of the three sites in each unit
cell; but since the remaining two sites form a line spanning the lattice, they disperse
and the other bands are not flat, touching zero energy along lines in a quasi-1D spec-
trum. For the pyrochlore even qualitative statements cannot be currently made, since
as mentioned above, there is no special choice of minimal flux PSG. On the hyperk-
agome with bond orientations as described above, χ0 has some gapless subextensively
degenerate modes (such as from Γ to M); but χ1,2,3, like for the honeycomb, have
completely flat bands. These arise, as previously mentioned, because both the hon-
eycomb and the hyperkagome fragment into extensively many disconnected clusters
when only bonds of a single Kitaev label are kept. However, while the honeycomb
clusters have an even number of sites and hence can form two fully gapped bands,
separated from zero energy, the hyperkagome clusters have an odd (three) number
of sites; each cluster always has one energy band at zero energy and hence χ1,2,3 are
gapless.

4.7 Outlook

On the honeycomb lattice, the roles of the SU(2)-symmetric Heisenberg coupling
and the SOC Kitaev coupling are distinct and clear: Heisenberg exchange yields
magnetic order, Kitaev exchange yields the exactly solvable QSL phase. The natural
interpolation between the two limits, that would occur if the couplings arise in iridium
oxide compounds, is consistent with this framework: the intermediate region simply
holds more magnetic order. However, as we have discussed above, generalizations
of the Kitaev coupling naturally arise in iridium structures and other geometries of
edge-sharing octahedra on many other lattices, motivating the study of the phase
diagrams of Eq. 5.1 on these various 2D and 3D lattices. Beyond the honeycomb, the
roles of the two exchanges begin to break down.

The effect of lattice geometry on the “frustration” of a lattice is quite different for
the two terms; the Hamiltonian and the lattice determine the frustration together,
not independently. More surprisingly, even in cases when the Heisenberg Hamilto-
nian appears highly frustrating, interpolating between the AF Heisenberg and the
Kitaev limits, we find a phase which occurs on all the lattices and which is exact
and fluctuation free at a certain parameter point. Subtle interplays of different mag-
netic couplings, rather than a monotonic “frustration” measure, seem to be at play.
The intermediate stripy phase is exact by virtue of being related to the ferromagnet,
through a duality that emerges through the SOC on the t2g orbitals microscopically
generating the Hamiltonian.

The Klein group structure of the mapping between Hamiltonians (a duality) is in
some sense highly specific to these quantum chemistry considerations but in another
sense, as a mathematical object Z2×Z2, quite universal. The duality transformation
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it generates is interesting here for another reason: while most dualities fix a single
self-dual Hamiltonian and map the two regimes on either side of that point, with
qualitatively different features, to each other, the Klein duality is different. It admits
two self-dual Hamiltonians, which seem to generally lie in the interior of a phase.
And it acts in a complicated way on spin and spatial indices, making its action as a
Z2 symmetry operation highly nontrivial.

Regarding possible experimental significance of Hamiltonians arising from strong
SOC, it is important to observe that the Kitaev couplings naturally occur in a manner
more subtle and constraining than naive symmetry considerations would suggest: for
example, Kitaev interactions can arise for iridium ions on the fcc but not on the
simple cubic. Computations of the quantum phase diagrams on the various lattices,
especially the pyrochlore and hyperkagome, will pave the way towards predictions
and comparisons with experimental results.

4.8 Technical details on the Luttinger-Tisza Ap-

proximation phase diagrams for the various

lattices

Here we give the results of the Luttinger-Tisza Approximation (LTA) analyses in
more detail. The classical Kitaev-Heisenberg model on the triangular lattice has
been recently studied[191], and the phase diagram for the honeycomb is already
known[106]; we begin by reviewing the results for the triangular and honeycomb
lattices for the sake of direct comparison with the other lattices. Note that on all the
lattices, the pure Kitaev points α = ±1 always host degeneracies in the BZ; except
where noted below, these are just subextensive degeneracies, which we expect will be
lifted by small perturbations or by boundary conditions for a finite system.

Triangular lattice: AFM Heisenberg, η = +1. The pure Heisenberg antiferro-
magnet α = 0 hosts ordering at wavevector K (BZ corner), corresponding to 120◦

order with a tripled unit cell. This ordering can also be seen by explicitly working
with the enlarged unit cell. For 0 < α < 1/5 the ordering wavevector is incommensu-
rate as it migrates from K to M (BZ edge midpoint). For −1 < α < 0 the ordering
wavevector is also incommensurate, moving from K in the direction of Γ. Only one
spin component has minimum energy for a given momentum here, preventing the
construction of any order with unit length spins such as the usual coplanar spiral.
The antiferromagnetic Heisenberg limit 120◦ order actually has point topological de-
fects (vortices), with Z2 character; the recent triangular lattice classical model study
included classical Monte Carlo computations[191] which found they may be stabilized
into a vortex lattice in this incommensurate ordering phase. Finally, for 1/5 < α < 1,
we find stripy order at wavevector M . FM Heisenberg, η = −1. For −1 < α < 3/7
there is ferromagnetic order. For 3/7 < α < 1 continues the phase of incommensurate
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ordering wavevector between Γ and K from η = +1.
Honeycomb lattice: For pure Kitaev exchange α = ±1 there are extensive

degeneracies. AFM Heisenberg, η = +1. For −1 < α < 1/3, simple Neel order
(wavevector Γ) is stabilized, as the honeycomb is bipartite. For 1/3 < α < 1 there
is stripy order at M . FM Heisenberg, η = −1. Because we have a quadratic spin
Hamiltonian and a bipartite lattice, this regime can be mapped to η = +1 by flipping
all spin components on one of the two sublattices. For −1 < α < 1/3 there is a
ferromagnet, for 1/3 < α < 1 there is zigzag order at M .

Kagome lattice. AFM Heisenberg, η = +1. The α = 0 Heisenberg antiferro-
magnet hosts extensive degeneracy. For 0 < α < 1 there is stripy order (wavevector
Γ), here ferrimagnetic. But while spins are uniformly normalized at the SU(2) point
α = 1/2, away from α = 1/2 the energy is minimized when spins within the unit cell
are of different lengths, suggesting the ordering becomes increasingly frustrated. For
example near α = 1/2, if two of the spins within the unit cell are chosen to be nor-

malized with magnitude +1, the third has magnitude
1−3α+

√
9+α(−22+17α)

2(−1+α)
, or roughly

−2 + 2α. For −1 < α < 0 the LT method fails: two spins within a triangle plaquette
align antiparallel along the axis of their bond label γ, but the third is so frustrated
that its magnitude is set to exactly zero, also giving spurious subextensive line de-
generacies from Γ to M . FM Heisenberg, η = −1. α = 0.5, the Klein rotation of
the Heisenberg antiferromagnet, again hosts extensive degeneracy. The ferromagnet
exists over a wide range −1 < α < 1/2 but with the same strong frustration as for
the stripy phase: away from the Heisenberg limit α = 0, the energy is minimized by
having spins of different lengths within the unit cell. For example, at α = −2/5, the
unit cell has all spins aligned but with one spin at 2/3 the magnitude of the others.
The regime 0.5 < α < 1 continues the antiferromagnetic-Kitaev regime of η = +1,
with two oppositely aligned spins and the third spuriously set to zero.

Face centered cubic (fcc) lattice. AFM Heisenberg, η = +1. 0 < α < 1
hosts the 3D-stripy order, antiferromagnetic along a cubic axis, which for the fcc BZ
is at wavevector X (center of one of three square faces of the BZ). For Xz order,
stripy-ordered spins align along Sz.s For −1 < α < 0, there is a line degeneracy from
X to W (i.e. along diagonals of a square face of the BZ). The square face lies at
some Euclidean direction, say ẑ. The two perpendicular spin components (here Sx

and Sy) participate at X, with one of the two stabilized as the wavevector moves
towards a corner W . The set of minimal energy spin configurations, with normalized
spins, therefore contains the wavevector X stripy order though with spins uniformly
rotated to the Sx,Sy plane. The orders at generic degenerate q = (1 − r)X + rW
would usually form a spiral but here only have minimized energy for one of the three
spin components, so they cannot stabilize any order with unit length spins. For the
constrained classical Hamiltonian and the quantum Hamiltonian, the higher energy
spin component(s) are likely to be mixed into the ground state, so it appears the LT
method hints at spiral order in this regime. FM Heisenberg, η = −1. The ferromagnet
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is stable for −1 < α < 1/2. The region 1/2 < α < 1 is part of the spiral-like phase
of η = +1, forming a single phase stabilized by antiferromagnetic Kitaev interactions
regardless of the sign or presence of Heisenberg exchange.

Pyrochlore lattice. AFM Heisenberg, η = +1. The α = 0 Heisenberg anti-
ferromagnet hosts extensive degeneracy. Stripy order (wavevector Γ) is stable for
0 < α < 1. For −1 < α < 0 the LT method fails: the preferred states have two of the
four spins in the unit cell pointing antiparallel to each other, with the other two spu-
riously set to zero. The (subextensive) degeneracy extends across planes in the BZ,
specifically the high symmetry planes containing the gamma point and the centers
of (both hexagonal and square) faces. FM Heisenberg, η = −1. α = 1/2, the Klein
rotation of the Heisenberg antiferromagnet, again hosts extensive degeneracy. The
ferromagnet is stable for −1 < α < 1/2. Strong antiferromagnetic Kitaev exchange
at 1/2 < α < 1 continues the η = +1,α < 0 regime of plane degeneracies and two
missing spins. There are subextensive degeneracies at α = ±1. Note that unlike the
kagome case, here even away from SU(2) points, the ferromagnet and stripy regimes
have all spins of unit length.

Hyperkagome lattice: AFM Heisenberg, η = +1. The α = 0 Heisenberg
antiferromagnet hosts extensive degeneracy, as do the two pure Kitaev limits α = ±1.
Stripy order (wavevector Γ) nominally exists for 0 < α < 1, but with the same strong
frustrations (except for the SU(2) point α = 1/2) as for the kagome. For say ẑ
ordering, the four spins in the middle of their respective z-type clusters are chosen
smaller(larger) than unity for α < 1/2(α > 1/2). The region with antiferromagnetic
Kitaev exchange −1 < α < 0 hosts a magnetically ordered phase which we term the
cluster-ferrimagnet. In the z-type cluster-ferrimagnet, z-clusters all have the identical
spin ordering “(up, down, up)”, resulting in a state with a nonzero net magnetization.
The LTA gives the spins in the middle of each cluster a somewhat larger, unphysical,
normalization, but this magnetic pattern is likely to be robust. FM Heisenberg,
η = −1. α = 1/2, the Klein rotation of the Heisenberg antiferromagnet, hosts
extensive degeneracy like in the pyrochlore. (As already mentioned, the α = ±1 points
do as well.) The ferromagnet over −1 < α < 1/2 again has different length spins
within the unit cell, except for the SU(2) Heisenberg point α = 0. For 0.5 < α < 1
there is the cluster-antiferromagnet, which is the Klein dual of the cluster-ferrimagnet.
The two orders appear to be separated by the likely quantum phase, associated with
extensive degeneracy, at ηα = +1. In this order, like for the cluster-ferrimagnet, the
middle spin in each cluster points opposite to the other two and prefers to have a
larger magnitude. Unlike the cluster-ferrimagnet, the cluster-antiferromagnet has no
net magnetization since a pair of clusters is flipped relative to the other pair, as can
be seen by the Klein duality.
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4.9 Technical details on mean fields and the pro-

jective symmetry group (PSG)

The choice of partons (here Majorana fermions) with which to decompose the spin
is not unique; there is actually full gauge SU(2) freedom in defining the parton oper-
ators. When parton mean field hopping and pairing terms gain nonzero expectation
values, the freedom is partially lost so that the mean field Hamiltonian is only invari-
ant under a global Z2 transformation. This is known as the invariant gauge group
(IGG). Beyond the mean field level, the partons couple to a dynamical gauge field,
with the gauge group of the IGG. Hence when IGG= Z2, the spin liquid is known as
a Z2 spin liquid.

The mean field ansatz may be chosen to preserve as many of the symmetries of
the original Hamiltonian as possible, say a set of symmetries S. While the mean field
ansatz (the collection of mean field amplitudes on the lattice) may not be immediately
invariant under a symmetry in S, we may choose to always attach an SU(2) gauge
transformation to the symmetry, such that the mean field ansatz is invariant under
their combination. Relations of S (operators that multiply to the identity) must have
associated gauge transformations that multiply to an element of the IGG, ie a global
1 or −1 sign in the case where IGG= Z2. This collection of attached real and gauge
symmetry operations that leave the mean field Hamiltonian invariant is known as the
projective symmetry group (PSG). It is a necessary part of the description of any
mean field ansatz, and distinguishes different spin liquid phases even when they have
the same gauge group.
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Figure 4.4: Hyperkagome unit cell and decomposition into Kitaev clusters. A sym-
metric depiction of the hyperkagome structure, highlighting the four disjointed three-
site clusters which split up the unit cell for a given Kitaev bond label (red,green,blue).
The fact that the lattice fragments into these disjointed clusters for a given Kitaev
bond type has substantial repercussions, as described in the text. The four clusters of
a given type appear in two parallel-orientation pairs which are perpendicular to each
other (with different shading). The unit cell is composed of the 12 sites participating
in the four drawn triangular faces, as well as all 24 drawn bonds. We label the 12
sites by a letter A,B,C as in Ref. [151] so that A spins lie on midpoints of type-A
(here blue) clusters, etc; and by a number 1–4 (chosen to not repeat within a triangle
face or cluster). The camera angle, i.e. the vector pointing into the page, is just
slightly off (up-right) of a Cartesian (here also Bravais) axis; for Na4Ir3O8 it is the
vector from an iridium ion to a neighboring coordinating oxygen.
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SU(2) symmetry,

α
η = -1:  FM-H

α

η = +1:  AF-H

η = +1:  AF-H η = -1:  FM-H

Figure 4.5: Action of the Klein duality on the Kitaev-Heisenberg Hamiltonian. The
η,α parameters on the top line (oriented left to right) of the Hamiltonian Eq. 5.1 map
according to the blue lines to η,α parameters on the bottom line (oriented right to
left) in the Klein-dual Hamiltonian. Thick blue lines map the points shown exactly,
thin blue lines are a qualitative sketch. Note that the right and left edges of the figure
are identified, forming a ring. Both pure Kitaev Hamiltonians (α = ±1) are self-dual,
mapping to themselves. The points at α = 1/2 and η = +1, η = −1 are dual to the
SU(2) symmetric FM-Heisenberg and AF-Heisenberg points (yellow and brown stars)
respectively, with the FM dual point hosting the exactly soluble stripy phases on all
lattices in Fig. 4.3.



73

(a) 3D-stripy order on the face centered
cubic (fcc) lattice.

(b) 3D-stripy order on the pyrochlore lattice.

(c) 3D-stripy order on the hyperkagome lattice.

Figure 4.6: 3D-Stripy orders on the fcc, pyrochlore and hyperkagome lattices.
Black(white) spheres represent up(down) spins. Bonds are colored red, green, and
blue according to the Kitaev label. The ordering pattern is of alternating planes,
here normal to ẑ; z-type bonds (blue), i.e. those within the planes, connect spins
of the same orientation. On the pyrochlore and hyperkagome, planes are broken up
into uniformly oriented chains, with chains in spin-up planes oriented perpendicularly
to chains on spin-down planes. On the hyperkagome, the chains are further broken
into the linear three site clusters shown in Fig. 4.4. These stripy orders are exact at
η=+1,α=1/2, being Klein-duals of the ferromagnet.
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Figure 4.7: Magentic order of the cluster-ferrimagnet state on the hyperkagome.
Black(white) spheres are up(down) spins; bonds are colored according to Kitaev label.
Here shown for ẑ ordering, notice that the z-type clusters (blue), lying in planes
normal to ẑ, all have “(up, down, up)” spin configurations. This configuration has
nonzero net magnetization. Note that the cluster-ferrimagnet order is Klein-dual to
the cluster-AF order.

Figure 4.8: Magentic order of the cluster-AF state on the hyperkagome. Black(white)
spheres are up(down) spins; bonds are colored according to Kitaev label. Here shown
for ẑ ordering, notice that the z-type clusters (blue), lying in planes normal to ẑ,
have “(up, down, up)” spin configurations on even-numbered planes, and the opposite
“(down, up, down)” spin configurations on odd-numbered planes. This configuration
has zero net magnetization. Note that the cluster-AF order is Klein-dual to the
cluster-ferrimagnet order.
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Chapter 5

Realization of a three-dimensional
spin-anisotropic harmonic
honeycomb iridate

5.1 Synthesis and characterization of an iridate

with a new 3D lattice

This chapter turns to experiment, presenting the characterization and early mea-
surements of a remarkable new 3D material, related to the theoretical discussion of
the previous chapter.

This chapter is composed of excerpts from the related publication, Nature Com-
munications 5, 4203 (2014). The full author list of the publication is as follows: K. A.
Modic, Tess E. Smidt, Itamar Kimchi, Nicholas P. Breznay, Alun Biffin, Sungkyun
Choi, Roger D. Johnson, Radu Coldea, Pilanda Watkins-Curry, Gregory T. McCand-
less, Julia Y. Chan, Felipe Gandara, Z. Islam, Ashvin Vishwanath, Arkady Shekhter,
Ross D. McDonald and James G. Analytis.

Here we present some of the relevant experimental discussion from the publication,
together with some of the theoretical synthesis. The reader is invited to turn to the
published version of the manuscript for the full information on the experimental
methods, results and analysis.

Spin and orbital quantum numbers play a key role in the physics of Mott in-
sulators, but in most systems they are connected only indirectly — via the Pauli
exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) in-
troduce strong spin-orbit coupling directly, such that the Mott physics has a strong
orbital character. In the layered honeycomb iridates this is thought to generate highly
spin-anisotropic magnetic interactions, coupling the spin orientation to a given spatial
direction of exchange and leading to strongly frustrated magnetism. Here we report a
new iridate structure that has the same local connectivity as the layered honeycomb



76

and exhibits striking evidence for highly spin-anisotropic exchange. The basic struc-
tural units of this material suggest that a new family of three-dimensional structures
could exist, the ‘harmonic honeycomb’ iridates, of which the present compound is the
first example.

5.2 Introduction

Quantum spin systems are characterized by small moments where the spin orien-
tation is decoupled from the crystal lattice, in contrast to Ising-like spin systems that
often apply to higher spin states. In the Heisenberg model describing spin-isotropic
exchange between neigboring spins, spatial anisotropies of the exchange suppress
long-range order [?], but do not lead to anisotropy of the magnetic susceptibility.
Striking examples of this are quasi-1D and -2D systems where the exchange differs
by orders of magnitude for neighbors along distinct crystallographic directions [?, ?].
The spin-orbit interaction introduces magnetic anisotropy by coupling the spin to the
symmetry of the local orbital environment. Although in spin-1/2 systems the crystal
field does not introduce single-ion anisotropy (due to Kramer’s protection of the spin-
1/2 doublet), it can — via spin-orbit — introduce spin-anisotropies in the g-factor and
in the exchange interactions. The strength of the spin-orbit coupling varies by orders
of magnitude between the 3d and 5d transition metals. In the former, quenching of
the orbital moment decouples the orbital wavefunction from the spin, giving a g-factor
anisotropy that is typically small and an even smaller spin-anisotropy. For example,
spin-1/2 copper in a tetragonal crystal field has a g-factor anisotropy of order 10%,
whereas the spin-anisotropy of exchange is of the order of 1% [?].

The stronger spin-orbit coupling of the 5d transition metals is known to give rise
to larger magnetic anisotropies. In materials with edge-shared IrO6 octahedra, spin-
anisotropy of the exchange between neighboring effective spin-1/2 states is enhanced
by the interference of the two exchange paths across the planar Ir-O2-Ir bond. Jackeli
and Khaliullin (JK) suggested that in the honeycomb iridates this may lead to extreme
spin-anisotropy of the exchange coupling, where in the limiting case, the only non-
vanishing interaction is for the spin component normal to the Ir-O2-Ir plane [129,
106, ?]. In the honeycomb lattice, such an interaction couples different orthogonal
spin components for the three nearest neighbors; no single exchange direction can
be simultaneously satisfied, leading to strong frustration. It is the possibility of
engineering spin-anisotropy coupled to spatial exchange pathways that has spurred
intense scientific research, particularly in connection to the search for quantum spin-
liquids [?, 129, 106, ?]. However, whether the spin-anisotropic exchange interaction
that is coupled to the Ir-O2-Ir bonding plane is realized in such materials remains
an intense subject of scientific debate [198, ?, ?, ?], highlighting the need for the
discovery of new materials with related structures and strongly anisotropic exchange
interactions.
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Figure 5.1: Single crystal of H〈1〉-Li2IrO3 and the Ir lattice structure. Figure re-
produced from published version, Nat. Comm. 5, 4203 (2014). (A) Single crystal
oriented to be parallel to the crystallographic axes shown in (C), (B) 3D view and
(C) projection in the ab plane. In (B) gray shading emphasizes the Ir (purple balls)
honeycomb rows that run parallel to the a ± b diagonals, alternating upon moving
along the c-axis. For simplicity only Li ions (grey balls) located in the center of Ir
honeycombs are shown. In (B) and (C) the rectangular box indicates the unit cell.
Comparing (A) and (C) we note that the ∼70◦ angle between honeycomb rows is
evident in the crystalline morphology.
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We have synthesized single crystals of a new polytype of Li2IrO3 in which we
reveal the effect of the spin-anisotropy of exchange from the temperature dependence
of the anisotropic magnetic susceptibility.

5.3 Results

5.3.1 Crystal structure

Single crystals of Li2IrO3 were synthesized as described in Methods. As shown in
Figure 5.1A, the crystals are clearly faceted and typically around 100×100×200µm3 in
size. In contrast to the monoclinic structure of the layered iridate, we find that these
materials are orthorhombic and belong to the non-symmorphic space group Cccm,
with lattice parameters a = 5.9119(3) Å, b = 8.4461(5) Å, c = 17.8363(10) Å (see
Supplementary Discussion for details of the crystallography). The structure (shown
in Figure 5.1B and C) contains two interlaced honeycomb planes, the orientation
of which alternate along the c axis. The x-ray refinement (see original published
manuscript) is consistent with fully stoichiometric Li2IrO3. In this case the Ir ox-
idation state is Ir4+ (5d5), fixing the effective Ir local moment Jeff = 1/2, which is
consistent with the magnetic properties of our crystals (see Figure 5.2). In addition,
highly-sensitive single-crystal susceptibility and torque measurements (see below) ob-
serve sharp anomalies at the transition to magnetic order, with no measurable vari-
ability in this transition temperature between many crystals measured, indicating
that the observed magnetic order is well-formed and intrinsic to the crystals. This
suggests that if present, Li vacancy disorder is small, because such vacancies will to
lead non-magnetic Ir5+ 5d4[?], whose presence is expected to give rise to spin-glass
behavior [?] which we do not observe. Taken together, our experiments indicate that
our crystals are representative of the high-purity, stoichiometric limit. We denote the
crystal structure H〈1〉-Li2IrO3, where H〈1〉 refers to the single, complete Honeycomb
row.

5.3.2 Anisotropy of Magnetic Suseptibility

As can be seen in Figure 5.2, the raw magnetic susceptibility shows a magnetic
anomaly at 38 K, which is consistent with long range magnetic ordering.

The striking reordering of the principal components of susceptibility revealed in
torque and SQUID magnetometry, is associated with a strong deviation from Curie-
Weiss behavior as the temperature is lowered. This is in stark contrast to spin-
isotropic Heisenberg exchange systems where the low temperature susceptibility re-
flects the g-factor anisotropy observed at high temperatures, even in the presence of
spatially-anisotropic exchange [?]. The change of sign of the b-c anisotropy arises be-
cause χb softens, becoming an order of magnitude greater than χa and∼ 5×χc (Figure
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Figure 5.2: The temperature dependence of the single-crystal magnetic susceptibility
along the three principal crystalline directions. Figure reproduced from published
version, Nat. Comm. 5, 4203 (2014). The inset shows 1/χ for all three axes χa, χb,
and χc. The dashed line indicates the slope of the inverse Curie-Weiss susceptibility
for a paramagnet with effective moment of µeff = 1.6µB, close to that expected
of an Ir Jeff = 1/2 state if g-factor anisotropy is ignored. All three components
of susceptibility show strong deviation from Curie-Weiss behavior as a function of
temperature.

5.2 and ??B). As a result, the susceptibility cannot be parameterized by a Curie-Weiss
temperature: the linear extrapolation of all three components of inverse susceptibil-
ity to the temperature axis depends strongly upon the temperature range considered.
Between 50–150 K the extrapolation of all three components of inverse susceptibility
is negative, consistent with the absence of net moment in the ordered state. However,
at higher temperatures (200–300 K) the inverse susceptibilities 1/χb, 1/χc extrapolate
to positive temperature intercepts (see Figure 5.2) indicating a ferromagnetic compo-
nent to the interactions. Above 200 K, 1/χ the Curie-Weiss slope gives µeff ≈ 1.6µB,
consistent with a Jeff = 1/2 magnetism.

The observed ten fold increase in χb cannot be driven by the g-factor of the
local iridium environment, whose geometric constraints are temperature independent
(see Supplementary Discussion). The temperature dependence of χb must therefore
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arise from spin-anisotropic exchange. We note that all the c-axis bonds have the
Ir-O2-Ir plane normal to the b-axis, whether they preserve or rotate between the
two honeycomb orientations. This is the only Ir-O2-Ir plane that is normal to a
crystallographic axis. This coupling of the spin-anisotropy to the structure, provides
evidence for spin-anisotropic exchange across the c-axis links, and by extension should
be present in all Ir-O2-Ir exchange paths. This may arise from the interfering exchange
mechanism suggested by Jackelli-Khaliullin in the context of the Kitaev model (see
discussion below).

To see how lattice anisotropy can influence magnetic anisotropy, consider the
Kitaev term, a coupling on an Ir-Ir bond between the spin components γ set by
the normal vector γ̂ to the Ir-O2-Ir plane of the bond (see the appendix 5.5 for
details). Not all Ir-Ir bonds are symmetry-equivalent; the c-type bonds (along ĉ)
are distinguished by the crystal symmetries from the remaining “h-type” Ir-Ir bonds.
Putting aside further distinctions within the c-type bonds, this suggests a possible
model Hamiltonian consisting of nearest neighbor Kitaev (K) and Heisenberg (J)
couplings whose strengths on the symmetry-distinguished c-type bonds (Kc, Jc) is
allowed to differ from those on the remaining Ir-Ir bonds (Kh, Jh),

HKH =
∑

c−bond〈ij〉

(
KcS

γij
i S

γij
j + Jc ~Si · ~Sj

)
+

∑
h−bond〈ij〉

(
KhS

γij
i S

γij
j + Jh ~Si · ~Sj

)
. (5.1)

The key fact as mentioned above is that the spin component γij on c-type bonds
is γ = b, coupling SbiS

b
j on this special bond. We can thus attempt to fit the b-

axis anisotropy observed in magnetic susceptibility using this model Hamiltonian,
supplamented only by weakly-anisotropic g-factors. The resulting fit, treating the
model Hamiltonian by classical mean field theory, is shown in Figure 5.3 and suggests
that strong Kitaev exchange can capture the observed anisotropy.

5.4 Discussion

There is a very interesting connection between the layered honeycomb Li2IrO3

and the polytype studied here. The H〈1〉-Li2IrO3 is distinguished by its c-axis bond,
which either preserves or rotates away from a given honeycomb plane (see Figure
5.4A and Supplementary Figure 7); in the case that all the bonds preserve the same
plane, the resulting structure is the layered honeycomb system. Further polytypes
can be envisioned by tuning the c-axis extent of the honeycomb plane before switching
to the other orientation (see Figure 5.4B). We denote each polytype H〈N〉-Li2IrO3,
where H〈N〉 refers to the number of complete honeycomb rows (see Figure 5.4B
and Supplementary Figure 8), and the family as the “harmonic”-honeycombs, so
named to invoke the periodic connection between members. The layered compound,
H〈∞〉-Li2IrO3 [?] and the hypothetical hyper-honeycomb structure, H〈0〉-Li2IrO3 [?]
are the end members of this family (see also SI IV). The edge-sharing geometry of the
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Figure 5.3: Fitting magnetic susceptibility with a model Kitaev-Heisenberg Hamilto-
nian incorporating lattice symmetries. The susceptibility along the crystallographic
a, b, c axes measured on a single crystal (left figure) can be compared to a mean
field treatment of the minimal model Hamiltonian Eq. 5.1 with particular parame-
ters (right figure); here Kc = −17,Kh = −7, Jc = 6, Jh = 1 meV, with g-factors
ga = gb = 1.95, gc = 2.35. Insets show inverse susceptibility, enabling comparison at
low as well as high temperatures. Large Kitaev couplings are required for a good fit.

octahedra preserves the essential ingredients of the Kitaev model and this is universal
for this family of polytypes. Each structure is a material candidate for the realization
of a 3D spin liquid in the pure Kitaev limit (see Supplementary Discussion and for
H〈0〉-Li2IrO3 see Refs. [?, ?, ?]).

Finally, we speculate on the consequences and feasibility of making other members
of the H〈N〉-Li2IrO3 family. Both the layered H〈∞〉-Li2IrO3 and the H〈1〉-Li2IrO3 are
stable structures, implying that intermediate members may be possible under appro-
priate synthesis conditions. The building blocks shown in Figure 5.4A connect each
member of the harmonic honeycomb series in a manner that is analogous to how cor-
ner sharing octahedra connect the Ruddlesden-Popper (RP) series. Indeed, despite
the fact that members of the RP family are locally identical in structure, they exhibit
a rich variety of exotic electronic states; including superconductivity and ferromag-
netism in the ruthenates [?, ?], multiferroic behavior in the titanates [?], collosal
magnetoresistance in the manganites [?] and high temperature superconductivity in
the cuprates [?]. The harmonic honeycomb family is a honeycomb analogue of the
RP series, and its successful synthesis could similarly create a new frontier in the
exploration of strongly spin-orbit coupled Mott insulators.



82

Figure 5.4: Introducing the harmonic honeycomb series. Figure reproduced from
published version, Nat. Comm. 5, 4203 (2014). (A) Two kinds of c-axis bonds (black
links) in the harmonic honeycomb family H〈N〉-Li2IrO3 are shown, one linking within
a honeycomb plane (for example blue to blue, top) and one that rotates between
honeycomb planes (for example red to blue, bottom). For undistorted octahedra,
these links are locally indistinguishable, as can be observed by the local coordination
of any Ir atom (also see Figure ??A). (B) These building blocks can be used to
construct a series of structures. The end members include the theoretical N = 0
‘hyper-honeycomb’ [?, ?, ?] and the N = ∞ layered honeycomb [?]. Here N counts
the number of complete honeycomb rows in a section along the c-axis before the
orientation of the honeycomb plane switches.
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5.5 Supplementary Information: Kitaev quantum

spin liquid

Every member of the harmonic honeycomb series is bonded by edge sharing IrO6

octahedra. The edge-sharing geometry of the octahedra preserves the essential in-
gredients of the Kitaev model and this is universal for this family of structures. All
three dimensional arrangements of edge-sharing octahedra maintain the interfering
Ir-O2-Ir exchange paths, where each of the three nearest neighbor Ir-Ir interactions
predominantly couples a particular orthogonal component of spin. In the idealized
limit of symmetric octahedra, such changes may compete primarily with the usual ro-
tationally symmetric Heisenberg interactions. In the Kitaev limit where Heisenberg
interactions may be set aside, the Hamiltonian becomes a sum of spin-anisotropic
exchange terms

HK = −Kc
∑
〈ij〉∈b̂⊥

S b̂
i S

b̂
j −Kh

∑
〈ij〉∈(â+ĉ)⊥

Sâ+ĉ
i Sâ+ĉ

j −Kh
∑

〈ij〉∈(â−ĉ)⊥

Sâ−ĉ
i Sâ−ĉ

j , (5.2)

where S b̂ and Sâ±ĉ = (Sâ±S ĉ)/
√

2 are the spin operators in a set of three orthogonal
directions, with â, b̂, ĉ being unit vectors along the orthorhombic crystallographic
axes. Here we label each bond 〈ij〉 by the axis perpendicular to its Ir-O2-Ir plane; for
each bond, this normal vector lies along one of the directions {(â+ĉ), (â−ĉ), b̂}. The
b̂⊥ bonds are all oriented along the crystallographic c direction. Thus all the nearest
neighbor Ir-Ir bonds can be divided into three classes, one for each component of spin:
the b̂ component from the c-axis bonds, and the â± ĉ components from the h bonds
defining each honeycomb plane (depicted in figures in the published version of the
paper). The exchange couplings Kh are constrained by the symmetry of the space

group to be the same on the (â± ĉ)⊥ bonds, but Kc, the coefficient of S b̂ coupling,
is symmetry-distinct from Kh.

The Hamiltonian in Equation 5.2 was studied by Kitaev on the honeycomb lattice
and shown to give an exactly solvable quantum spin liquid. The solution relies on the
fact that spin algebra can be represented in an enlarged Hilbert space of Majorana
fermions χα (α = 0, 1, 2, 3) by mapping Sµ → (i/2)χ0χµ (where µ = 1, 2, 3) and
implementing constraints to project back to the physical Hilbert space. As a result,
each spin is represented in terms of two degrees of freedom — one a Z2 gauge field,
the other a Majorana fermion moving in this field. The three-fold local connectivity
of the honeycomb lattice together with the orthogonal Ising coupling of the Kitaev
Hamiltonian (Equation 5.2) freezes the gauge field fluctuations associated with the
Hilbert space constraint, resulting in static Z2 fluxes. The problem then reduces to
the motion of non-interacting particles in a fixed field. The ground state of these
non-interacting fermions, expressed in terms of the underlying spins, is a complicated
many-body superposition, and in particular is a quantum spin liquid.
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In 2D the solution is possible because the honeycomb lattice contains the right
number of hexagon plaquettes (minimal closed paths linking sites) to host the Z2

fluxes. This can be seen via Euler’s theorem — which states that the number of min-
imal plaquettes plus the number of sites equals the number of links, on any 2D lattice.
Threefold coordination means there are three bonds per two sites, and hence there
is one flux degree of freedom for every two spins, as required by the solution. In 3D,
there are too many minimal plaquettes to host the required number of independent
Z2 fluxes. However, a similar counting formula shows that the required number of
independent gauge field degrees of freedom is matched by subtracting the number of
enclosed volumes from the number of faces. Each enclosed volume gives a constraint;
the independent flux constraints in 3D are not individual fluxes but rather unending
flux lines, which form closed flux loops.

An additional difference in the 3D lattices is that, unlike the 2D honeycomb where
every plaquette has six sites, in the harmonic honeycomb lattice the plaquettes vary
in length, including 6, 10, 14 and so on. In particular, for the H〈1〉-Li2IrO3 member
there are two minimal plaquettes, 6 sites long and 14 sites long. The product of
spin operators around each such plaquette forms an operator which commutes with
the Hamiltonian. However products of such plaquette operators around an enclosed
volume are reduced to the identity operation, constraining the flux lines to form closed
loops. These gauge field fluxes remain static, enabling the spin-liquid solution to be
extended to 3D for all members of this family [?, ?].

The ground state of the Hamiltonian described by Eq. 5.2 contains no gauge-field
fluxes. In this zero flux sector, the Hamiltonian is quadratic, diagonal in momentum
space. Assuming Kc = Kh = K, the dispersion of Majorana Fermions is given by the
eight eigenvalues of the tight-binding matrix

K



0 1 0 0 0 0 0 V ∗2 U
∗
3

1 0 V ∗1 0 0 0 0 0
0 V1 0 1 0 0 0 0
0 0 1 0 V1 0 0 0
0 0 0 V ∗1 0 1 0 0
0 0 0 0 1 0 V ∗2 0
0 0 0 0 0 V2 0 1

V2U3 0 0 0 0 0 1 0


(5.3)

where U3 = exp [ik · c], V1,2 = 1 + U1,2 and U1,2 = exp [ik · (a± b)/2] with the +/−
sign corresponding to U1, U2 respectively. In the symmetric octahedra idealization
where the Kitaev Hamiltonian is most likely to be relevant, the crystallographic vec-
tors take the simple form a = (2, 2, 0), b = (0, 0, 4) and c = (−6, 6, 0) in the Ir-O
Euclidean coordinate system, in unis where the Ir-O distance is 1. The tight binding
dispersion above is easily generalized to the other 3D lattices with the same a, b base-
centered orthorhombic Bravais lattice vectors and arbitrarily long unit cells along c,
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by appropriately cycling between V1 and V2 in the alternating off-diagonal elements
of the matrix.

The resulting spectrum of the Majorana Fermions is gapless, and remains gapless
for the entire region of parameter space with Kc ≤ 2Kh [?, ?]. The gapless fermion
excitations form a 1D nodal contour within the 3D Brillouin zone, satisfied by the two
equations k · c = 0 and cos (k · a/2) + cos (k · b/2) = 1/2. For reference, note the BZ
boundary satisfies the equations cos (k · c) = −1 or cos (k · a/2) + cos (k · b/2) = 0.

In the vicinity of the nodal contour the dispersion is linear (ω ∼ |k⊥|) in the two
directions perpendicular to the nodal contour. Increasing Kc/Kh shrinks the nodal
contour to a point, at Kc = 2Kh; for Kc > 2Kh the fermion spectrum is gapped.

If flux excitations proliferate, they will confine the fermions excitations in the
spin liquid. In 2D, flux excitations are point objects and proliferate at any finite
temperature. But in 3D, the fluxes form closed loop, with an energy cost proportional
to the length of the flux loop; large flux loop cost arbitrarily high energy. Thus, in
the 3D quantum spin liquid the fermions will survive in the deconfined phase until
an entropy driven phase transition at finite temperature, separating the 3D quantum
spin liquid and the classical paramagnet.
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Chapter 6

Three dimensional quantum spin
liquids in models of
harmonic-honeycomb iridates and
phase diagram in an infinite-D
approximation

6.1 Context

This chapter builds upon the remarkable experimental results and their theoretical
analysis as presented in the previous chapter. In addition to the 3D iridate whose
synthesis was presented in the previous chapter, which is here referred to as γ-Li2IrO3,
another 3D iridate with the same chemical formula was synthesized at roughly the
same time, with a different, distinct, 3D structure, here referred to as β-Li2IrO3. This
chapter studies both lattices.

Motivated by the recent synthesis of two insulating Li2IrO3 polymorphs, where
Ir4+ Seff=1/2 moments form 3D (“harmonic”) honeycomb structures with threefold
coordination, we here study magnetic Hamiltonians on the resulting β-Li2IrO3 hyper-
honeycomb lattice and γ-Li2IrO3 stripyhoneycomb lattice. Experimentally measured
magnetic susceptibilities suggest that Kitaev interactions, predicted for the ideal 90◦

Ir-O-Ir bonds, are sizable in these materials. We first consider pure Kitaev interac-
tions, which lead to an exactly soluble 3D quantum spin liquid (QSL) with emergent
Majorana fermions and Z2 flux loops. Unlike 2D QSLs, the 3D QSL is stable to finite
temperature, with Tc ≈ |K|/100. On including Heisenberg couplings, exact solubil-
ity is lost. However, by noting that the shortest closed loop ` is relatively large in
these structures, we construct an ` → ∞ approximation by defining the model on
the Bethe lattice. The phase diagram of the Kitaev-Heisenberg model on this lattice
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is obtained directly in the thermodynamic limit, using tensor network states and the
infinite-system time-evolving-block-decimation (iTEBD) algorithm. Both magneti-
cally ordered and gapped QSL phases are found, the latter being identified by an
entanglement fingerprint.

6.2 Introduction

Recently there has been growing interest in studying quantum phases of matter
that are characterized by long range entanglement[211], in contrast to conventional
symmetry broken states. In particular, gapped quantum phases that feature long
range entanglement exhibit remarkable emergent properties such as excitations with
unusual statistics and fractional quantum numbers. These properties are known to
occur in two dimensional phases such as the fractional quantum Hall states, which are
realized in 2D electron gases in strong magnetic fields. In solids, frustrated insulat-
ing magnets are believed to be prime candidates for avoiding conventional ordering in
favor of a long range entangled phase of matter — the quantum spin liquid phase. Re-
cent numerical studies have found mounting evidence for gapped spin liquids, phases
which are long range entangled[193, 209, 162, 200, 130, 114], on two dimensional
geometrically frustrated lattices such as the Kagome lattice[155, 196, 213].

However, frustration need not arise from geometry alone. In quantum magnets of
heavy elements, spin-orbit coupling leads to anisotropic interactions that may engen-
der quantum disordered ground states even in the absence of the usual geometrical
frustration. A prime example is the honeycomb lattice – a bipartite lattice on which
both ferromagnetic and antiferromagnetic Heisenberg couplings host ordered ground
states. However, a peculiar set of anisotropic interactions proposed by Kitaev[146],
where neighboring spins are coupled by Ising interactions along an axis that is set by
the spatial orientation of the bond, has been shown to be in a quantum spin liquid
phase. Furthermore, this is demonstrated via an exact solution – in contrast to the
numerical tour de force required for identifying the spin liquid phase in the Kagome
antiferromagnet[213, 130].

Interestingly, the requirement for obtaining an exactly soluble spin liquid is not
specific to the honeycomb lattice. Instead, the key ingredients are the three fold
coordination of the sites and the peculiar Ising interaction with rotating axes. If
such a network would be created in three dimensions, it would lead to an example
of a 3D quantum spin liquid. Such long range entangled quantum phases in 3D
are less well explored than their 2D counterparts. While basic constraints on long
range entangled quantum phases in 3D have been discussed[156, 119], few suggestions
for materials candidates exist. An exception is the 3D hyperkagome material[181]
Na4Ir3O8, for which a spin liquid ground state with bosonic[151] or fermionic[?, 153]
spinon excitations has been proposed. Related U(1) spin liquids[125, 126] have been
proposed for quantum spin ice materials[194] on the pyrochlore lattice. Here we
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discuss a 3D example of quantum spin liquid behavior induced by spin-orbit coupling
in a 3D model with Kitaev exchanges, and explore a possible physical realization.

At first sight, the Kitaev interactions seem rather unphysical. However, as pointed
out by Jackeli and Khaliullin[129], they may actually be realized under certain cir-
cumstances in iridium oxides. An Ir4+ ion at the center of an oxygen octahedron is
expected to be in a Kramers doublet state J=1/2, with the doublet wave function
set by the spin-orbit coupling. This leads to unusual magnetic exchange interactions.
For example, when a pair of Ir4+ moments are coupled via an intermediate oxygen
with a 90◦ bond, the usual Goodenough-Kanamori-Anderson rules would have pre-
dicted a ferromagnetic Heisenberg exchange. Here however, due to the special nature
of the Kramers doublets, the coupling was shown[129] to be ferromagnetic, but of
the Ising type, with the spin component involved being perpendicular to the bond’s
iridium-oxygen plane. Other exchange paths around the Ir-O-Ir-O square and in-
volving higher energy states including the Ir4+ eg orbitals[106, 107] also generate this
type of coupling, with either sign. For the compound Na2IrO3 in which Ir forms
independent honeycomb lattices, these mechanisms were argued[129] to lead to cou-
plings identical to Kitaev’s honeycomb model, although additional spin interaction,
minimally a Heisenberg term, is also expected. An appropriate minimal model for
the low energy magnetic Hamiltonian is then the nearest neighbor Kitaev-Heisenberg
model[106].

In the C2/m layered structure[110] of Na2IrO3, and even more dramatically in
the Cccm and Fddd 3D-Li2IrO3 structures we discuss below[173], space group sym-
metries single out the subset of Ir-Ir bonds which are oriented along a particular
axis. Recent ab initio work[212] has found that already for Na2IrO3, the magni-
tude of both Kitaev and Heisenberg couplings can be quite different between these
symmetry-distinguished subsets of bonds. Allowing the couplings to take a different
value on the symmetry-distinguished “c-bonds” compared to the remaining “d-bonds”
produces the bond-anisotropic Kitaev-Heisenberg Hamiltonian,

H =
∑

c−bond〈ij〉

(
KcS

γij
i S

γij
j + Jc ~Si · ~Sj

)
(6.1)

+
∑

d−bond〈ij〉

(
KdS

γij
i S

γij
j + Jd ~Si · ~Sj

)
.

The geometry of IrO6 octahedra implies that the spin component γij coupled in a
Kitaev term KS

γij
i S

γij
j is, on any bond, one of the Ir-O Cartesian axes x, y or z.

The additional Heisenberg interactions are important; indeed, the ground state
of Na2IrO3 is magnetically ordered and not a quantum spin liquid. The “zigzag”
(wavevector M) magnetic ordering seen[161, 110, 217] in Na2IrO3, as well as other
measured magnetic and electronic properties, remain consistent with Kitaev-Heisenberg
as well as with more conventional Hamiltonians with SU(2) rotation symmetry.[197,
143, 91, 198, 110, 107, 112, 116, 140, 117, 118] Other anisotropic exchanges related
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to the Jackeli-Khaliullin mechanism[129] have been described[135, 108, 179, 172]
for Na2IrO3 and related iridates[104, 168, 167]. Alternative starting scenarios for
Na2IrO3 have also been proposed[195, 169, 96, 170] which paint a picture of it dif-
ferent from a Mott insulator. Since the Chaloupka et al original formulation and
solution of the Kitaev-Heisenberg model[106], much research has elucidated its var-
ious properties[198, 190, 131, 188, 191, 142]; as a model containing a QSL, it has
been especially interesting to investigate its behavior under charge doping[218, 127,
180, 202, 203]. While the Kitaev-Heisenberg model may or may not apply to the
particular compound Na2IrO3, the key point is that the Jackeli-Khaliullin mechanism
can arise in any lattice of edge-sharing IrO6 octahedra with roughly cubic local sym-
metry, as long as any distortion from cubic symmetry is weaker than the spin orbit
coupling[129, 107, 142].

Recently, Li2IrO3 has been successfully synthesized in two insulating polymorph
crystal structures consisting of edge-sharing IrO6 octahedra. In the β-Li2IrO3 poly-
morph, synthesized in powder form[199], iridium ions form the 3D hyperhoneycomb
lattice as shown in Fig. 6.4, with space group Fddd (#70). In the γ-Li2IrO3 poly-
morph, synthesized as single crystals[173], iridium ions form the stripyhoneycomb
lattice as shown in Fig. 6.1, with space group Cccm (#66). Each of these three
dimensional lattices is locally honeycomb-like, preserving threefold connectivity for
every site. Their unified geometry suggests an extension to a structural series, the
“harmonic honeycomb” series[173]; each structure in the series is labeled by an in-
teger n, denoting the number of adjacent hexagon strips found in the lattice. In
this notation, the stripyhoneycomb lattice γ-Li2IrO3 polymorph is the n=1 harmonic
honeycomb iridate; the hyperhoneycomb lattice β-Li2IrO3 is the n=0 member; and
the layered honeycomb α-Li2IrO3 is described by n=∞ (Tab. 6.1).

The γ-Li2IrO3 single crystals undergo a magnetic transition at about 38K, as ev-
idenced by large anisotropic peaks in magnetic susceptibility[173]. As also pointed
out in the experimental analysis[173], the bond-aisotropic Kitaev-Heisenberg model
Eq. 6.1 is sufficient for capturing the large susceptibility anisotropy observed in ex-
periment; within this scenario, large ferromagnetic Kitaev exchanges are necessary
to fit the experimental data. The susceptibility fit is shown in Fig. 6.3; we elabo-
rate on the magnetic couplings required for this fit in section 6.4.3 below. We study
the Hamiltonian Eq. 6.1 with the parameters of the fit, classically as well as using
the fully quantum large-` approximation discussed below, and find in both cases a
ground state with Stripy-X/Y magnetic order, shown in Fig. 6.6. In this pair of
symmetry-related degenerate ground states, spins exhibit ferromagnetic correlations
of spin component Sx across Kitaev x-type bonds or Sy across y-type bonds. Based
on the susceptibility anisotropy we predict that these stripy magnetic correlations oc-
cur in the low temperature phase of γ-Li2IrO3. Indeed, since this work was presented,
recently the magnetic order of γ-Li2IrO3 has been determined[98] to be a counter-
rotating noncoplanar spiral order in which the dominant spin correlations are exactly
these Stripy-X and Stripy-Y correlations, again requiring a magnetic Hamiltonian
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Material
Harmonic-

Lattice name Dim.
honeycomb #

α-Li2IrO3 n =∞ Honeycomb 2D
β-Li2IrO3 n = 0 Hyperhoneycomb 3D
γ-Li2IrO3 n = 1 Stripyhoneycomb 3D

Table 6.1: Iridates of the harmonic-honeycomb series: Ir lattice conventional name
and dimensionality. We focus on γ-Li2IrO3 single crystal measurements to extract
magnetic Hamiltonians, which we study on the β- and γ- Li2IrO3 structures as well
as on their tree tensor network approximation.

with strong FM Kitaev exchange.
In parallel with this work, a few other studies of 3D Kitaev-Heisenberg models

have appeared. Various properties of the hyperhoneycomb lattice model’s magnetic
phases and exact spin liquids were studied[145] while the magnetic phases at finite
fields and temperature were explored using classical and semi-classical techniques
[154]. The spin liquid was also studied at finite temperature using an Ising mapping
of its Toric Code limit[177]. Another lattice related to the hyperkagome but with
higher symmetry, dubbed the “hyperoctagon lattice”, was introduced and the Kitaev
spin liquid it supports was characterized [124].

Results here are complimentary to these studies, and are distinguished in three
ways. First, we pull together the existing experimental results to make the case,
based on single-crystal measurements, for strong Kitaev exchange in the 3D-Li2IrO3

materials. Second, we focus our attention on the hitherto-unstudied stripyhoneycomb
lattice recently obtained as the structure of γ-Li2IrO3. Our magnetic Hamiltonians
are informed by the experimental measurements and incorporate bond anisotropies
dictated by the symmetries of the crystals. Most others[166, 145, 154, 177] exclusively
studied the hyperhoneycomb lattice, which we also study below. Third, in addition
to studying the exactly solvable 3D spin liquids, we employ tensor product states
– higher dimensional generalizations of 1D matrix product states – to obtain the
fully quantum phase diagram in a large-` limit. The phase diagram we compute,
for the frustrated quantum Hamiltonians motivated by the experiments, contains
both magnetic and quantum spin liquid phases. To our knowledge this is the first
identification of a quantum spin liquid phase in a tree tensor network.

6.3 Summary of results

We begin (Sec. 6.4) by analyzing the relevance of the Kitaev interactions to Li2IrO3

using γ-Li2IrO3 single-crystal measurements. We discuss the interplay of chemistry
and geometry in the A2IrO3 structures, aiming to understand the newly synthe-
sized stripyhoneycomb and hyperhoneycomb lattices within a framework encompass-
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ing other 3D honeycomb lattices of edge-sharing IrO6 octahedra. We analyze in detail
the argument, based on fitting magnetic susceptibility, that the magnetic properties
of 3D-Li2IrO3 are captured by the bond-anisotropic Kitaev-Heisenberg model Eq. 6.1.
Its key is the geometrical contrast between the crystalline anisotropy, distinguishing
the spatial c-axis, and the magnetic susceptibility anisotropy, distinguishing the b=z
spin axis: the two are coupled by the SzSz Kitaev exchange on c-bonds. We demon-
strate this mechanism by analytically fitting the measured susceptibility to mean field
theory of Eq. 6.1, and find (Fig. 6.3) that it requires strong FM Kitaev exchange.

With this motivation for Eq. 6.1 as a minimal Hamiltonian with dominant Kitaev
exchange, we proceed (Sec. 6.5) to study its spin liquid phase in the Kitaev limit
through the Majorana fermion exact solution. We extend the previous analysis of the
hyperhoneycomb-graph Kitaev model[166], and also analyze in detail the model on
the stripyhoneycomb lattice of γ-Li2IrO3. We compute the spin correlators as well
as the spectrum of the emergent Majorana fermions, and find that the low energy
excitations occur on a ring-like nodal contour, identical for the two 3D lattices. In-
troducing bond-strength anisotropy shrinks the nodal contour, and we find that the
phase boundary between the gapped and gapless spin liquids is identical on all the
finite-D lattices and independent of whether the bond-anisotropy breaks or preserves
the lattice symmetries.

We give a simple but general counting argument based on the Euler characteristic
formula that explicitly illustrates the lack of monopoles in (3+1)D Z2 lattice gauge
theories, showing that closed flux loops rather than individual fluxes are the gauge-
invariant objects. The energy of the flux loop excitations is described not as a flux
gap but rather by a loop tension, which we compute within the zero temperature
exact solution to be τ = 0.011|K| on both lattices. This tension combines with
the extended nature of the loops to control the finite temperature behavior of the
models, producing the finite temperature loop proliferation transition which confines
the Majorana fermions. Together with the robustness of fermionic statistics (since flux
attachment is impossible), this stability to finite temperature hallmarks the features
unique to three dimensional fractionalization.

Computing the quantum phase diagram of the full frustrated Hamiltonian is ex-
ponentially difficult; while such problems have been tackled in two dimensions, an
unbiased phase diagram computation of the three dimensional model is currently im-
possible. We are able to capture it (Fig. 6.2 and Sec. 6.6) by employing a limit inspired
by the hyperhoneycomb lattice, whose shortest loops are `=10 decagons. Treating
` as a large control parameter and taking it to infinity, we reach the loopless Bethe
tree lattice, which is infinite dimensional but preserves the key z=3 connectivity. This
`→∞ approximation is not analytically tractable, but rather admits an entanglement-
based numerical solution using tensor product states (TPS). Gapped states can be
efficiently represented as a TPS on a tree lattice (tree tensor networks); on the tree,
as in 1D systems, the full entanglement between two halves of the system is carried by
the single bond connecting them. We employ a TPS time evolving block decimation
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algorithm which works directly in the thermodynamic limit (iTEBD)[205], which has
been previously extended to the Bethe lattice for magnetic phases[175, 176, 157] and
other non-fractionalized phases[113, 160]. The iTEBD straightforwardly captures the
FM and Neel magnetic orders as well as their duals[106, 142], the stripy and zigzag
magnetic orders.

However, quantum spin liquids are generally difficult to identify positively since
they lack an order parameter. Positive signatures can be elusive. Studies in 2D have
relied on the sub-leading entanglement term known as the topological entanglement
entropy[130, 219], but this quantity is not defined nor computable on the tree lattice.
Instead, we complement the TPS computation by analytically studying the gapped
Kitaev QSLs on the loopless tree using the Majorana solution, computing the entan-
glement entropy from the fermion and gauge sectors on each bond as a function of
anisotropy. We find that the TPS algorithm partially quenches the Z2 gauge field
entanglement, utilizing the finite entanglement cutoff of the TPS representation to
produce a minimally entangled ground state, and thereby circumventing the usual ar-
tifacts of the Bethe lattice. The resulting entanglement serves as a fingerprint which,
alongside the vanishing magnetic order parameters, we use to identify the QSL phase
within the iTEBD computation. Ours is the first positive-signature identification of
a fractionalized quantum phase in the large-` limit.

This solution of the QSLs with their adjacent phases in the quantum large-`
approximation augments the ground state and finite temperature analysis within
the solvable three dimensional QSLs, yielding a remarkably complete picture of a
fractionalized phase in a potentially realizable solid state system.

6.4 Relevance of Kitaev interactions to the 3D-

lithium-iridates

6.4.1 Chemical bonding with IrO6 octahedra

Oxides with octahedrally coordinated transition metals can bond in a variety of
ways, sharing octahedral corners, edges, faces or a combination of these. Each bond-
ing geometry results in a set of structures with various shared properties. Bond
lengths are one such property, with nearest neighbor distances in iridates measuring
∼3Å in edge sharing compounds compared to ∼4Å in corner sharing ones. Symme-
tries are also correlated with bonding geometry; in corner sharing iridates where one
oxygen is shared by exactly two iridia, four-fold symmetric structures generally arise,
as in perovskite and layered perovskite structures. Compounds with edge sharing
octahedra also occur in a variety of related structures; the triangular lattice NaCoO2,
the hyperkagome Na4Ir3O8 and the layered honeycomb Na2IrO3 are all examples.

In the edge sharing iridates we consider, two oxygens are shared by exactly two
iridia, and every iridium is coordinated by three others, belonging to a single plane.
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In a fixed coordinate system, there are multiple choices for the orientation of the
triangular Ir-Ir-Ir plaquette, which are locally indistinguishable from the perspective
of any given iridium atom. In general the octahedral symmetry will not be perfect and
the distortion may favor the situation of the layered honeycomb compound Na2IrO3,
where all of the Ir-Ir bonds lie within a common plane.

However, for sufficiently high local symmetry approaching the full Oh group, al-
ternatives to the layered geometry become increasingly favorable. Consider now the
compounds with chemical formula Li2IrO3: this substitution of Na by Li is known
to lead to much smaller distortions, since the Ir and Li ions are more similar in size.
With the decreased octahedral distortion, multiple spatial orientations of the bonds
should be more likely to occur. This can result in complex structures, such as the
stripyhoneycomb lattice of γ-Li2IrO3 and the hyperhoneycomb lattice of β-Li2IrO3.

6.4.2 Symmetry and geometry of the harmonic honeycomb
lattices

Consider the harmonic honeycomb structures, which include all three currently
known polymorphs of Li2IrO3. Except for the n=∞ layered honeycomb with its vastly
reduced crystal symmetry, these possess bonds with various orientations comprising
all but one of the possible orientations for edge-sharing octahedra. This scenario is
shown in Fig. 8.5: two opposite octahedra edges are forbidden from bonding, and
distinguish the spatial direction c, parallel to these edges. The other edges on the
same square create Ir-Ir bonds lying along the c axis, resulting in the bond anisotropy
described above. The c axis is thus distinguished for all harmonic honeycomb lat-
tices; this is also reflected in the symmetry properties of each particular lattice. For
example in the stripyhoneycomb lattice, the space group Cccm has a single mirror
plane, whose normal is the c direction. This unifying feature also suggests that a
single global orthorhombic a, b, c parent coordinate system can describe the various
lattices, as is indeed true. The vectors of these parent orthorhombic axes, as well as
explicit coordinates for the stripyhoneycomb and hyperhoneycomb lattices, are given
in Appendix 8.2.1.

Recall that Kitaev spin coupling along the Bloch sphere Cartesian axis γ ∈
{x, y, z} occurs[129] for the four octahedra edges (and associated Ir-Ir bonds) whose
plane is normal to the spatial Cartesian axis γ. The relation between the a, b, c crys-
tallographic axes of Fig. 6.1 and the octahedral Ir-O Cartesian axes, as shown in
Fig. 8.5, is {â, b̂, ĉ} =

{
(x̂+ŷ)/

√
2, ẑ, (x̂−ŷ)/

√
2
}

. The c-bonds (i.e. the bonds lying

along the c axis) carry Kitaev coupling of spin component b̂ = ẑ, and will also be
denoted interchangeably by their Kitaev label, with the notation “z-bonds”. The
remaining bonds on the lattice (“d-bonds”), which are all related to each other by
symmetries, carry Kitaev labels x and y. For the stripyhoneycomb lattice, the c-bonds
are further distinguished into two types, those within hexagons and those between
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hexagons, which are themselves not related to each other by symmetry. For the sake
of simplicity here we have not introduced additional parameters in the Hamiltonian
to distinguish these two c bond types, as we expect such bond strength anisotropy
between the different c bonds to be a secondary effect.

6.4.3 Capturing γ-Li2IrO3 susceptibility with bond-anisotropic
Kitaev interactions

The symmetry distinction between z and x, y type bonds implies that if the Ki-
taev coupling is strong, the magnetic susceptibility should have a distinctive z-axis
response compared to its x, y axes response, at least at temperatures above the mag-
netic transition. If the Kitaev coupling Kc on the z-bonds is more ferromagnetic than
the Kitaev coupling Kd on the x, y-bonds, it suggests an anisotropic susceptibility
with larger response along z. Exactly such an anisotropy is observed in the γ-Li2IrO3

experiment[173]. However, to preserve the strong z-axis susceptibility which is ob-
served also below the ordering transition, the resulting magnetic order should not
have any significant spin component aligned along the z axis. This places a condition
on the magnetic coupling, to disfavor magnetic order alignment along z, which is
partially at odds with the condition necessary to favor susceptibility anisotropy with
large χz.

To achieve strong anisotropy in the susceptibility χ, the Heisenberg couplings must
be small compared to the anisotropic single-spin-component exchanges, in this case
the large ferromagnetic Kitaev exchanges. Since the low temperature phase is not a
ferromagnet, the Heisenberg couplings should be antiferromagnetic. This region of
parameter space hosts two types of magnetic order, Stripy-Z and Stripy-X/Y, with
different symmetry properties. With no additional anisotropies, Stripy-Z nominally
hosts spins aligned along the z axis and can thus be ruled out. A more general
property of the Stripy-Z phase is that, because of the two symmetry-inequivalent z-
type bonds of the stripyhoneycomb lattice, it should generically exhibit a nonzero net
moment. We therefore focus on Hamiltonians within the Stripy-X/Y phase (Fig. 6.6),
as the simplest “minimal order” which is consistent with magnetic susceptibility and
captured by the minimal Hamiltonian Eq. 6.1. We expect additional small exchange
terms to modify the ground state order, but preserve the Stripy-X/Y correlations of
this minimal phase.

The constraints on the couplings can be seen explicitly by treating the Hamiltonian
classically, and extracting susceptibility by mean field theory (details are given in
Appendix 6.13). The magnetic interactions of Eq. 6.1 were supplemented by a g-factor
tensor chosen to match the susceptibility at the highest temperatures measured, with
principal values gx+y=gz=1.95, gx−y=2.35. Within the mean field treatment of the
Stripy-X/Y phase (in the regime K < 0, J > 0), the transition temperature is given
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by TN = (Jc + |Kd|)/4. The susceptibility peaks at this temperature, taking values

χbb(TN) = (gb)2µ2
B/(2(Jc + Jd)− (|Kc| − |Kd|)) (6.2)

χaa(TN) = (ga)2µ2
B/(2(Jc + Jd))

and with χcc similar to χaa. The observed susceptibility anisotropy then suggests a
large value for the difference |Kc| − |Kd|. However, the stability of the Stripy-X/Y
phase against Stripy-Z order is controlled by the constraint

|Kc| − |Kd| < 2(Jc − Jd). (6.3)

There is a finite window of parameters which fit the data within these analytical
constraints. One possibility for the couplings, as shown in Fig. 6.3, is (in meV):
Kc = −17,Kd = −7, Jc = 6.3, Jd = 0.8. The Hamiltonian with this set of parameters
was also studied beyond the classical limit, using tensor product states within the
infinite dimensional large-` approximation, and determined to lie within the Stripy-
X/Y quantum phase.

This parameter regime of the fit, large ferromagnetic Kitaev exchange and small
antiferromagnetic exchange, is consistent with Jackeli and Khaliullin’s original pro-
posal [129] [106] and with the recent Na2IrO3 ab initio[212]. The extent of the
anisotropy is qualitatively similar to the Na2IrO3 ab initio prediction as well; the pa-
rameters computed for Na2IrO3 are[212] Kc = −30.7,Kd = −23.9, Jc = 4.4, Jd = 2.0
meV, and larger anisotropy is expected for the stripyhoneycomb lattice because the
special c bonds directly form the special axis of its Cccm space group.

6.4.4 Necessity of large Kitaev interactions for describing
magnetic measurements on γ-Li2IrO3

The analysis in the previous section showed analytically that within mean field
theory, fitting the observed anisotropic susceptibility required a large ferromagnetic
Kitaev exchange, dominant over a smaller AF Heisenberg exchange. The bond-
dependent Kitaev interactions Kc,Kd then capture the observed susceptibility at
temperatures both above and below the ∼ 40 K magnetic transition.

The primary conclusion of this analysis is the argument that the bond-anisotropic
Kitaev-Heisenberg Hamiltonian is appropriate for describing current experimental
data on 3D-Li2IrO3 and requires quite large Kitaev exchanges |K| >> J . The nomi-
nal ground state of the fitted Hamiltonian is the simple collinear phase Stripy-X/Y,
but in the real crystal we do not expect the spin direction to be locked to x̂ or ŷ, but
rather expect it to sample across the (a, c) (or equivalently (x, y)) plane. A secondary
conclusion is therefore a susceptibility-based prediction for the low temperature mag-
netic pattern of γ-Li2IrO3, namely presence of the Stripy-X/Y correlations of the
fitted Hamiltonian.
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As mentioned in the introduction, this 4-parameter fit to magnetic susceptibility,
with parameters (Kc,Kd, Jc, Jd) = (−17,−7, 6.3, 0.8) meV, is consistent with the 6-
parameter Hamiltonian which captures the noncoplanar spiral magnetic order which
has just been recently observed[98] in γ-Li2IrO3. That 6-parameter fit supplements
Eq. 6.1 by c-axis Ising exchange Icc on c-bonds and J2 Heisenberg exchange on second-
neighbors, and gives the values Icc=−4.5, J2=−0.9, (Kc,Kd, Jc, Jd) = (−15,−12, 5, 2.5)
meV. The associated Stripy-X and Stripy-Y correlations expected for such a quan-
titatively similar Hamiltonian are also observed in the complex spiral order. Most
importantly, we observe that in each analysis, independently, large and FM Kitaev
exchanges Kc,Kd are necessary to describe the material.

6.5 Quantum spin liquids in three dimensions

Let us now tune the Heisenberg couplings J to zero, taking the limit of a pure
Kitaev Hamiltonian. Though this limit does not describe the experiments on Li2IrO3,
it offers a wide range of interesting phenomena associated with 3D fractionalization,
which may turn out to be experimentally accessible at a future date.

6.5.1 Solution via Majorana fermion mapping

Kitaev’s solution[146] of the honeycomb spin model relies on a local condition —
each site touches three bonds carrying the three different Kitaev labels — and hence
may be generalized to lattices with z = 3 coordination number. In order to discuss
important subtleties which will arise later (in infinite dimensions), let us briefly review
the solution here. The S = 1/2 algebra is represented in an enlarged Hilbert space
via four majorana fermions

Sai →
1

2
iχ0

iχ
a
i , {χai ,χa

′

i′ } = 2δi,i′δa,a′ . (6.4)

The enlarged Hilbert space Kitaev Hamiltonian H̃ is then a free majorana fermion
χ0 minimally coupled to a Z2 vector potential ai,j with eiπai,j ≡ ui,j = iχ

γij
i χ

γij
j living

on links 〈ij〉. The gauge field operators ui,j all commute with each other and with
H̃, so H̃ may be diagonalized by solving a free fermion problem for each gauge field
configuration {ui,j = ±1}. Here ui,j is identified as a gauge field because, while in the
enlarged Hilbert space it is a simple Z2 bond variable set by the majorana fermion
occupancy, there is a set of site operators Di ≡ χ0

iχ
1
iχ

2
iχ

3
i which are the identity

within the physical spin Hilbert space but act as a lattice gauge transformation on
the link variable ui,j. Projection to the physical spin Hilbert space is implemented by
symmetrizing over all local gauge transformations Di, with the projection operator
P =

∏
i(1 +Di)/2.

Let us now discuss the consequences of this majorana fermion solution for the
3D trivalent lattices. Some of the phenomenology was previously explored[166] for a
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3D lattice whose connectivity graph matches the hyperhoneycomb’s. The projection
from gauge to physical Hilbert space is aided by gauge invariant operators whose
eigenvalues, commuting with the Hamiltonian, label physical sectors of states. These
closed Wilson loops are the usual Z2 fluxes piercing the elementary plaquettes. Flip-
ping ui,j on a bond inserts flux in adjoining plaquettes. As discussed earlier, the 3D
lattices possess symmetries as well as graph connectivity which distinguish one bond
type, z, from the other two bond types x and y. On the hyperhoneycomb lattice,
flipping ui,j on a z type bond creates fluxes on the eight adjacent plaquettes, while
flipping ui,j on x or y type bonds changes the flux on the only six adjacent plaquettes.
On the stripyhoneycomb lattice, the elementary plaquettes come in multiple forms,
consisting of ` = 6 hexagons together with larger ` = 14 plaquettes.

6.5.2 Extended flux loop excitations in the 3D QSL

The gauge field sector on the 3D-lattices Kitaev models is a 3+1D Z2 lattice
gauge theory[148]. The product of ui,j around a minimal closed contour gives the
flux through an elementary plaquette of the lattice. The product of fluxes on pla-
quettes surrounding an elementary volume element multiplies to the identity: this is
equivalent to the fact that there are no magnetic monopoles in the Z2 theory. Each
elementary volume carries a zero monopole charge and thus acts as a constraint, forc-
ing the number of flux lines piercing the volume to be even. These constraints ensure
that the flux lines only appear within closed flux loops.

It is important to note that while in the 2D honeycomb case the magnetic fluxes
are the gauge invariant result of projecting the gauge theory, in the case of three
spatial dimensions, individual fluxes are not gauge invariant. Rather, only closed
flux loop configurations are the physical gauge invariant excitations of the model.
The individual fluxes cannot be gauge invariant labels of sectors of the Hamiltonian
since they don’t even correctly count the physical degrees of freedom of the gauge
theory. The constraint of closed loops fixes this counting; the closed magnetic loop
configurations exactly label the gauge invariant sectors of the {ui,j} after projection.

This can be seen as follows (explicitly verifying this statement in the stripyhoney-
comb and hyperhoneycomb lattices is also straightforward). Consider the lattice with
periodic boundary conditions (rigorously it is a CW-complex topologically equivalent
to the 3-torus), and count the number of cells of every dimension – sites, bonds,
plaquettes and enclosed volumes. The Euler characteristic formula (as generalized by
homology theory) then shows that

Nsites −Nbonds +Nplaquettes −Nvolumes = 0. (6.5)

The combination Nplaquettes−Nvolumes is of interest here, since every plaquette is associ-
ated with a flux, but each enclosed volume presents a condition on the adjacent fluxes
(they must multiply to the identity). This constraint, due to the lack of monopoles
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in the Z2 gauge theory, is responsible for the flux lines forming closed flux loops. The
number of independent such loops is given by the number of possible flux lines minus
the number of constraints, ie Nflux loops = Nplaquettes − Nvolumes. Furthermore let us
restrict to our case of interest where sites have coordination number z = 3 and so
Nbonds = (3/2)Nsites. Then the formula becomes

Nflux loops = Nsites/2 (6.6)

as required: the gauge field flux sector hosts half of the spin degrees of freedom, while
the majorana fermion particle sector hosts the other half.

This observation implies the following important fact: while in the 2D Kitaev
model, the flux sector is described by a gap to flux excitation, this is not the correct
description for this 3D model. Rather, in 3D, the fluxes form closed loops, of arbitrary
size. These loops possess a loop tension. The gap for a loop of a particular length is
found by multiplying its length by the loop tension. We have computed a numerical
value for this loop tension, as further discussed below.

Lieb’s flux phase theorem[159], which shows that the 2D honeycomb ground state
has zero flux per ` = 6 hexagon, suggests that the ` = 6, ` = 10 and ` = 14 loops of
the stripyhoneycomb and hyperhoneycomb lattices, whose length is equal to 2 mod
4, should also carry zero flux in the ground state. We have checked numerically that
the ground state on small finite systems lies in the sector with no flux loops.

We note that during the time since this work was published, recent subsequent
work (PRL 114, 116803 (2015)) has found a particular configuration of fluxes on the
stripyhoneycomb lattice, whose energy in the thermodynamic limit, Eflux = 0.1293K
per bond, is lower than that of the flux-free state, with energy E0 = 0.1290K per
bond. The quantitative results in sections C,D,E below are applicable for the flux-
free states, and remain quantitatively correct for the hyperhoneycomb lattice ground
state, which is flux-free. Moreover the conclusions discussed below apply equally well
to the ground states on both lattices, and hold even if additional lower-energy flux
configurations are found.

6.5.3 Majorana fermion excitations

The Kitaev QSL possesses emergent quasiparticles which are fermionic, arising
out of the interacting bosonic spin model. The emergent fermions are as real as
physical electrons, but carry no usual electric charge; and moreover are Majorana
(self-adjoint), related to the particle-hole-symmetric excitations of superconductors.
As in the 2D honeycomb model, in which the fermion dispersion possesses graphene’s
Dirac nodes, the fermionic dispersion in the 3D lattices is gapless for the isotropic
model. The sublattice symmetry present in all the 3D harmonic honeycomb lattices
ensures that time reversal remains a symmetry in the QSL phase, and the Majorana
fermion spectrum is particle-hole symmetric. Similarly to the graphene-like Dirac
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cones appearing in the Majorana spectrum of the 2D Kitaev honeycomb model, where
the 0D point-like nodes carry codimension of 2, the 3D Kitaev models can host gapless
excitations along 1D nodal lines within the 3D Brillouin zone.

The spectrum of Majorana fermions is computed in Appendix 6.9, and turns out
to be identical on both 3D lattices. It is formed by momenta k satisfying the two

equations ~k ·~c = 0 and cos
(
~k · ~a/2

)
+cos

(
~k ·~b/2

)
= 1/2. This set of momenta form a

closed 1D ring-like contour of gapless excitations, lying within the BZ interior, which
is plotted in Fig. 6.8. Indeed this is the dispersion of a nodal 3D superconductor: the
Majorana fermions are gapless along a 1D ring of points in the 3D momentum space,
forming a superconductor line node which here happens to close into a ring within
the interior of the first Brillouin zone.

Within each sector with its associated flux loop configuration, we may study
how the Majorana fermions propagate. The fermions are charged under the gauge
field, and hence interact with the magnetic loop excitations through an Aharonov
Bohm effect, analogous to that occurring between electrically charged electrons and
conventional E&M magnetic flux lines. The interaction is as follows: when a fermion
winds through the interior of a magnetic flux loop, it encircles one flux line and
receives a minus one (−1) phase to its single particle wave function.

6.5.4 Spin-spin correlators

The spin-spin correlators at equal time may be computed straightforwardly within
the fermion mapping; as in 2D, they are[146] only nonzero between spins on nearest-
neighbor sites and then only between spin components matching that bond’s Kitaev
label. Hence the nonzero spin correlators G are also equivalently the energy E car-
ried by the bond (divided by the coupling), specifically G = E/K. For notational
simplicity we quote correlators G for K < 0, in which case the correlators are posi-
tive; for K > 0, correlators simply gain a minus sign. Here we report results at the
isotropic point of the Hamiltonian, though of course lattice symmetry still comes into
play. We find that the average bond correlator (again, proportional to the energy
per bond) is G3D;0

0 = −0.1284 for the 3D hyperhoneycomb and G3D;1
0 = −0.1290

for the 3D stripyhoneycomb , only 2% higher than the 2D honeycomb result[146]
G2D

0 = −0.1312.
For the hyperhoneycomb lattice, the z bonds and x, y bonds correlators are

Gz = 0.1314, Gx,y = 0.1268. (6.7)

The stripyhoneycomb lattice has two symmetry-distinct types of z bonds: those
within hexagons (“z[h]”) and those within length-14 loops (“z[f ]”) . The correla-
tors are

Gz[h] = 0.1337, Gz[f ] = 0.1269, Gx,y = 0.1283. (6.8)
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The large correlations on hexagon-z bonds could be explained as strong resonances
within a hexagon, combined with a lattice symmetry effect that, for both the hy-
perhoneycomb and the stripyhoneycomb lattices, gives stronger correlations on the
special-axis z bonds. Surprisingly, this global symmetry effect is almost as powerful
as the hexagon resonances: it produces x,y-bond correlators which are only slightly
stronger than those on the cross-hexagon-stripe z[f ] bonds.

6.5.5 Nodal contour under bond-strength anisotropies and
broken symmetries

Increasing the coupling strength K on one bond type is an anisotropy which pre-
serves exact solvability of the model, in 3D as well as 2D. Increasing K on bonds of
one Kitaev-type shrinks down the nodal contour, until it vanishes and gaps out the
fermions when the Kitaev exchange for any one bond type becomes larger than the
sum of the other two. However, consider that the hyperhoneycomb and stripyhon-
eycomb lattice symmetries already distinguish z-bonds and their axis ĉ as a special
direction; increasing the strength of z bonds is an anisotropy which is generically
expected to arise given the crystal symmetries.

Increasing the strength of Kitaev exchange on z-bonds shrinks the nodal contour
towards its center at the Gamma point ~k = 0. With sufficient anisotropy, the con-
tour collapses at ~k = 0 and then disappears, producing a gapped Majorana fermion
spectrum (Fig. 6.7). But anisotropies for x or y type bonds do break a symmetry
of the isotropic model. When increasing bond strength on x or y bonds, the nodal
contour goes through a Van Hove singularity as it expands to touch the BZ surface,
and then becomes centered around a BZ corner, towards which it gradually shrinks.
This transition through a Van Hove singularity is an aspect associated with breaking
crystalline symmetries. However, while these aspects of the nodal contour are dif-
ferent between symmetry-breaking (x, y) and non-symmetry-breaking (z) anisotropy,
the resulting phase diagram of the spin liquid phase is the symmetric diagram shown
in Fig. 6.7, identical to that of the symmetric 2D honeycomb lattice.

Each of the 3D lattices supports two different types of limits of large anisotropy,
z and x/y types, which are associated with different three dimensional Toric Code
models living on different z = 4 lattices. Each of these 3D Toric Code models is a
pure Z2 gauge theory, with commuting plaquette terms formed by sites on a particular
z = 4 lattice set by the type (z or x, y) of anisotropy. The Toric Code lattices are
easily constructed by collapsing the strong-coupled bond into a site. The Toric Code
Z2 flux operators act on plaquettes of reduced size: the hyperhoneycomb decagons
turn into Toric Code hexagon plaquettes, while stripyhoneycomb hexagons (as in 2D)
turn into Toric Code square plaquettes.
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6.5.6 Gap via breaking of time reversal

Breaking time reversal symmetry with an external magnetic field induces oriented
imaginary second neighbor hopping of the majorana fermions. The sign (orientation)
of this imaginary hopping, necessary for majorana fermions, is set (as in 2D[146]) by
the sign of the permutation of the two Kitaev bond labels traversed. We find that
breaking time reversal gaps out all but a measure-zero set of points of the majorana
nodal contour.

Interestingly, though, special behavior emerges at ultra-low fields. To lowest order,
the external field introduces a mass gap which changes sign across the nodal contour,
leaving two gapless band-touching points. At the next order of the external field,
these points may be gapped out as well; but they may control the physics at low
fields and low energy scales.

6.5.7 Fractionalization in 3D: extended loops and finite tem-
perature confinement transition

Enlarging spatial dimensionality from two to three dimensions changes the nature
of the spin liquid phase; the two most interesting differences involve fermions and
finite temperature. In the two dimensional spin liquid away from the exactly solv-
able point[146], the flux excitations gain dynamics and interact with the majorana
fermions; the low energy excitations could then be bound fermion-flux pairs, compos-
ite particles with simple bosonic statistics. In contrast, consider the three dimensional
spin liquid; here fluxes are not pointlike particles but rather closed magnetic loops, so
the emergent fermions cannot merely bind a (point-like) flux to transmute into bosons,
and thus their 3D fermionic statistics are more robust. While fermions can e.g. bind
into Cooper pairs to disappear from the lowest energy theory, a fundamental excita-
tion in the model still necessarily preserves fermionic statistics. The fermions remain
until a phase transition either confines them or transmutes them into bosons via a
more complicated mechanism such as that recently explored in transitions between
symmetry protected topological phases[208].

Three dimensional spin liquid phases generally admit a key characteristic dis-
tinguishing them from 2D spin liquids: the 3D spin liquid phases survive to finite
temperatures. Such is true for the Kitaev 3D spin liquid phase, which undergoes a
distinct entropy-driven phase transition to a classical paramagnet. In 2D QSLs a
finite density of fluxes exists at any nonzero temperature; the fermions gain a phase
of (−1) when encircling each of the fluxes and the resulting destructive interference
results in a T = 0 confinement transition to the paramagnet phase. But in the 3D
QSL, magnetic fields appear in extended loop excitations, whose energy is propor-
tional to their length via an effective loop tension. The loop energy diverges with
its length. At finite temperature there is a finite density only of short loops, whose
small cross-sectional area renders them invisible to the fermions. A finite probability
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for flux-encircling paths occurs only with macroscopically large loops, which cost di-
verging energy and hence appear at vanishing density. Entropy however favors longer
loops, and so the free energy at finite temperature T for a loop of length L appears
as (for long L)

F (L;T ) = (τ + δτ(T )− s̃T )L (6.9)

where s̃ is the entropy contribution to the loop tension, roughly the natural logarithm
of the coordination number of the dual lattice (where magnetic loops live), s̃ ≈
log(zdual); τ is the zero temperature flux loop tension; and δτ(T ) is the contribution
to the effective loop tension at finite temperature due to interactions mediated by the
gapless fermions.

Because the entropy is likely the dominant contribution and appears with a neg-
ative sign, the effective magnetic loop tension renormalizes to lower values at finite
temperature. At a temperature Tc the tension becomes negative and proliferates ar-
bitrarily large magnetic loops in a transition analogous to Kosterlitz-Thoughless flux
unbinding, which then confine the fermions. We estimate the critical temperature
Tc by computing the zero temperature value of the magnetic loop tension τ in the
isotropic Hamiltonian, finding the result

τ = 0.011|K| (6.10)

for both stripyhoneycomb and hyperhoneycomb in different geometries and for dif-
ferent loops roughly independent of the loop shape, underlying bond/plaquette type,
and for large loop lengths of up to 30 cross-sites (on the hyperhoneycomb lattice e.g.
Fig. 6.4), implying the estimate Tc ∼ |K|/100.

6.6 Quantum phase diagram in an infinite-D ap-

proximation

The Kitaev-Heisenberg model suffers from the “sign problem” of frustrated quan-
tum Hamiltonians: unbiased algorithms for computing its phase diagram require
computational costs scaling exponentially with system size, a problem greatly exac-
erbated in a three dimensional lattice. Unbiased reliable computations of the phase
diagram on the three dimensional lattices are not possible at present time.

6.6.1 Duality results for the magnetic phases

Even on the 3D lattices, definitive conclusions for the magnetically ordered phases
can still be made due to a general feature, the Klein duality, exhibited by Kitaev-
Heisenberg models[135, 106, 142]. The following discussion applies to any bipartitie
lattice, including the tree lattice in infinite dimension, as well as all 3D harmonic
honeycomb lattices. Since these lattices are bipartite, simple Neel antiferromagnetic
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order is the expected ground state for the Heisenberg antiferromagnet Hamiltonian.
The Neel AF and FM orders map under the Klein duality to three dimensional gen-
eralizations of stripy and zigzag orders. Assuming that the unfrustrated Neel order is
indeed the ground state for AF Heisenberg exchange (as may be verified by quantum
Monte Carlo at the sign-problem-free SU(2) point), we conclude that all four of these
magnetic phases must be present in the phase diagram.

6.6.2 Loop length as a control parameter

To capture the full quantum phase diagram including the quantum spin liquid
phases, we employ a limit inspired by the geometry in the hyperhoneycomb lattice.
Its shortest loops are the 10-site decagons. Treating this loop length ` = 10 as a
large parameter and formally taking it to infinity, we find the loopless ` =∞ Cayley
tree or Bethe lattice with z = 3 connectivity in infinite dimensions. The tree lattice
approximation ` → ∞ enables a solution using entanglement-based methods origi-
nally developed for 1D systems, which rely on efficient representations of matrix or
tensor product states (also known as projected entangled pair states PEPS). The key
for such efficient representations is that entanglement is carried by bonds: cutting a
single bond serves as an entanglement bipartition, and a singular value decomposition
fully determines the entanglement spectrum which can be associated with this bond.

This tree lattice is infinite dimensional in the sense that for finite trees with Ns

sites, a finite fraction of sites fs ≈ (z − 2)/(z − 1) is on the boundary. But note
that this is an opposite limit of infinite dimensionality from the one commonly taken
in mean field theories, which assume infinite connectivity z → ∞: here we crucially
fix z = 3. Entanglement based algorithms within our infinite-D approximation can
work with the low coordination number z = 3 and low spin S = 1/2, capturing the
associated strong quantum fluctuations. As discussed below, we employ an algorithm
which studies the tree lattice directly in its thermodynamic limit, with no boundary
sites, directly as an infinite system.

6.6.3 Tensor networks on the tree lattice

The large loop ` → ∞ limit of the hyperhoneycomb (or higher harmonic hon-
eycomb) lattice, which yields the infinite-D Bethe tree lattice, admits a numerical
solution of the gapped phases in the phase diagram. The key is that cutting a single
bond gives an entanglement bipartition (as shown in Fig. 6.9) with an entanglement
spectrum which is associated with that bond. Hence gapped states can be represented
efficiently as tensor product states (TPS, in other contexts also known as projected
entangled pair states i.e. PEPS), and the full machinery of entanglement based
algorithms can be used. We choose to use a variant of the infinite system size time-
evolving block decimation algorithm (iTEBD)[205]. The iTEBD algorithm has been
previously used to study various Hamiltonians via tree tensor networks, with phase
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diagrams containing magnetic phases[175, 176, 157], nonmagnetic phases[160] and
even a symmetry protected topological phase related to the AKLT Hamiltonian[113].
The iTEBD algorithm is especially useful here since it works directly in the thermo-
dynamic limit (using iPEPS), avoiding the issues which plague finite trees.

Specifically, each update step in the algorithm, such as an imaginary time evolu-
tion step in iTEBD, must be followed by an operation which restores the state into
a correctly normalized tensor product state. This requires cutting the TPS into two
parts and computing the entanglement spectrum across the cut, via a singular value
(i.e. Schmidt) decomposition. These singular values are associated with the bond and
placed between the adjacent site tensors when one contracts the TPS in order to mea-
sure observables. The tree lattice offers all these properties and hence entanglement
based algorithms developed for 1D systems may be adapted to the tree[175].

The iTEBD algorithm performs imaginary time evolution (i.e. soft projection
to the ground state) within a restricted set of tensor product states, allowing it to
find a good approximation to gapped periodic ground states with sufficiently local
entanglement. Since it works on an infinite system, it always chooses one minimally
entangled ground state, i.e. it can exhibit spontaneous symmetry breaking. To
enable such symmetry breaking consistent with the expected magnetic ordering, we
choose a unit cell with 8 site tensors and 12 bond (Schmidt) vectors as shown in
Fig. 6.9, employing 24 update cycles in each imaginary time evolution step. On a
technical note, we performed 2× 107 singular value decompositions (SVDs) for each
parameter point; to preserve normalized tensors during the imaginary time evolution,
we intersperse evolution steps with zero imaginary time (i.e. pure SVD steps), as well
as work with short time steps which are gradually reduced to 10−6 in inverse energy.
The algorithm enables us to capture any periodic state consistent with our 8-site
unit cell whose entanglement is sufficiently local, as is the case for the magnetically
ordered phases we expect to find as well as for the gapped quantum spin liquids.

The key parameter for TPS algorithms is the bond dimension χ, serving as a cutoff
on the number of entangled states. The computational costs scale polynomially in
χ, but for computations on the tree the exponent is fairly high, with scaling of χ6.
The Kitaev-Heisenberg model harbors additional computational complexity due to its
lack of spin rotation symmetry, the large unit cell necessary to describe its magnetic
phases and the emergent small energy scales in its quantum spin liquid phases. Our
results are roughly independent of χ for χ ≥ 6; we report data for computations
using χ = 12, after verifying convergence through χ = 6, 8, 10. As we discuss below,
the finite χ entanglement cutoff successfully collapses the degenerate ground-state
manifold expected on the Bethe lattice into a single minimally entangled ground
state, which is independent of these various values for χ. Hence we expect that finite
(and perhaps not too large) χ is necessary for this mechanism which circumvents
some of the issues which usually plague the Bethe lattice, but any χ within a large
finite window will work well at enforcing a minimally entangled ground state.



105

6.6.4 Definition of Hamiltonian parametrization

The bond-anisotropic Kitaev-Heisenberg Hamiltonian, Eq. 6.1, involves one overall
scale and and three free parameters. In computing the quantum phase diagram
via tensor product states, we will focus on two of these parameters. The Kitaev
exchange, generated by spin-orbit coupling, may be especially sensitive to the bond
anisotropy; we therefore focus on the effects of bond anisotropy on the Kitaev term,
leaving the study of the large-` quantum phase diagram with Heisenberg term bond
anisotropy for future work. Note however that we have performed calculations on
the full Hamiltonian Eq. 6.1 in the neighborhood of the experimentally extracted
parameter values shown in Fig. 6.3, finding the magnetic Stripy-X/Y phase and a
nearby phase boundary to the magnetic Stripy-Z phase.

We shall now record the resulting two-parameter Hamiltonian, together with a
few different useful parametrizations of its couplings, which we use to present various
figures. In particular, we define polar coordinates with r = 1 − a and two different
angle parameters, φ or the alternative θ, corresponding to two differing conventions.
The Hamiltonian parametrization is:

H =
∑
〈ij〉

[
KγijS

γij
i S

γij
j + J ~Si · ~Sj

]
(6.11)

Kγij = K ∗

{
(1− a) on γij = x, y bonds

(1 + 2a) on γij = z bonds

K = 2 sin(φ), J = cos(φ); θ ≡ π/2− φ.

The Kitaev-Heisenberg spin Hamiltonian, with the angular φ parametrization[107]
relating the strengths of Kitaev and Heisenberg coupling, is extended with this
symmetry-allowed anisotropy, parametrized by −1/2 ≤ a ≤ 1.

Let us here also note the extension of the Klein duality discussed in section 6.6.1
above, to the case of nonzero anisotropy. Recall[107] that the Klein duality relates
parameters by tan φ′ = −(1+tan φ) for the isotropic case a = 0. The transformation
exposes a hidden ferromagnet even with anisotropy, at φhidden FM = −arctan[1/(1−a)].
Observe that the anisotropy reduces the symmetry at the hidden-FM point from
SU(2) to U(1): the dual Hamiltonian is no longer Heisenberg but rather is an easy-
axis ferromagnet. The key observation, that its ground state is an exact product
state, remains unchanged.

For the pure Kitaev Hamiltonians, a = 1/4 is the transition point between the
gapless (−1/2 ≤ a ≤ 1/4) and gapped (1/4 < a ≤ 1) Z2 spin liquid phases. In
addition to the isotropic case a = 0 we focus on a particular anisotropy value within
the gapped QSL regime, a = 1/2. We sample other values of the anisotropy as well
in order to generate the global phase diagram shown in Fig. 6.2.
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6.6.5 Magnetically ordered phases

Let us begin our analysis of the tensor product state computation by discussing
the magnetic phases captured by the iTEBD algorithm on the tree lattice. We use a
variety of measures to identify phases and the phase diagram. Magnetically ordered
phases can be captured directly by their magnetic order parameter, since the iTEBD
always produces a single symmetry broken ground state. This analysis is shown
in Fig. 6.10 for the isotropic model, and in the appendix in Fig. 6.15 for a = 1/2
anisotropy. The four magnetic phases expected from the discussion in section 6.6.1
above are observed. Phase transitions are also identifiable, as always, through the first
and second derivatives of the energy. As a simple benchmark we have verified that the
energy is always bounded from above by the energy of the expected classical product
state and from below by the optimal energy for any given site in its surrounding
cluster[93], as may be seen in Fig. 6.15. Phase transitions are also signaled by peaks
in the entanglement carried by the various bonds in the tensor product state, and
finally of course the phases can be identified using the spin-spin correlation functions;
these two measures are shown in Fig. 6.17. We also verify that the entanglement
correctly vanishes at the exact (hidden-)ferromagnet points.

The particular parameters of the direct first order phase transitions between the
magnetic phases should be insensitive to dimensionality and loop length ` for suffi-
ciently large `, since the quantum fluctuations on top of these classical phases need to
propagate a distance of ` sites to distinguish one lattice from another. The smallest
value for ` we encounter is ` = 6, so quantum fluctuations in these magnetic or-
ders must traverse at least six nearest-neighbor bonds to distinguish the honeycomb
from the stripyhoneycomb or hyperhoneycomb lattices. Hence we expect that the 2D
honeycomb, 3D harmonic honeycomb and infinite-D tree lattices will exhibit similar
magnetic transitions. Indeed the parameters we find for the tree lattice within iTEBD
are essentially indistinguishable from those of the 2D honeycomb model[107]. As a
function of anisotropy, the location of magnetic transitions can also be compared to
a classical mean field theory. We find similar behavior, with larger differences closer
to the isotropic point; see Appendix 6.14 for details.

6.6.6 The quantum spin liquid in a tree tensor network

Turning to the phase diagram of the QSL phases and their immediate surrounding,
we first must restrict ourselves to the regime with sufficiently strong anisotropy so
that the emergent majorana fermions are gapped, at a > 1/4. The gapped spin
liquids can be well approximated by the tensor product states we use. In Fig. 6.11
we show the spin liquid phase for K < 0 and the nearby stripy and ferromagnetic
orders. The identity of the spin liquid is already suggested by its lack of magnetic
order parameter; phase transitions to this un-ordered phase are again seen in energy
derivatives and as peaks in the entanglement entropies. The extent of the phase in
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this computation is small, covering about a tenth of a percent of the phase diagram,
but nonzero; more importantly, the extent of the spin liquid is the same throughout
the full range of bond dimensions we study, implying that its stability is a consequence
of any finite entanglement cutoff.

Though its lack of conventional spin order is suggestive, the QSL phase com-
pletely lacks any order parameter and thus avoids a direct identification of the type
in Fig. 6.10. The exact solution of the Kitaev model on the infinite-D tree allows us
to uncover the unique fingerprints of the exact QSL, and use them to unequivocally
identify the QSL phase within iTEBD. Each such set of fingerprints can be computed
as a function of anisotropy for the pure Kitaev model across the entire gapped phase
1/4 < a < 1.

One obvious measure is the energy as a function of a within the Majorana solution,
for which we find good agreement as shown in Fig. 6.18; but energies are notoriously
lousy fingerprints for spin liquid phases. We also compute the spin-spin correlators
within the iTEBD and find that they match the correlators we compute within the
exact solution, as shown again in Fig. 6.18. Correlation functions are a more robust
measure, but are still grossly insufficient for fully characterizing the long ranged
entangled QSL.

Instead, the most valuable set of fingerprints is furnished by the entanglement
entropy carried by each bond. The entanglement spectrum is an inherent part of the
tensor product state description and is easily accessible from the iTEBD. Spurious
“accidental” symmetry breaking exhibited by the iTEBD ground state, caused by the
large unit cell and the merely finite imaginary time evolution duration, complicates
the bond entanglement entropies but still permits comparison with the entanglements
computed in the exact solution. This comparison is shown in Fig. 6.12, confirming
that the iTEBD algorithm is indeed capturing the emergent Majorana fermions of
the quantum spin liquid fractionalized phase in infinite dimensions.

Fig. 6.12 exhibits an important subtlety: the entanglement entropies from the
exact solution match those from the iTEBD computation only if we assume that
the gauge field sector contributes entanglement only on bonds set as strong by the
anisotropy parameter. To understand this key subtlety, we now turn to the study of
the exact Kitaev Z2 quantum spin liquid on the loopless tree lattice, focusing first on
the fermion sector followed by the more subtle Z2 gauge field sector.

6.6.7 Majorana fermion entanglement

The spectrum of Majorana fermions hopping on the infinite tree can be com-
puted exactly[109] using recursion on propagators (appendix 6.11). However, we are
mainly interested in the entanglement entropies associated with a bipartition, which
we choose to compute on finite open trees. The spectrum of a finite tree adjacency
matrix has an extensive number of zero modes, which may be counted for any finite
tree by noting that the number of bonds is Nb = Ns − 1, reduced from the expected
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Nsz/2 by a fraction fb ≈ (z − 2)/z; ie about Ns/3 of the eigenvalues are finite size
boundary effects. For a site-centered tree they may be counted exactly using Lieb’s
sublattice imbalance theorem[158] by observing the unbalanced occupation in the
bipartite tree’s A and B sublattices, |NB −NA|/Ns = (z − 2)/z + 1/Ns. On a bond-
centered tree, in addition to the identically zero boundary eigenvalues there is an
isolated low-lying eigenvalue whose gap vanishes with increasing system size, which is
also associated with the boundary. We may thus take the bulk tree thermodynamic
limit by discounting these boundary eigenvalues of finite tree adjacency matrices.

This finite tree thermodynamic limit, though convergent, may yield answers which
are different from recursive computations directly on the infinite Bethe lattice for some
physical quantities[109]1. For example, the phase transition between the gapped and
gapless phases computed by recursion equations for Green’s functions (see appendix
6.11 for detail) find a phase boundary, as a function of hopping anisotropy, which is
identical on the finite dimensional lattices but different on the Bethe lattice. However,
we expect (and indeed show below) that total energy and the entanglement entropy in
the thermodynamic limit of finite trees, with appropriate subtraction of the thermal
entropy of the boundary described below, provide the correct thermodynamic limit
for comparison with the iTEBD tensor network.

Using the bulk fermion correlation function and the reduced correlator for a bi-
partition associated with cutting the central bond in a bond centered-tree, we first
compute the entanglement spectrum and entropy of the bipartition, which resides on
this central bond. A second approach for computing the entanglement entropy entails
subtracting the T = 0 thermal entropy of the finite open tree from the naively com-
puted entanglement entropy of the bipartition, which again yields the entanglement
entropy of the single bond cut without the T = 0 thermal entropy of the boundary
zero modes. See details in appendix 6.10. The approaches agree, and thus are ex-
pected to yield the entanglement entropy contributed by the fermion sector of the
exact quantum spin liquid.

6.6.8 Z2 gauge theory on the loopless tree

Entanglement is also contributed by the Z2 gauge sector of the tree Kitaev model;
in order to describe this contribution we shall now discuss the unusual subtleties which
arise in a Z2 gauge theory on a loopless lattice. We begin by noting that the gauge
theory is necessarily well defined even on the loopless tree lattice, since it arises from
a well defined spin model. For Ns sites there are Ns/2 gauge-invariant sectors after
projecting the gauge fields, which combine with the Ns/2 majorana fermion degree
of freedom to give the Ns doublet degrees of freedom for the lattice of S = 1/2. In
2D the Ns/2 sectors are labeled by fluxes; in 3D, by magnetic field loops; and in
infinite dimensions, they may be associated with Ns/2 particular infinite magnetic

1We thank Frank Pollmann for pointing out this subtlety.
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field lines extending across the (infinite) lattice. These field lines stretching across the
system are intimately related to a more familiar set of infinite products of operators:
in 2D topologically ordered phases, field lines can wind around the periodic boundary
conditions. The resulting flux piercing the torus costs an energy which vanishes in
the thermodynamic limit, and these operators generate the topological ground state
degeneracy on the torus. On the tree lattice there is an extensive number of such
operators, contributing an extensive ground state degeneracy 2Ns/2.

This degeneracy may also be seen by counting conserved quantities associated
with infinite products of local operators within the original quantum spin Hamilto-
nian. Working either within the original spin model or within the gauge theory, we
must count the number of such independent paths on the tree lattice. A moment’s
thought shows that independent paths may be counted as paths from a given bound-
ary site to any other boundary site on a finite open tree. For the purposes of this
counting the open tree may be compactified by identifying all boundary sites, in which
case the strings again form conventional closed loops carrying a flux. The counting
gives exactly Nboundary sites − 1 = Ns/2 operators, in agreement with the gauge field
mechanism for 2Ns/2 degeneracy. Thus on the tree lattice within a full thermodynamic
limit, the gauge theory collapses to an extensive degeneracy of 2Ns/2 states.

6.6.9 Minimally entangled states of the Z2 gauge theory on
the loopless tree

A Z2 gauge theory contributes log 2 of entanglement for every two bonds in the
entanglement cut, or log(2)/2 entanglement per bond[?]. Intuitively, the gauge field
carries half of the information content of a physical gauge-invariant Z2 link variable.
An additional global term of the topological entanglement entropy is generally ex-
pected to arise in the gauge theory, but does not appear on the tree lattice single-bond
entanglement bipartitions: the only entanglement is that associated with the bond.
Thus on the tree lattice we expect the single bond entanglement cut to carry log(2)/2
entanglement from the gauge sector, in addition to any fermionic entanglement.

However, when comparing to the iTEBD result, we find that the iTEBD choice
of ground state within the gauge theory’s degenerate manifold effectively quenches
the Z2 gauge sector entanglement on weak bonds, giving gauge sector entanglement
only on strong bonds, which retain the gauge field entanglement log(2)/2. This is
reasonable since there are two S = log(2)/2-carrying weak bonds per two sites, giving
exactly the log 2 value of entanglement associated with the twofold degeneracy also
found per two sites. Thus for the iTEBD ground state on the tree, unlike for the
unique ground state on the planar honeycomb, the entanglement entropy on various
bonds is continuous in the Toric Code limit a→ 1, with weak bonds carrying vanishing
entanglement like for the disjointed singlets Hamiltonian a = 1. The strong bonds
carry entanglement of log(2)/2 from the fermion sector plus log(2)/2 from the gauge
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field sector, but for the weak bonds the fermionic entanglement vanishes and the gauge
field entanglement is quenched by the minimally entangled superposition across flux
sectors.

The finite bond dimension χ entanglement cutoff of the iTEBD algorithm is likely
playing the key role here, collapsing the extensive degeneracy of the gauge theory on
the tree into a particular minimally entangled state which is then chosen by iTEBD
as the ground state. It will be interesting to explore whether this mechanism, of
a ground state selected from an extensive degenerate manifold through a minimal-
entanglement constraint, changes its role if the bond dimension is vastly increased.

Armed with the understanding of these subtleties, we thus find that aside from
some spurious spontaneous symmetry breaking due to the infinite system size explored
by the iTEBD algorithm, the entanglement entropy of the resulting iTEBD QSL
ground state, as well as its energy and correlators, exhibit close agreement with
these predictions of the exact QSL solution on a finite tree, as shown in Figs. 6.12
and 6.18. The TPS computation with the finite entanglement cutoff produces a
minimally entangled state within the QSL manifold, elegantly bypassing artifacts
due to the Bethe lattice lack of loops to successfully capture emergent Majorana
fermions within the spin model at infinite dimensions.

6.7 Conclusion

In this work we have analyzed experimental data to motivate a magnetic Hamil-
tonian with large Kitaev exchanges, on the hyperhoneycomb and stripyhoneycomb
lattices formed by Ir in β- and γ-Li2IrO3. Anisotropy in the strength of couplings
between z bonds and the x, y bonds is expected from the crystal symmetries, and en-
ables a fit to the experimental susceptibility measurements, requiring strong Kitaev
exchange.

We first focus on the pure-Kitaev models and discuss the exactly solvable 3D spin
liquid, some of whose most interesting features are unique to three dimensionality.
These features include the extended magnetic flux loop excitations as well as the
existence of a finite temperature deconfined phase, neither of which can occur in the
2D honeycomb model.

Describing the Li2IrO3 materials also requires some Heisenberg exchange, so we
compute the quantum phase diagram as a function both of the additional Heisenberg
exchange and of the coupling-strength bond anisotropy parameter. Our approxima-
tion of choice is to study this system on the Bethe lattice, the tree with no closed
loops. This is expected to capture the basic physics on the 3D harmonic honey-
comb lattices, due to the long length of their shortest closed loop (` = 10 for the
hyperhoneycomb lattice or ` = 6, 14 for the stripyhoneycomb lattice). This large-`
approximation admits no analytical solution, but rather is numerically tractable via a
class of entanglement-based algorithms. We use a TPS representation of the ground
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state, which is then determined using the iTEBD algorithm directly in the thermo-
dynamic limit. Both the magnetically ordered phases as well as the gapped quantum
spin liquid phases are obtained and positively identified using this technique.

The exact 3D quantum spin liquid together with this large-` approximation pro-
vide a controlled study of 3D fractionalization. Although experimentally both of the
3D harmonic honeycomb Li2IrO3 polymorphs appear to be magnetically ordered[199,
173], the significant Kitaev couplings indicated by experiments are promising, and
suggest future directions to realize 3D QSLs in these bulk solid state systems by
tuning magnetic interactions via pressure or chemical composition.

Appendices:

The sections which follow should be considered as appendices, and are more tech-
nical.

6.8 Coordinates for the lattices

In this section, we define the 3D honeycomb-like lattices discussed in the paper.
For simplicity, throughout this paper we work with idealized symmetric versions of
the true Ir lattices in the crystals.

We use the same parent orthorhombic coordinate system to describe both lattices.
This is the coordinate system defined by the following conventional orthorhombic
crystallographic vectors:

a = (2, 2, 0), b = (0, 0, 4), c = (6,−6, 0). (6.12)

In the equation above we have written the a, b, c vectors in terms of a Cartesian (cubic
orthonormal) x, y, z coordinate system. The x̂, ŷ, ẑ lattice vectors in this coordinate
system are defined as the vectors from an iridium atom to its neighboring oxygen
atoms in the idealized cubic limit, with distance measured in units of the Ir-O distance.
Nearest neighbors in the resulting Ir lattice are at distance

√
2.

For each lattice, we express its Bravais lattice vectors, as well as each of its sites of
its unit cell, in terms of the a, b, c axes. A given vector or site, written as (na,nb,nc),
can be converted to the Cartesian coordinate system by the usual matrix transfor-
mation (nx,ny,nz) = na~a + nb~b + nc~c. For both of the lattices, the conventional
crystallographic unit cell, containing 16 sites, is found by combining the primitive
unit cell with the Bravais lattice vectors.
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6.8.1 Hyperhoneycomb lattice (n = 0 harmonic honeycomb),
space group Fddd (#70):

Primitive unit cell (4 sites):(
0, 0, 0

)
;

(
0, 0,

1

6

)
;

(
1

4
,
−1

4
,
1

4

)
;

(
1

4
,
−1

4
,

5

12

)
(6.13)

This unit cell is formed by a single 16g Wyckoff orbit of Fddd, position (1/8, 1/8, z)
with possible equivalent values of z including z = 5/24 (which shifts the unit cell
above by (1/8, 1/8, 1/24)) and z = 17/24 (with the same shift plus an additional
(1/2, 0, 0)).

Bravais lattice vectors (face centered orthorhombic):(
1

2
,
1

2
, 0

)
;

(
1

2
,−1

2
, 0

)
;

(
1

2
, 0,

1

2

)
. (6.14)

6.8.2 Stripyhoneycomb lattice (n = 1 harmonic honeycomb),
space group Cccm (#66):

Primitive unit cell (8 sites):(
0, 0, 0

)
;

(
0, 0,

1

6

)
;

(
1

4
,
−1

4
,
1

4

)
;

(
1

4
,
−1

4
,

5

12

)
;(

0, 0,
1

2

)
;

(
0, 0,

2

3

)
;

(
1

4
,
1

4
,
3

4

)
;

(
1

4
,
1

4
,
11

12

)
(6.15)

The sites (0, 0, 1/6) and (1/4, 1/4, 1/12) together represent the unit cell (shifted by
(0, 0, 1/6) from (0, 0, 0)) as the union of two distinct Wyckoff orbits, 8i with z = 1/6
and 8k with z = 1/12 (Cccm origin choice 1).

Bravais lattice vectors (base centered orthorhombic):(
1

2
,
1

2
, 0

)
;

(
1

2
,−1

2
, 0

)
;

(
0, 0, 1

)
. (6.16)

6.9 Lattice tight-binding model and Majorana spec-

trum

In the Kitaev spin liquid at its exactly solvable parameter point, the emergent Ma-
jorana Fermion hops within the nearest-neighbor tight binding model on the lattice.
Its band structure (fixed to half filling) is given by the eigenvalues of the nearest-
neighbor tight-binding matrix of the lattice.
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We now give these matrices for both lattices. For the hyperhoneycomb lattice,
this matrix is 

0 u2 0 ūc+

ū2 0 uc− 0
0 ūc− 0 u2

uc+ 0 ū2 0

 (6.17)

We have used the following symbols to represent functions of wavevector q,

u =
1

ū
= exp

(
i~q· ~c

12

)
, c± = 2 cos

(
~q·(~a±

~b)

4

)

To convert them to the Ir-O Cartesian axes, recall that ~c
12

= x̂−ŷ
2

and (~a±~b)
4

= x̂+ŷ
2
± ẑ.

For the stripyhoneycomb lattice, the unit cell has 8 sites and so we shall write an
8×8 matrix. By choosing an enlarged 8-site unit cell for the hyperhoneycomb lattice,
we can represent the tight-binding matrices for both lattices in similar notation. In
the following matrix, the upper sign choice for the functions c±, c∓ corresponds to the
stripyhoneycomb lattice, while the lower sign choice corresponds to the hyperhoney-
comb lattice with the enlarged unit cell. These tight-binding matrices are

0 u2 0 0 0 0 0 ūc+

ū2 0 uc− 0 0 0 0 0
0 ūc− 0 u2 0 0 0 0
0 0 ū2 0 uc∓ 0 0 0
0 0 0 ūc∓ 0 u2 0 0
0 0 0 0 ū2 0 uc± 0
0 0 0 0 0 ūc± 0 u2

uc+ 0 0 0 0 0 ū2 0


(6.18)

The determinant of these matrices is the same for both lattices, simplifying to
det = (1− 2 cos(q·c)Sab + S2

ab) with Sab=4(cos(q·a/2)+ cos(q·b/2))2. In this notation,
it is evident that the zeros of the spectrum, found by setting the determinant to zero,
are identical for both lattices and appear at the contour of momenta characterised by

the two equations ~q·~c = 0 and cos (~q·~a/2) + cos
(
~q·~b/2

)
= 1/2. Note that the BZ for

the 8-site unit cells is bounded by ~q·~c = π, ~q·~a± ~q·~b = 2π.

6.10 Entanglement entropy from the Majorana-

fermions of the quantum spin liquid

At the exact QSL point we wish compute the entanglement entropy (and the
energy) for the ground state on the tree, in order to compare this exact result to
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the iTEBD computation. Within the gapped phase of the pure Kitaev (anisotropic)
Hamiltonian, the system can be exactly mapped to a free majorana fermion problem
with a gapped spectrum. We can thus compute quantities on finite trees indepen-
dently of the iTEBD algorithm, within the majorana fermion mapping. Computing
energies is straightforward and we find convergence to the thermodynamic limit using
the boundary-eliminating procedure described above on trees with up to 9 layers. To
describe the entanglement entropy results, let us first recall the computation of entan-
glement spectrum and entropy for free fermion systems[183, 115, 216, 204]. Operating
on a bond-centered finite tree, we compute the correlation function by occupying half
of the majorana spectrum. The reduced correlation function associated with a cut
through the central bond is found by restricting the site indices of the correlator to
lie within one of the two partitions. Each eigenvalue ci of the reduced particle corre-
lator also has an associated hole eigenvalue 1− ci. The entanglement entropy of the
bipartition can be computed from the particle and hole correlators, with a factor of
1/2 for majoranas, by SE = −(1/2)

∑
i[ci log ci + (1− ci) log(1− ci)].

To eliminate tree finite size effects for computing the entanglement entropy in the
fermion sector of the spin liquid, we use two approaches. In the first approach, we
carefully determine which of eigenvalues of the open tree adjacency matrix are associ-
ated with the bulk, using the counting procedure described above, and keep only the
eigenstates associated with these eigenvalues when computing the correlation func-
tion for the entanglement bipartition. In the second approach, we subtract the T = 0
thermal entropy of finite L-layered trees (with open boundary conditions) from the
reduced density matrix entanglement entropy of each such tree under a bipartition
through the center bond. This difference gives purely the entanglement entropy as-
sociated with the single bond cut, without the thermal entropy of the numerous zero
modes of the boundary. We find agreement between the two approaches as the sys-
tem size is increased (and the isolated boundary eigenvalue of the bond-centered tree
vanishes).

6.11 Anisotropic hopping on the infinite Bethe lat-

tice

We compute the density of states on a Bethe lattice directly in the thermodynamic
limit[100], where all sites are identical but each site has different hopping strengths
ti (i = 1, ..., z) on the z bonds connecting it to other sites. Expressing the diagonal
(onsite) Green’s function in terms of a self energy,

G(ω) =
1

ω(1− S(ω))
, S =

z∑
i=1

σi

where we suppress notational dependence on ω; and where σi is the self energy con-
tributed from forward hopping starting from a ti hop. It obeys the following recursive
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system of questions:

σi =
t2i
ω2

1

1−
∑

j 6=i σj

These may be rewritten as a set of quadratic equations, with implicit dependence
only on S,

σ2
i + (1− S)σi − t2iω2 = 0

Solving this quadratic equation (the positive root is taken) and summing over i, we
find a single equation for the self energy S. We may then rewrite it directly as an
implicit equation for the inverse Green’s function G−1,

(z − 2)G−1 + 2ω =
z∑
i=1

√
(G−1)2 + 4t2i

The density of states ρ is proportional to the imaginary part of G (in this notation
ρ = −Im G/π). The system is gapless here if there is a solution with nonzero DoS at
zero energy. Writing r = 2πρ(0), the equation to be solved is

(z − 2) =
z∑
i=1

√
1− t2i r2

Let us analyze where a solution to this equation first appears. At r = 0, the RHS
is equal to z and is greater than the LHS. The RHS decreases monotonically with
r. However, r takes values between 0 and rmax = 1/maxi[ti]. The RHS takes its
minimum value at rmax. The phase boundary between the gapped and gapless phases
occurs when this minimum value of the RHS is just barely equal to the LHS, i.e.

(z − 2) =
z∑
i=1

√
1−

(
ti
tmax

)2

, tmax = maxi[ti]

Let us consider this solution for the case when all hoppings ti = t are equal except
one, tm, which is larger than the rest. The phase boundary then occurs at

t =
√

2z − 3
tm

(z − 1)
; z = 3 → a =

2−
√

3

2 + 2
√

3
≈ 0.05

In the loopless infinite D = ∞ Bethe lattice, the extent of the gapless phase is
shrunk compared to its extent on the D = 2, 3 finite-dimensional lattices. Indeed,
the iTEBD computations, which are expected to break down for a gapless phase, are
able to capture the gapped spin liquid characteristics down to a ≈ 0.15, until they
break down in a first order transition to full symmetry breaking.
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6.12 Harmonic honeycomb series

In the notation for the n-harmonic honeycomb lattice, the integer n counts the
number of hexagons forming the width of each fixed-orientation planar strip. Or
equivalently, going along the direction of the special c axis, the integer n+ 1 specifies
the number of z-bonds between switches of the x,y bonds orientation. Odd-n lattices
posses a mirror plane perpendicular to the special axis, slicing through the midpoint
of the (odd number of) hexagons; even-n lattices possess no mirror reflections, only
glide planes. In this manuscript we focus on two lattices: the n = 1 stripyhoneycomb
lattice, space group Cccm, recently synthesized[173] as a polytype of Li2IrO3, with
` = 6 hexagon as well as ` = 14 sized minimal loops; and the n = 0 hyperhoneycomb
or hyperhoneycomb lattice, space group Fddd, with ` = 10 decagon minimal loops.
The two lattices are shown in Figures 6.1 and 6.4 respectively.

The “hyperhoneycomb” terminology for the hyperhoneycomb lattice may be un-
derstood through the following connection to the hyperkagome lattice (also related
to the hyperoctagon lattice[124]). Consider the 2D kagome and honeycomb lattices2.
The kagome is the medial lattice — formed by connecting bond midpoints – of the
honeycomb lattice. This relation naturally suggests the existence of 3D honeycomb-
like lattices which can be similarly associated with the 3D hyperkagome[181] lattice,
the three dimensional lattice of corner-sharing triangles formed by iridium ions in
Na4Ir3O8. Indeed, the medial lattice of the hyperhoneycomb lattice has a graph (or,
an adjacency matrix) which is, locally, identical to that of the hyperkagome: both
feature corner-sharing triangles which combine to form ` = 10 decagon loops. These
decagons arise from the ` = 10 minimal loops of the hyperhoneycomb lattice.

6.13 Mean field for Stripy-X/Y order

We briefly recall the self consistency equation for the mean field S = 1/2 mo-

ment, 2| ~mi| = tanh[| ~̃Bi|/(2T )] and m̂i =
ˆ̃
Bi, where B̃i is the mean field coupling

to spin Si. The spins develop a moment at a transition temperature TN = 2Esite,
where Esite is the classical energy per site in the ordered state (e.g. −(1/4)(z/2)J).
Above the transition temperature the mean field produces the Curie-Weiss law, χrr =

(gr)2µ2
B/
(

4T +
∑

j J
rr
i0j

)
, where

∑
j J

rr
i0j

= zJ for nearest neighbor J . Experimentally

relevant units may be restored by noting that µB = 0.672 kelvin/tesla. In the Stripy-

X/Y order, the classical mean field
~̃
Bi takes the form

~̃
Bi = gµB ~B − (Kdm

x
i x̂+Kdm

y
n[i]ŷ +Kcm

z
n[i]ẑ (6.19)

+ Jc ~mn[i] + Jd ~mn[i] + Jd ~mi)

2this construction was suggested by Christopher Henley[122, 123].
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and every site carries one of two magnetizations, ~mi or ~mn[i].
Note that for the model Hamiltonians we consider, the principal axes of the sus-

ceptibility tensor are be x, y, z rather than the crystallographic axes a, b, c. Terms
arising from the global symmetries of the crystal will likely change the principal axes
to match the crystallographic ones. To compare with experiment without adding any
such additional terms, we measure the susceptibility tensor along the crystallographic
axes as shown in Fig. 6.3. The weakly anisotropic g-factors, experimentally deter-
mined at high temperature for each of the crystallographic axes, are then incorporated
into each axis of χ. We use the g-factors gx+y = gz = 1.95, gx−y = 2.35. Note that
the overall scale of the g-factors needed to fit the susceptibility, which was measured
experimentally on a single crystal, carries an additional uncertainty associated with
the uncertainty of estimating the number of Li2IrO3 formula units in the crystal.

6.14 Comparison of magnetic transitions in iTEBD

and mean field theory

Magnetic phases can be approximately described within a classical mean field
theory. Such classical product states over sites, with no quantum fluctuation or en-
tanglement, correspond to tensor product states with bond dimension χ = 1. On the
Bethe lattice, we have captured the magnetically ordered phases using tensor product
states with various χ. We find that increasing χ to a value as low as χ = 4 is sufficient
for capturing most of the quantum fluctuations near a first order transition between
adjacent magnetic phases. The location in parameter space of these transitions can
be compared to the classical transition point. Classically, the transition occurs at
φ = nπ − arccot[2 + a], for anisotropy a, with n = 1 for the zigzag-FM transition
and n = 2 fo the Stripy-Neel transition. This comparison is shown in Fig. 6.13. For
concreteness, we also draw sample magnetic configurations on the hyperhoneycomb
lattice, shown in Fig. 6.14.

6.15 Additional iTEBD results

Here we present additional figures with results from the iTEBD computation, as
described in the main text and in the figure captions. The results are shown in Figures
6.15, 6.17, 6.16, and 6.18.
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Figure 6.1: The stripyhoneycomb lattice of iridium in γ-Li2IrO3. The recently
synthesized stripyhoneycomb lattice (space group #66 Cccm) has threefold coordi-
nated sites, which form hexagons arranged in stripes of alternating orientation. It is
the n=1 member of the harmonic honeycomb[173] series of structures; the distinct
hyperhoneycomb lattice of β-Li2IrO3 (Fig. 6.4) has n=0. Parent orthorhombic coor-
dinate system and unit cell (boxed) are shown. In the limit of superexchange via ideal
oxygen octahedra, the magnetic Hamiltonian is dominated by Kitaev-type couplings
(x,y,z labels at bottom), leading to an exactly solvable model of a 3D quantum spin
liquid.
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anisotropy  

FM-Kitaev QSL

AF-Kitaev QSL

Figure 6.2: Quantum phase diagram in the large-` limit. Phase diagram of the frus-
trated quantum Hamiltonian Eq. 6.1, computed via tensor network states within an
infinite-D or large-` → ∞ approximation to the hyperhoneycomb’s ` = 10. Except
for quantitative extent of QSLs (not to scale), we expect it to describe the stripyhon-
eycomb and hyperhoneycomb lattices of γ- and β-Li2IrO3, for which we argue this is
a physical model. The 2-parameter space shown here (Eqs. 6.1,6.11) has polar axes r
tuning symmetry-allowed Kitaev bond anisotropy and φ setting relative strength of
Kitaev and Heisenberg interactions. The QSL phases, successfully stabilized on the
Bethe lattice by the algorithm’s finite entanglement cutoff χ, were identified by an
entanglement fingerprint.
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Figure 6.3: Strong Kitaev exchanges capturing γ-Li2IrO3 anisotropic susceptibil-
ity. Magnetic susceptibility (inset: inverse susceptibility) along principal axes
(z=b;x±y=a, c), measured[173] for a γ-Li2IrO3 crystal (bright lines) and theoretical
mean field fit (dark lines). Susceptibility is fitted by the minimal Hamiltonian Eq. 6.1
with parameters (Kc,Kd, Jc, Jd) at (−17,−7, 6.3, 0.8) meV; magnetic order (recently
found[98] to be a noncoplanar spiral) is captured[98] by Eq. 6.1 at (−15,−12, 5, 2.5)
meV, supplemented by c-axis Ising exchange on c-bonds and J2 Heisenberg exchange
on second-neighbors. In both cases, large Kitaev exchanges Kc,Kd are necessary to
describe the material.
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a b
c

Figure 6.4: The hyperhoneycomb lattice of Ir in β-Li2IrO3. The hyperhoneycomb
lattice (space group is #70 Fddd) has threefold coordinated sites and is the n=0
member of the harmonic honeycomb structural series. Its shortest loops are 10-site
decagons, motivating the large-` loop length approximation for solving the frustrated
quantum Hamiltonian on the 3D lattice. Right: Z2 flux loops in the QSL phase.
Selected bonds (dark orange) of type z (top right) or x, y (bottom right) are chosen
to host nonzero vector potential ui,j = −1 within the QSL Z2 gauge sector, producing
a Z2 closed flux loop excitation, which encircles these bonds.
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Figure 6.5: Edge sharing IrO6 octahedra in the 3D lattices. Iridium (purple sphere)
is coordinated by six oxygens forming vertices of an octahedra. When octahedra
share edges as shown, the exchange pathways (dotted purple lines) give rise to Kitaev
interactions, coupling a spin component γ ∈ {x, y, z} normal to that Ir-Ir bond and
to the shared edge (shown in corresponding color {red, green, blue}). Octahedron at
left shows the relation between the Ir-O x, y, z axes and the crystallographic parent
orthorhombic a, b, c axes of the 3D lattices. The symmetry-distinguished c-axis is
also a preferred axis for Ir-Ir bonds (thick blue bond shown); the perpendicular edge
(X’ed out gray lines) is not shared by any two IrO6 octahedra. The c-bonds host z=b
Kitaev exchange.
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Figure 6.6: Stripy-X magnetic pattern on the stripyhoneycomb lattice. The classical
magnetic pattern associated with the Stripy-X/Y AF ordered phase, here shown
for Stripy-X correlations. Spins, collinear along Sx (white/gray sites correspond to
Sx up/down spins), are aligned along x-type (red) bonds and anti-aligned along y-
type (green) and z-type (blue) bonds. The unit cell is doubled (ordering wavevector
(π, π, 0)) to form the full unit cell of the parent orthorhombic a, b, c axes. These
Stripy-X/Y correlations are predicted by the strong FM Kitaev exchanges necessary
for the mean field fit to the γ-Li2IrO3 magnetic susceptibility.
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Figure 6.7: Kitaev spin liquid with bond anisotropy. The phase diagram of the 3D
Kitaev spin liquids as a function of bond anisotropy, designating whether the emergent
Majorana fermions are gapped or gapless, is identical on the 3D lattices and the 2D
honeycomb model, and is independent of whether the anisotropy breaks or preserves
lattice symmetry. Here the magnitude of Kitaev coupling |Kx|, |Ky|, |Kz| is given by
the distance to the respective edge of the triangle. The vertical line corresponds to
the symmetry-allowed bond-anisotropy, modifying |Kz| by the parameter a (Eq. 6.11)
with particular values shown.

Figure 6.8: Nodal contour of Majorana fermions in the 3D QSL. In the gapless 3D
Kitaev spin liquid phase, the emergent Majorana fermions are gapless at momentum
points which form this 1D contour within the 3D momentum space. The contour is
identical for the QSLs on the stripyhoneycomb lattice and on the hyperhoneycomb

lattice; it is set by ~k · ~c = 0 and cos
(
~k · ~a/2

)
+ cos

(
~k ·~b/2

)
= 1/2. with a, b, c the

parent orthorhombic axes (shown). Introducing coupling-strength bond anisotropy
shrinks this contour until it collapses to a point and then gaps out, yielding the
gapped spin liquid phase.
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Figure 6.9: Infinite-D z=3 tree with 8-site iTEBD cell. Taking the `→∞ limit
of the hyperhoneycomb lattice `=10 results in the z=3 tree, a lattice in infinite
dimensions. Cutting any bond gives an entanglement bipartition (red dashed line),
enabling entanglement-controlled computations with tensor network states. Bonds
are labelled by Kitaev coupling; site labels show the unit cell used for the iTEBD
computation. This 8-site unit cell (sites and bond Kitaev labels shown) used in the
thermodynamic-limit iTEBD computation admits the Klein duality[135, 106, 142],
and is thus expected to capture all the symmetry-breaking patterns in the phase
diagram.
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Figure 6.10: Kitaev-Heisenberg isotropic phase diagram via iTEBD. The magnetic
order parameters of the four phases are directly observed by iTEBD, working in
the thermodynamic limit. The stripy and FM phases surround an exact solution
with saturated magnetic order parameter m = ~/2; Neel and zigzag phases exhibit
a moment reduced by quantum fluctuations. The energy per bond (purple) also
provides the phase transitions, as well as benchmarking (see Fig. 6.15). The QSL
phases exist around the Kitaev points at θ/π = 0, 1 but here are gapless and cannot
be numerically captured with finite entanglement.
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Figure 6.11: Gapped spin liquid at K < 0 and surrounding magnetic phases, via
χ = 12 iTEBD. Sufficient bond anisotropy, here a = 1/2, gaps the QSL fermion
spectrum and enables a tensor product state representation. The QSL phase, here
for K < 0, is identified by the vanishing magnetic order parameters (here the stripy
and ferromagnet) as well as by its entanglement entropies on the various bonds. The
entanglement on the two weak bonds peaks at the transition (with slight spurious
symmetry breaking), and that on the strong bond rises sharply in the QSL, matching
the exact solution’s entropy of Fig. 6.12.
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Figure 6.12: Entanglement entropies as QSL fingerprints in iTEBD and exact ma-
jorana solutions. Entanglement entropies from the exact solution with Majorana
fermions and Z2 gauge fields (dotted lines) and from iTEBD computations (solid
lines). The Kitaev bond strength anisotropy parameter a is varied across the gapped
phase a > 1/4 for which the iTEBD algorithm can capture the quantum spin liq-
uid. The minimally entangled states of the QSL on the tree carry Z2 gauge sector
entanglement only on strong bonds.
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Figure 6.13: Transitions between magnetic orders. Comparison between iTEBD
(solid blue line) and classical mean field theory (dashed red line), of the location in
φ as a function of anisotropy a of the first order transition between two adjacent
magnetic orders. Top left: transition between zigzag and FM phases. Top right:
transition between stripy and Neel phases. Bottom: transitions shown on the radial
plot corresponding to Fig. 6.2.

Figure 6.14: Magnetic orders on the hyperhoneycomb hyperhoneycomb lattice within
the Kitaev-Heisenberg phase diagram. Three magnetic configurations are shown:
clockwise from top-left these are Neel, Stripy-Z and Zigzag-Z. Blue spheres denote up
spins and red spheres denote down spins in these collinear antiferromagneic orders.
Stripy-Z is dual to a z-oriented ferromagnet, Zigzag-Z is dual to a z-oriented Neel
order.
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Figure 6.15: Kitaev-Heisenberg magnetic phases with a = 1/2 anisotropy. See
description for Fig. 6.10. The energy measured in iTEBD is always found to be
bounded from above by classical product states and from below by considering a
maximally-entangled cluster, providing a check on the algorithm. The QSL phases
here are gapped and shown in Figs. 6.11 and 6.16, but their extent is not visible in
this scale due to the strong anisotropy.
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Figure 6.16: Gapped spin liquid for K > 0 and surrounding magnetic phases within
iTEBD. See the description in Fig. 6.11. Here we show the QSL at a = 1/2,K > 0,
which competes with the zigzag and Neel orders. Different entropy curves occur
here compared to the K < 0 QSL since while both the FM and stripy orders are
effectively ferromagnets with nearly saturated ordered moments, the Neel and zigzag
phases involve substantial quantum fluctuations.
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Figure 6.17: Isotropic a = 0 Kitaev-Heisenberg phase diagram via iTEBD: correlators
and entanglement. The four magnetically ordered phases can be identified by various
measures in addition to their direct order parameters. These include signatures of
the transitions in energy derivatives (not shown here), spin-spin correlators (top)
and entanglement entropies on the various bonds in the unit cell (bottom). The
entanglement entropies vanish at the exactly solvable points (shown by yellow lines)
where the ground state, a (hidden) ferromagnet, is a simple product state.
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Figure 6.18: Further benchmarks of iTEBD for the QSLs. The iTEBD spin correla-
tors match the expected result for the pure Kitaev model, vanishing except for nearest
neighbor Kitaev-matched spins; all magnetic order parameters vanish (shown); and
the iTEBD ground state energy per bond (cyan) matches the energy computed from
the majorana fermion spectrum (black), in the gapped QSL phase.
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Chapter 7

Non-Coplanar and
Counter-Rotating Incommensurate
Magnetic Order Stabilized by
Kitaev Interactions in γ-Li2IrO3

7.1 New experimental data on magnetic ordering

The previous chapter presents scenarios for the ground state in the iridate com-
pounds within a particular model, but was written without knowledge of the actual
ground state of the material. This chapter presents work done in collaboration with
experimental groups, primarily the group of Radu Coldea. Together with Alun Bif-
fin and Roger Johnson, as well as other collaborators, a remarkable solution of the
magnetic ordering was obtained from scattering experiments. This chapter presents
some of the experimental results as context, together with their theoretical analysis.

This chapter is composed of excerpts from the related publication, Phys. Rev.
Lett. 113, 197201 (2014). All figures and data are reproduced from that publication
(with permission). The full author list of the publication is as follows: A. Biffin, R.D.
Johnson, I. Kimchi, R. Morris, A. Bombardi, J.G. Analytis, A. Vishwanath, and R.
Coldea.

Here we present very brief excerpts of the relevant experimental discussion from
the publication, together with some of the theoretical analysis. The reader is invited
to turn to the published version of the manuscript for the full information on the
experimental methods, results and analysis. The complete solution of the magnetic
structure is here simply taken as a fact quoted from the experimental paper, and
serves as context for the theoretical discussion that follows.

Materials that realize Kitaev spin models with bond-dependent anisotropic inter-
actions have long been searched for, as the resulting frustration effects are predicted
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to stabilize novel forms of magnetic order or quantum spin liquids. Here we explore
the magnetism of γ-Li2IrO3, which has the topology of a 3D Kitaev lattice of inter-
connected Ir honeycombs. Using resonant magnetic x-ray diffraction we find a com-
plex, yet highly-symmetric incommensurate magnetic structure with non-coplanar
and counter-rotating Ir moments. We propose a minimal Kitaev-Heisenberg Hamil-
tonian that naturally accounts for all key features of the observed magnetic structure.
Our results provide strong evidence that γ-Li2IrO3 realizes a spin Hamiltonian with
dominant Kitaev interactions.

7.2 Introduction

Magnetic materials with bond-dependent anisotropic interactions are candidates
to display novel forms of magnetic order or quantum spin liquid states, as exem-
plified by the Kitaev model on the honeycomb lattice [68]. Here all spins interact
via nearest-neighbor Ising exchanges, but a different Ising axis (x, y, z) applies for the
three different bonds emerging out of each lattice site. This leads to strong frustration
effects that stabilize a novel gapless quantum spin liquid state with exotic excitations
(Majorana fermions), which is exactly solvable in two dimensions. It was theoretically
proposed [69] that such exotic Hamiltonians might be realized in magnetic materi-
als containing edge-sharing cubic IrO6 octahedra. The magnetic ground state of Ir4+

including the cubic crystal field and spin-orbit coupling is a complex spin-orbital dou-
blet with Jeff = 1/2 [70], and super-exchange through the two 90◦ Ir-O-Ir paths is
expected to lead to a dominant Ising interaction for the moment components normal
to the Ir-O2-Ir plane [69]. For a three-fold coordinated IrO6 octahedron this leads to
perpendicular Ising axes for the three nearest-neighbor bonds, as required for a Ki-
taev model. The 2D honeycomb-lattice α-Na2IrO3 [71, 72, 73, 74, 75] and α-Li2IrO3

[76, 77] are being intensively explored as candidate Kitaev materials, but as yet no
clear evidence for novel Kitaev physics has been observed.

Generalizations of the Kitaev model to 3D lattices are also expected to have
quantum spin liquid states [78, 79, 80]. The recently-synthesized structural poly-
types “hyper-honeycomb” β−Li2IrO3 [81] and “harmonic” honeycomb γ−Li2IrO3

[82], which maintain the local three-fold coordination of edge-sharing IrO6 octahe-
dra, are prime candidates to display 3D Kitaev physics. To test for signatures of
such physics we have performed resonant magnetic x-ray diffraction (RMXD) mea-
surements [83] on single crystals of γ-Li2IrO3, scattering at the strong Ir L3 resonance
[72]. We have determined the complete magnetic structure for all 16 iridium sites
in the unit cell, and found an unexpectedly complex, yet highly symmetric magnetic
structure comprised of non-coplanar, counter-rotating iridium magnetic moments lo-
cated in zig-zag chains. Remarkably, the magnetic structure exhibits no net ferromag-
netic or antiferromagnetic spin correlations, and as such one can rule out a model
Hamiltonian whose primary ingredient is the nearest-neighbor Heisenberg interac-
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tion. Instead, motivated by the work of Jackeli and Khaliullin [84], and by arguments
based on susceptibility anisotropy [82, 80], we present a minimal spin Hamiltonian
with dominant Kitaev interactions that naturally reproduces all key features of the
observed magnetic order, in particular, we point out that counter rotating spirals on
the zig-zag chains are naturally generated by Kitaev interactions. Our results there-
fore provide strong evidence that dominant Kitaev couplings govern the magnetic
interactions in γ-Li2IrO3.

7.3 Experiment and extraction of ordering pattern

We refer the reader to the published manuscript at Phys. Rev. Lett. 113, 197201,
2014, for the experiment and analysis information. Here we quote a brief summary
from the published paper. Systematic searches along high-symmetry directions in re-
ciprocal space revealed that at low temperatures new magnetic Bragg peaks appeared
at satellite positions of reciprocal lattice points with an incommensurate propagation
vector q = (0.57(1), 0, 0) [?]. The satellite peaks were found to be as sharp as struc-
tural peaks in all three reciprocal space directions; indicating coherent, 3D magnetic
ordering. The peaks disappeared upon heating and the temperature-dependence of
the intensity had a typical order parameter behavior, which after corrections give
TN = 39.5 K.

The observed behavior of the peaks, together with a detailed technical analysis,
finds that the scattering describes counter-rotating moments between consecutive
sites along c (curly arrows in Fig. 7.1), which form counter-rotating zig-zag chains
along a. Fits to the data gave values for the moment magnitude ratios Mx : My :
Mz = 0.65(4) : 0.58(1) : 1.

Imposing the constraint of near-constant magnitude moment at every site requires
the phase offset between the x and y components to be π or 0, giving the basis vector
combination i(A,−A)x, i(−1)m(F ,−F )y, (F ,F )z, withm = 1 or 2. (See the published
manuscript at Phys. Rev. Lett. 113, 197201, 2014, for the details on this solution.)
Both give similar structures and we plot in Fig. 7.1 the case m = 1. The moments
are confined to rotate in one of two planes, obtained from the (ac) plane by rotation
around the c-axis by an angle ±φ, with φ = tan−1My

Mx
= 42(2)◦. The pattern is

such that neighboring iridium zig-zag chains have alternate orientations of the spin
rotation plane as indicated by the light and dark shaded envelopes in Fig. 7.1. The
m = 2 case simply gives the opposite alternation of the rotation planes.

7.4 Analysis of the resulting magnetic structure

A key feature of the magnetic structure is the counter-rotation of neighboring
moments. On two such sites, say 1 and 1′, the spins projected to the ac-plane are
S1,1′(r) = ĉ〈Sc〉 cos q · r ± â〈Sa〉 sin q · r. We now rotate from the crystallographic
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a, b, c-axes to the Kitaev x, y, z-axes (see Fig. 7.1 caption) and consider the correlation
between the Sx spin components Sx

1S
x
1′ across an x-type bond, or Sy

1S
y
1′ across a y-type

bond. The net averaged correlation is finite, 〈Sx
1S

x
1′〉x = 〈Sy

1S
y
1′〉y = 〈Sa〉〈Sc〉1

2
sin πq

2
.

We see that along each x-type bond the spins are aligned when they point along x, and
anti-aligned when they point along y, and similarly for y-type bonds. Thus Kitaev
interactions can stabilize the counter-rotating moments with a propagation vector q
along a. We therefore construct the following Kitaev-Heisenberg Hamiltonian as a
minimal model

H =
∑

c−bonds

[
KcS

ηij
i S

ηij
j + JcSi · Sj + IccS

c
iS

c
j

]
+∑

d−bonds

[
KdS

ηij
i S

ηij
j + JdSi · Sj

]
+
∑

2nd 〈〈ij〉〉

J2Si · Sj (7.1)

where interactions along the vertical (along c) bonds are denoted by the subscript c
and interactions along the zig-zag (diagonal) bonds are denoted by the subscript d.
Kc and Kd are the Kitaev interactions along c-bonds (of type ηij = z) and d-bonds (of
type ηij = x or y), respectively. To prevent (0, 0, qc) instabilities we have introduced
an Ising coupling Icc of the Sc spin components, and finally a Heisenberg coupling J2

between second nearest neighbors. We take the following values for the parameters
(in units of meV): Kc = −15,Kd = −12, Jc = 5, Jd = 2.5, Icc = −4.5, J2 = −0.9
[85], where the overall scale was set such as to have the calculated ordering transition
temperature agree with the experimental value.

The Hamiltonian was analyzed in Fourier space using the Luttinger-Tisza ap-
proximation [85]. This gave the lowest-energy mode identical to the (Sa,Sc) coplanar
projection of the magnetic structure in Fig. 7.1 with 〈Sc〉 > 〈Sa〉. To obtain fixed-
length spins requires mixing with another mode, and the lowest energy mode available
at the same wavevector has collinear order of the Sb components with a pattern such
that the mixed mode exactly reproduce the observed non-coplanar structure. Fur-
thermore, the Sb components are co-aligned along all the c-axis bonds, and hence
stabilized by the large FM Kc Kitaev exchange. The mixing amplitude, related to
the tilt angle φ, is fixed for unit length spins, but changes continuously with the
Hamiltonian parameters. Decreasing the strength of the Kitaev interactions prevents
the ground state from producing unit-length spins through this mixing mechanism,
and importantly, we find that the non-coplanar tilt angle observed in γ-Li2IrO3 re-
quires relatively large Kitaev exchanges within the minimal model.

To summarize, through RMXD measurements on γ-Li2IrO3 single crystals we have
observed an incommensurate, non-coplanar magnetic structure with counter-rotating
moments. A Kitaev-Heisenberg Hamiltonian can fully explain the observed com-
plex magnetic structure, providing strong evidence that γ-Li2IrO3 is an experimental
realization of 3D Kitaev physics in the solid state.
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7.5 Appendix: Crystal Structure of γ-Li2IrO3

γ-Li2IrO3 has an orthorhombic crystal structure depicted in Fig. 7.2 with edge-
sharing IrO6 octahedra arranged in a three-dimensional network with a three-fold
local coordination. The iridium atoms (red balls) form vertically-linked honeycomb
rows (light and dark shading) that run alternatingly along the a± b diagonals upon
moving along the c-axis. To simplify the notation for the discussion of the magnetic
structure we have labelled the two iridium sublattices as Ir and Ir′.

Table 7.1: Fractional atomic coordinates of the iridium sites in the primitive cell
and corresponding magnetic basis vector components in the determined magnetic
structure.

Site Coordinates
1 (0.25, 0.25, z)
2 (0.25, 0.75, 0.5− z)
3 (0.25, 0.25, 1− z)
4 (0.25, 0.75, 0.5 + z)
1′ (0.5, 0.5, z′)
2′ (0.5, 0.5, 0.5− z′)
3′ (0.5, 0.5, 1− z′)
4′ (0.5, 0.5, 0.5 + z′)

Table reproduced with changes from published manuscript, Phys. Rev. Lett. 113,
197201 (2014). The magnetic ions are located on the two iridium sublattices, Ir at 8k
(0.25, 0.25, z), z = 0.0836(2) ≈ 1/12 and Ir′ at 8i (0.5, 0.5, z′), z′ = 0.1670(3) ≈ 1/6,
each with four sites in the primitive unit cell labelled 1−4 and 1′−4′ with coordinates
listed explicitly in Table 7.1 and positions labelled in Fig. ??.

7.6 Appendix: Magnetic structure with counter-

rotating moments stabilized by Kitaev inter-

actions

We now give details of the derivation of the net spin correlation between nearest-
neighbor sites along the d-bonds 〈SηnS

η
n′〉η = 〈Sa〉〈Sc〉1

2
sin πq

2
with η = x or y. First

we recall the transformation from the crystallographic axes â, b̂, ĉ to the Kitaev axes
defined as x̂ = (â+ ĉ)/

√
2, ŷ = (â− ĉ)/

√
2 and ẑ = b̂, see Fig. 7.1.

The a-component of the displacement between adjacent sites of type 1 and 1′ in a
zig-zag chain is (r1−r1′)·â = ±a/4, where the upper (lower) sign is to be taken if the
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two sites are connected by a Kitaev bond of type x (y). More generally, for neighboring
sites of type n and n′ the displacement projection is (rn − rn′) · â = ±νna/4, where
νn = +1 for n = 1, 4 and νn = −1 for n = 2, 3.

In this notation, we obtain from (??) that sites in the rotating magnetic structure
carry the spin moment

Sn,n′(r) = ±
[
νnâ〈Sa〉+ (−1)mb̂〈Sb〉

]
sin q · r +

ĉ〈Sc〉 cos q · r (7.2)

where the ± sign in front of the square bracket corresponds to unprimed/primed sites
and the case m = 1 is depicted in Fig. ??. The product of this ± sign in front of the
square brackets and the νn sign factor gives a sign which alternates between + and −
when sites are listed by their c-coordinate, i.e. the vertical axis in Fig. 7.1, producing
the counter-rotation of the spin moments in the ac plane.

It is immediately evident that along Kitaev z-type bonds (linking sites of type 1′2′,
3′4′, 13 and 24, see Fig. ??a)) the Sz=Sb spin components are always ferromagnetically-
correlated, enabling energetic stabilization through the strong FM Kitaev interaction
on these bonds, Kc < 0. The more subtle correlations, as discussed in the main text,
are those of the Sx(Sy) spin components across x-type (y-type) Kitaev bonds. The
counter-rotation of neighboring moments within the unit cell enables these subtle
Kitaev correlations, as follows

〈SηnS
η
n′〉r: η-bond /〈S

a〉/〈Sc〉 =〈
cos

(
q ·r ± νn

q ·a− π
4

)
cos
(
q ·r ± νn

π

4

)〉
r

=

1

2
cos

(
q ·a− 2π

4

)
=

1

2
sin
(q ·a

4

)
(7.3)

with η = x or y and 〈. . .〉r indicates the average over all positions r of sites of type n
in the crystal. Note that defining the rotating magnetic structure within the primitive
unit cell (containing 8 sites) is sufficient to uniquely specify the spin moments on all
sites in the crystallographic a, b, c unit cell, which contains 16 iridium sites; here q ·a
ranges from −2π to 2π. Within our convention of the spin components within the
unit cell, positive values of q (i.e. 0 < q · a < 2π) correspond to positive Kitaev
correlations, which may be stabilized by FM Kitaev interactions (Kd < 0).

7.7 Appendix: Luttinger-Tisza analysis of the min-

imal model Hamiltonian

We diagonalize the spin Hamiltonian in momentum space without the unit length
constraint. The energies and modes are found as the eigenstates of the 24 × 24



137

matrix, corresponding to three spin components for each site in the primitive unit
cell. Then solutions obeying the unit length constraint are constructed from the
lowest eigenmode, possibly with higher energy modes mixed in.

The lowest eigenvalue of the Hamiltonian in eqn. (7.1) with parameters as given in
the main text occurs at a wavevector numerically indistinguishable from (4/7, 0, 0) (in
r.l.u’s of the orthorhombic unit cell a× b× c). This minimal energy eigenmode, with
energy −13.6 meV, has the ordered spin moment S ∝ ĉ ± i0.85νnâ, with the upper
(lower) sign for the unprimed (primed) sites, and hence does not quite obey the con-
straint of normalized spins. However it does exactly describe the coplanar projection
of the experimental magnetic structure onto the ac plane. The next three eigenmodes
again involve only Sa,Sc spin components, and cannot mix with the lowest mode. The
fifth eigenmode at this wavevector, with energy −10.5 meV, has spins purely along
b̂, with an order pattern of ± signs for unprimed/primed sites, exactly capturing
the pattern of the non-coplanar tilts in the experimentally-determined structure. So
mixing between this eigenmode and the lowest energy eigenmode to ensure the con-
straint of fixed-length spins can match all features of the experimentally-determined
magnetic structure. For completeness we note that changing the sign of the mixing
coefficient corresponds to changing between the cases m = 1 and 2 in eq. (7.2), with
the two structures being degenerate in energy.

In summary, through extensive searches in parameter space for candidate spin
Hamiltonians we have found that all couplings in eqn. (7.1) currently appear to be
required to stabilize the observed magnetic structure as the lowest-energy structure
with fixed-length spin moments. The phase obtained is stable within a range of values
for the Hamiltonian parameters and the quoted values in the text are a representative
solution, where the overall scale is set by the constraint that the calculated transition
temperature to magnetic order matches the experimental value.
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Figure 7.1: Figure reproduced from published manuscript, Phys. Rev. Lett. 113,
197201 (2014). Projection of the magnetic structure on the (a, c) plane showing 3
unit cells along the horizontal propagation direction a. Light and dark blue arrows
show the moments on the Ir and Ir′ sublattices, with sites 1 − 4 and 1′ − 4′, re-
spectively. Curly arrows on the left side illustrate counter-rotating magnetic order
between consecutive sites along c. In unit cell 2 light (−φ) and dark (+φ) shaded
elliptical envelopes emphasize the confinement of the moments to alternate planes
obtained from the (ac) plane by a rotation by ∓φ around c. In unit cell 3 color of
bonds indicates the anisotropy axis of the Kitaev exchanges in (7.1), with η = x, y, z
for blue/green/red bonds, where x̂ = (â+ ĉ)/

√
2, ŷ = (â− ĉ)/

√
2 and ẑ = b̂).



139

Figure 7.2: Figure reproduced from published manuscript, Phys. Rev. Lett. 113,
197201 (2014). Crystal structure of γ-Li2IrO3. Two neighbouring unit cells are shown:
(left) full structure with Li (white balls), O (black) and Ir (red) located inside IrO6

octahedra (shaded polyhedra), (right) 3D iridium lattice connectivity: honeycomb
rows alternating in orientation (light and dark shading) are interconnected along c.
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Chapter 8

Unified theory of spiral magnetism
in the harmonic-honeycomb
iridates α, β, γ-Li2IrO3

The context for this chapter is as follows. A family of insulating iridates with
chemical formula Li2IrO3 has recently been discovered, featuring three distinct crys-
tal structures α, β, γ (honeycomb, hyperhoneycomb, stripyhoneycomb). Measure-
ments on the three-dimensional polytypes, β- and γ-Li2IrO3, found that they magnet-
ically order into remarkably similar spiral phases, exhibiting a non-coplanar counter-
rotating spiral magnetic order with equivalent q = 0.57 wavevectors.

In this work we examine magnetic Hamiltonians for this family and show that
the same triplet of nearest-neighbor Kitaev-Heisenberg-Ising (KJI) interactions re-
produces this spiral order on both β, γ-Li2IrO3 structures. We analyze the origin of
this phenomenon by studying the model on a 1D zigzag chain, a structural unit com-
mon to the three polytypes. The zigzag-chain solution transparently shows how the
Kitaev interaction stabilizes the counter-rotating spiral, which is shown to persist on
restoring the inter-chain coupling. Our minimal model makes a concrete prediction
for the magnetic order in α-Li2IrO3.

8.1 Unified theory of spiral magnetism

8.1.1 Introduction

Edge-sharing oxygen octahedra coordinating Ir4+ ions can exhibit unconventional
magnetic interactions between the Ir Seff=1/2 pseudospins. Strong spin orbit coupling
in iridium, which produces these low energy Kramer’s doublets, can combine with 90◦

Ir-O-Ir exchange pathways to generate bond-dependent couplings identical to those
discussed by Kitaev[146], as has been proposed in Refs. [129] and [106] for Na2IrO3.
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The collinear antiferromagnetic magnetism[197, 161, 217, 110] later found in Na2IrO3

is distinct from simple Neel order, but can be captured by various models with or
without Kitaev-type spin anisotropies.[198, 110, 143, 91, 107, 112, 116, 170, 171, 140,
117, 118, 192] The isostructural compound α-Li2IrO3, in which Ir forms separated
layers of the 2D honeycomb lattice, is available only in powder form. Thermodynamic
and susceptibility measurements suggest it also orders magnetically[198], and powder
neutron diffraction experiments found a magnetic Bragg peak with a small nonzero
wavevector inside the first Brillouin zone[111], stimulating theoretical models[189,
178] of spiral orders.

In the past two years, compounds with chemical formula Li2IrO3 have been suc-
cessfully synthesized in two additional crystal structures (Fig. 8.1). In γ-Li2IrO3 the
Ir sites form the 3D stripyhoneycomb lattice[?, 99] (space group #66 Cccm), fea-
turing hexagons which are arranged in honeycomb strips of alternating orientation.
In β-Li2IrO3 the Ir sites form the 3D hyperhoneycomb lattice[199, 97] (space group
#70 Fddd), featuring 10-site decagons which are reminiscent of the hyperkagome[181]
lattice of Na4Ir3O8. The relation between these structures is captured by their des-
ignation as harmonic-honeycomb iridates[?, 141], a structural series in which α, β, γ-
Li2IrO3 are labelled by n = ∞, 0, 1 respectively. Common features include local
three-fold coordination of sites, as well as identical 2D projections along the a and b
parent orthorhombic axes; the c axis projections are distinct.

Recent experiments using resonant magnetic x-ray diffraction have successfully
determined the magnetic ordering in β- and γ-Li2IrO3 single crystals[99, 97]. The
results are striking. Both compounds order into a complex spiral at a tempera-
ture TN=38 K. This order hosts counter-rotating spirals within the unit cell, ex-
hibiting a particular pattern of non-coplanar tilts. The spiral wavevector q lies
along the orthorhombic a axis, with the same apparently incommensurate magni-
tude q = 0.57(1)×2π/a = 0.61(1)Å−1 in both structures. Except for the angle of the
non-coplanar tilt, the magnetic orders observed in β- and γ-Li2IrO3 are equivalent to
each other, though occuring in different lattice settings.

In this work we analyze the origin of this phenomenon by theoretically studying
the three Li2IrO3 systems at the level of lattice magnetic Hamiltonians. We show
that a microscopically-derivable set of nearest-neighbor interactions, consisting of
Kitaev, Heisenberg and Ising exchanges, is sufficient for capturing the observed spiral
magnetic order. This Hamiltonian is

H =
∑
〈ij〉

[
K S

γij
i S

γij
j + J ~Si · ~Sj + Ic S

rij
i S

rij
j

]
(8.1)

where K is the Kitaev coupling, and I is a distinct Ising coupling of the spin com-
ponents parallel to the bond orientation, i.e. Srij≡~S·r̂ij where r̂ij=(~i−~j)/|i−j| is the
unit vector from site i to site j. In this model the Ising term Ic is chosen to be
active only on those symmetry-distinguished bonds which are parallel to the c axis,
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where it becomes IcS
c
iS

c
j . For the Kitaev coupling of spin component γij, the bond-

dependent axis γij ∈ (x, y, z) is the Ir-O unit vector from iridium site i to one of the
oxygens in its coordinating octahedron, uniquely chosen so that γij is perpendicular

to rij or, equivalently, perpendicular to the bond’s IriO2Irj square. Here ẑ=b̂ and
x̂, ŷ=(â±ĉ)/

√
2. As is clear from this representation, the three different exchanges

K, J , I are all symmetry-allowed and can be microscopically generated1 already in
the limit of cubic O6 octahedra.

The phase diagram of Eq. 8.1, shown in Fig. 8.2A, exhibits a remarkable feature.
The experimentally-observed spiral order in the β and γ lattices is stabilized in our
theoretical model as the ground state on all three lattices, for certain parameters
such as (K, J , Ic) = (−12, 0.6,−4.5) meV. Moreover the surrounding phase diagrams,
computed by setting Eq. 8.1 on each of the three α, β, γ-Li2IrO3 lattices, are all quite
similar. In Fig. 8.2 the phase diagrams on α, β, γ lattices are shown for the same
parameter range, permitting this visual comparison. This feature suggests that the
experimental observations, of the striking similarity between the β- and γ-Li2IrO3

spiral orders, may be captured within this effective S=1/2 Hamiltonian with nearest-
neighbor exchanges.

To understand the striking similarity between the Fig. 8.2 phase diagrams found
in our numerical computations on the different lattices, we introduce a conceptual
toy model consisting of a 1D zigzag chain. This minimal conceptual model may be
motivated as follows. Observe that the symmetries of the Li2IrO3 polytypes single
out the set of Ir-Ir bonds which lie parallel to the crystallographic c axis. These
c-bonds, with rij=c, all carry Kitaev couplings of γij=z=b. The remaining “d-bonds”
(as well as their γij=x, y) all lie diagonal to the a, b, c axes. This symmetry-enforced
distinction gives the microscopic motivation for setting Id=0 in Eq. 8.1. Now consider
decomposing the Hamiltonian Eq. 8.1 into its interactions on c-bonds and on d-bonds,
H = Hc + Hd. The d-bonds Hamiltonian Hd is then a sum of decoupled 1D zigzag
chains at various positions and orientations, Hd =

∑
H1D, turning all three lattices

into sums over identical H1D building blocks.

8.1.2 Zigzag chain minimal model.

The zigzag chain toy model is a conceptual mechanism for connecting the full
numerical computations. Its solution is transparent, clarifying how essentially the
same form of spiral order arises from Eq. 8.1 on the distinct 3D lattices. We com-
plement its analytical insight by numerically computing the phase diagrams as we
mathematically interpolate between the 3D lattices: even as we smoothly turn off the
inter-chain bonds, reducing the 3D lattices to the 1D chain, the spiral phase remains
stable.

1Microscopic exchange pathways for edge-sharing octahedra have been discussed in Refs. [135,
108, 129, 106, 172, 179, 107, 169, 116, 186].
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Since we define H1D by dropping the inter-chain c-bonds, we here mitigate the loss
of the Ic exchange by introducing a second-neighbor Heisenberg J2 interaction. This
J2 can be discarded when the full 3D lattice is restored. The zigzag-chain geometry
is defined in Fig. 8.3; let r1, r2 point from an A-sublattice site to its neighboring B
sites, and choose the 1D Bravais lattice with vector a1 = r2−r1 so that the A-sites lie
at integer positions r = na1. The single-chain Hamiltonian is

H1D =
∑
r=na1

[
K
(
SxA,r S

x
B,r+r1

+ SyA,r S
y
B,r+r2

)
(8.2)

+ J
(
~SA,r · ~SB,r+r1 + ~SA,r · ~SB,r+r2

)
+ J2

(
~SA,r · ~SA,r+a1 + ~SB,r−r2·~SB,r+r1

)]
In solving the 1D minimal model, one can focus on the x, y (or equivalently a, c)

coplanar mode of the spiral. (Restoring the inter-chain z-type Kitaev couplings will
produce the non-coplanar tilt.) This is justified perturbatively near an exactly solv-
able point, as follows. First consider Eq. 8.2 at J2=0, K=−2J , K<0, where a site-
dependent spin rotation[135, 106, 142] exposes it as a pure ferromagnet in a rotated
basis. Its exact quantum ground state is a Stripy collinear antiferromagnet (AFM)
of the original spins. In particular, taking now slightly larger |K|, the ground state
is Stripy-XY: it has spins collinear along Sx/Sy which are aligned on x/y-type bonds
and anti-aligned along y/x-type bonds. Focusing on large FM K<0 with small AF
J>0 satisfying K+2J<0, we expect states in the zigzag chain to be x, y-coplanar.

We therefore conceptually consider an ansatz for the x, y spin components, on the
sublattices s ∈ {A,B},(

Sxs,r,S
y
s,r

)
=
(
Re, Im

)
[exp{−i (qs r + φs)}] (8.3)

parametrized by the sublattice spiral wavevectors qA=±qB and the sublattice phases
φA,φB.

Consider the case of counter-rotation, qB=− qA=θ/a1 with θ>0 (a1 is defined in
Fig. 8.2). The energy per unit cell is given by

E−(θ) = K sin (θ/2) sin(φA+φB) + 2J2 cos(θ) (8.4)

Minimizing the energy with respect to the sublattice phases (for K<0) immediately
fixes their sum to be φA+φB = π/2. Now consider the minimization with respect to
the spiral rotation angle θ. There are three cases. (1) For small |J2|, Eq. 8.4 is mini-
mized at θ = π, producing the Stripy-XY AFM state, with energy Estripy = K−2J2.
(2) For larger ferromagnetic J2 < 0, a global minimum develops at an incommensu-
rate wavevector fixed by sin (θ/2) =K/(8J2), for |J2| > |K|/8. This incommensurate
counter-rotating spiral phase has energy Espiral = 2J2+K2/(16J2). (3) At larger |J2| it
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gives way to the q=0 ferromagnet solution (φA=φB) with energy EFM = K+2J+2J2.
The computed phase diagram and associated wavevector q are shown in Fig. 8.3.

It is also evident that a mostly-Heisenberg model cannot produce a counter-
rotating spiral. This is true even if it is supplemented by e.g. Dzyaloshinskii-Moriya
couplings. To see this, examine the generic spin correlations of the ansatz state
Eq. 8.3. Between neighboring sites i=(A, r) and j=(B, r+v), they are〈

Sxi S
x
j ± S

y
i S

y
j

〉
= δ(qB ∓ qA) cos (qBv + φB ∓ φA) (8.5)

The upper sign gives the usual Heisenberg correlations, while the lower sign corre-
sponds to the spin-anisotropic correlations of the Kitaev exchange. The delta-function
factor ensures that the Heisenberg/Kitaev correlations vanish in the counter/co-
rotating spiral, respectively.

8.1.3 Non-coplanar spiral from coupled chains.

Each of the three α, β, γ-Li2IrO3 lattices is reached from the decoupled-chains
limit, by introducing a particular pattern of inter-chain couplings between chains of
various positions and orientations. We find that these inter-chain couplings both
help to stabilize the coplanar spiral found in the 1D model, and also introduce an
alternating pattern of non-coplanar tilts in the rotation planes of successive zigzag
chains, as follows. By taking Eq. 8.3 with appropriate phases and introducing the
〈Sb〉 component, we describe the full spiral by

~Ss,r = cos(qsra)〈Sc〉ĉ− sin(qsra)
(
〈Sa〉â± 〈Sb〉b̂

)
(8.6)

with qB=−qA=q>0 denoting counter-rotation between upper (s=B) and lower (A)
sites on each zigzag chain. The ± sign alternates between successive zigzag chains,
tilting Sa towards ±Sb, with magnitudes satisfying 〈Sa〉2+〈Sb〉2=〈Sc〉2 required by
the constraint of fixed length spin on each site. This tilting is stabilized energetically
by the strong KcS

b
iS

b
j inter-chain coupling, and its alternating pattern is set by Jc>0.

The resulting non-coplanar spiral is composed of a coplanar spiral in each zigzag chain,
whose plane of rotation alternates in orientation between adjacent zigzag chains.
Fig. 8.3 shows the resulting spiral as viewed in the b-axis projection common to the
lattices, for parameters with q = 0.57×2π/a.

8.1.4 Applicability of the 1D model.

We demonstrate the applicability of the 1D model to the physical lattices, by
studying the smooth evolution of each lattice to its decoupled-chains limit. In par-
ticular, we introduce an inter-chain coupling coefficient λc, and map the semiclassical
phase diagram of Hλ = λcHc + Hd. Here the Hamiltonian Eq. 8.1 is supplemented
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by the J2 exchange between second-neighbors of the Ir lattice, on the two intra-chain
bonds (as in Eq. 8.2) as well as on the four remaining bonds (where it is suppressed by
the inter-chain coupling coefficient λc). Such a study is shown in Fig. 8.2B, showing
the phase diagram as a function of λc and J2 for Kd=0.8Kc, Jc=2Jd=|Ic|, Ic=Kc/3.
We find that the spiral phase remains stable from the 1D limit λc=0 through the
isotropic physical lattice λc=1, on each of the lattices.

8.1.5 Necessity of strong Kitaev interactions.

We consider aKJIc−J2 Hamiltonian, such as the model we previously reported[99]
for the spiral order in γ-Li2IrO3, and attempt to tune J2 → 0 while preserving the
experimentally-observed spiral phase. Such a study is presented in Fig. 8.2B, showing
the phase diagram in J/|K| and J2/K, here for Ic/K = 0.375. We find that to dis-
card the second neighbor interactions, the ratio |K|/J must simultaneously be taken
to be quite large ∼ 20. One representative such set of nearest-neighbor couplings
is (K, J , Ic) = (−12, 0.6,−4.5) meV. Here the overall scale is set so that the mean
field ordering temperature TN=40K matches the experimental TN . Putting aside the
Ising term, this ratio J/|K| = 0.05 lies well within the 2D Kitaev quantum spin liq-
uid phase on the honeycomb lattice[106, 107, 131], though it may lie outside the 3D
quantum spin liquid phases on the 3D lattices[141].

8.1.6 Semiclassical solutions.

The semiclassical approximation which we employ can capture incommensurate
spiral orders as well as other magnetic phases. We represent spins by unconstrained
vectors, yielding a quadratic Hamiltonian which is appropriate for capturing fluctu-
ating states with small ordered moments. The lowest energy mode of this quadratic
Hamiltonian is associated with the ordering instability of the spin model, and is
straightforwardly found by Fourier transform. This is expected to be the leading
ordering instability out of a high temperature paramagnetic phase assuming a con-
tinuous transition. Potentially quantum fluctuations could play a similar role. Our
phase diagrams outline the evolution of this leading instability. We perform numerical
minimization by defining a π/8-spaced grid in the Brillouin zone (which here ranges
e.g. from −2π/a to 2π/a) and then using the constrained minimization algorithm
of Broyden-Fletcher-Goldfarb-Shanno[101, 103], independently starting at each grid
point.

The algorithmically-generated phase diagrams in Fig. 8.2 host the Li2IrO3 spiral
phase as well as various competing orders. These include stripy antiferromagnets,
where spins of the given component are aligned only along that Kitaev bond type; in-
commensurate orders with q-vectors along b or c, which retain stripy-like correlations
within the unit cell; and ferromagnets with Sc or Sz alignment.
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8.1.7 Coplanar and tilt modes.

The experimentally observed spiral phase in the β and γ lattices, expressed in
Eq. 8.6 and plotted in Fig. 8.3, was identified numerically in two steps. Observe that
the non-coplanar Sb tilt pattern is distinguished from the Sa,Sc coplanar spiral or-
der by a mirror eigenvalue, associated with a c-axis reflection. The coplanar spiral is
mirror-even while the tilt mode is mirror-odd. Indeed we find that they appear as dis-
tinct modes in the Fourier transform of Hamiltonians in the spiral phase. The global
ground state is numerically found to be the coplanar spiral mode, which furthermore
is found to exhibit 〈Sa〉 < 〈Sc〉. Nonlinear effects above our quadratic approximation,
which would tend to force the length of spin to be similar across sites, are likely to mix
this solution with an additional mode. We adopt the following heuristic approach to
include effects of nonlinearity which become more important with growing magnitude
of the order parameter. We examine the lowest energy excited mode available for this
mixing, and find throughout that it consists of the experimentally-observed 〈Sb〉 tilt
pattern. While the instability analysis provides us a phase diagram that includes an
incommensurate spiral, a more controlled calculation of nonlinear effects is required
to decide whether the observed magnetic order appears or some other state is favored
in this regime of parameters for the quantum S=1/2 Hamiltonian.

This analysis fixes the pattern of non-coplanar tilts. Their rough magnitude
(though not their overall sign) can be estimated by constructing a fully-classical
configuration from the two mixing modes. For the values (K, J , Ic)=(−12, 0.6,−4.5)
meV, the resulting tilt angle is 63◦, similar to the angles observed experimentally,
42◦ and 55◦; it can be tuned through these values by varying the relative ratios of
the exchange parameters. However we expect fluctuations to be relevant for these
systems. Indeed, in the experimentally-determined magnetic structures[99, 97] of β-
and γ-Li2IrO3, the extracted ordered magnetic moment is not constant in magnitude
between sites, but it is smaller by 10-20% when it is aligned in the ab plane compared
to when it is pointing along the c-axis. This variation is likely due to a combination
of g-factor anisotropies and quantum fluctuations of these S=1/2 moments.

8.1.8 Zigzag-chain mechanism in α-Li2IrO3.

α-Li2IrO3 [182] has a layered structure of stacked 2D iridium honeycombs sepa-
rated by layers of Li ions. For comparison with the other lattices we construct an
orthorhombic parent unit cell of the same size as for the β and γ structures (for details
see [90]) where the honeycombs are in the (a+b,c) plane (Fig. 8.1). The Hamiltonian
Eq. 8.1 predicts an incommensurate spiral order in the honeycomb layers with the
same pattern of counter-rotation between adjacent sites and non-coplanarity between
vertical (c-axis) bonds as in the β and γ lattices. Remarkably, the energetics is such
that for the same values of the exchange parameters (K, J , I), the calculated relative
angles of spins on nearest-neighbor sites is the same on all three lattices.
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In particular, energetic analysis of the (K, J , I) model Hamiltonian on the α-
Li2IrO3 lattice, with parameters chosen to reproduce the experimentally-observed
order on β- and γ-Li2IrO3, predicts a magnetic structure where the relative spin
orientations between adjacent sites are the same as in the β and γ polytypes. This
implies that the projection of the α-Li2IrO3 ordering wavevector onto the honeycomb
layers is q1D = q cos θ, where q = 0.57 ∗ 2π/a is the propagation vector magnitude in
the β and γ lattices, and θ = cos−1(a/

√
a2 + b2) is the angle between the a-axis and

the α-Li2IrO3 honeycomb layers. Here the subscript 1D emphasizes that for a given
honeycomb plane, the spiral wavevector lies along a zigzag chain, as in the 1D model
of decoupled chains (Eq. 8.2 and Fig. 8.3).

The resulting value for this projection, q1D ∼ 0.35Å−1, serves as an estimated
lower bound for the magnitude of the 3D ordering wavevector q3D that would occur in
the real material. Weak inter-layer couplings can give q3D a finite component normal
to the honeycomb layers, suggesting a possible range for the magnitude |q3D|. Future
experiments on α-Li2IrO3 single crystal samples could test these predictions for q3D,
as well as the predictions for non-coplanarity and counter-rotation, which are highly
non-trivial features for the magnetic order on a honeycomb lattice. In particular the
non-coplanarity would break the C-centering of the honeycomb lattice, leading to a
doubling of the primitive unit cell; this is a rather unusual feature for spiral order,
and distinct from other theoretical models[189, 178] for α-Li2IrO3.

8.1.9 Conclusion.

The experimental observations in β- and γ-Li2IrO3 are intriguing: the two com-
pounds undergo a magnetic ordering transition, at similar temperatures, into an
unusual spiral magnetic order, with spiral wavevectors which are the same up to
the experimental accuracy. This spiral wavevector appears to be incommensurate,
with no clear mechanism for strong lattice pinning. In this work we have found a
nearest-neighbor magnetic Hamiltonian which reproduces the complete symmetry of
the spiral magnetic order on the two lattices including the pattern of counterrota-
tion and noncoplanarity. The origin of this cross-lattice similarity is clarified by a
1D zigzag chain minimal model. This transparent model is sufficiently minimal to
be a common building-block for the lattices, yet sufficiently complex to stabilize the
counter-rotating spiral order. Its applicability is verified by smoothly extending it
towards the physical lattices, and its predictions for α-Li2IrO3 are testable. The
apparent commonality across the Li2IrO3 family suggests that to capture certain as-
pects of the magnetism, it may be sufficient to describe the different compounds via
the same low-energy effective Hamiltonian. Why this may happen remains to be
understood.

Note added. During publication of this manuscript, a preprint[144] has appeared
which discusses magnetism on the β, γ-Li2IrO3 lattices. One of the magnetic spiral
phases identified there correctly captures the magnetic structure observed[97] in β-
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Li2IrO3. However, that phase, as well as the other spiral phases found in that work,
differ in detail (symmetry of the ordering pattern) 2 from the spiral phase discussed
here and observed experimentally[99] for γ-Li2IrO3.

8.2 Technical detail

8.2.1 Parent orthorhombic setting for α, β, γ-Li2IrO3

In this section, we define simple idealizations of the Ir lattices in the crystals, by
taking oxygen octahedra to have ideal cubic symmetry. This provides a pedagog-
ically clearer description of the 3D lattices. For the layered α-Li2IrO3 monoclinic
structure, our definition of parent orthorhombic axes is a key step in our prediction
of its magnetic order, as discussed in the text.

We use a coordinate system based on the parent orthorhombic axes shown in Fig.
1. These vectors, which are the conventional crystallographic axes for β, γ-Li2IrO3,
are related to the Ir-O x, y, z axes by

a = (2, 2, 0), b = (0, 0, 4), c = (6,−6, 0). (8.7)

In the equation above we have written the a, b, c vectors in terms of the Cartesian
(cubic orthonormal) x, y, z coordinate system. The x̂, ŷ, ẑ lattice vectors in this co-
ordinate system are defined as the vectors from an iridium atom to its neighboring
oxygen atoms in the idealized cubic limit, with the unit of length being the Ir-O dis-
tance. Nearest neighbor bonds in the resulting Ir lattice have length

√
2, and second

neighbors are at distance
√

6.
For each lattice, we express its Bravais lattice vectors, as well as each of its sites of

its unit cell, in terms of the a, b, c axes. A given vector or site, written as (na,nb,nc),
is converted to the Cartesian coordinate system by (nx,ny,nz) = naa + nbb + ncc.
The conventional unit cell in the orthorhombic setting, which contains 16 sites, is
found by combining the primitive unit cell with the Bravais lattice vectors.

β-Li2IrO3 hyperhoneycomb lattice (n=0 harmonic honeycomb), space group
Fddd (#70):

2The a-axis spiral orders discussed in Ref. [144] (“SPa+” and “SPa−”) exhibit features of non-
coplanarity and counter-rotation, but have a different symmetry compared to the spiral phase found
experimentally in γ-Li2IrO3. The pattern of non-coplanarity of the spiral planes predicted for
γ-Li2IrO3 is such that it alternates between successive pairs of zigzag chains along c; whereas ex-
perimentally it is found that it alternates between consecutive zigzag chains[99], as illustrated in
Fig. 3 (bottom right). Interestingly, the order in β-Li2IrO3 is correctly captured by one of the
spiral orders found in that work with sign-flipped Γ-interactions, specifically S̄P a− . In contrast,
the experimentally-determined structures for both β and γ-polytypes are captured naturally by the
KJI minimal model proposed in Eq. 1.
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Primitive unit cell (4 sites):(
0, 0, 0

)
;

(
0, 0,

1

6

)
;

(
1

4
,
−1

4
,
1

4

)
;

(
1

4
,
−1

4
,

5

12

)
(8.8)

Bravais lattice vectors (face centered orthorhombic):(
1

2
,
1

2
, 0

)
;

(
1

2
,−1

2
, 0

)
;

(
1

2
, 0,

1

2

)
. (8.9)

γ-Li2IrO3 stripyhoneycomb lattice (n=1 harmonic honeycomb), space group
Cccm (#66):

Primitive unit cell (8 sites):(
0, 0, 0

)
;

(
0, 0,

1

6

)
;

(
1

4
,
−1

4
,
1

4

)
;

(
1

4
,
−1

4
,

5

12

)
;(

0, 0,
1

2

)
;

(
0, 0,

2

3

)
;

(
1

4
,
1

4
,
3

4

)
;

(
1

4
,
1

4
,
11

12

)
(8.10)

Bravais lattice vectors (base centered orthorhombic):(
1

2
,
1

2
, 0

)
;

(
1

2
,−1

2
, 0

)
;

(
0, 0, 1

)
. (8.11)

α-Li2IrO3 layered honeycomb lattice (n=∞ harmonic honeycomb), space group
C2/m (#12):

To discuss the layered honeycomb α-Li2IrO3 polytype within the context of its
3D cousins, we must first set up a single global coordinate system. The two 3D lat-
tices are captured, up to minute distortions, by the same parent simple-orthorhombic
coordinate system of a, b, c axes.

The α polytype however has monoclinic symmetry and is conventionally described
by a set of monoclinic axes, which we denote am, bm, cm. The parent orthorhom-
bic a, b, c axes defined above are distinct from the conventional monoclinic axes
used to describe this C2/m crystal. Here we define an orthorhombic coordinate
system from a higher-symmetry idealization of these monoclinic axes, by taking
ao = am + cm, bo = am − cm, co = 2bm. The ao, bo, co notation here signifies
that, up to the distortions of oxygen octahedra, the resulting a, b, c axes are identical
to the orthorhombic axes of the β and γ polytypes. This higher-symmetry idealiza-
tion consists of the approximation that |am| = |cm|, which is wrong in the physical
lattice[182] only by about 1%. The transformation between the conventional mono-
clinic axes and the universal orthorhombic axes is also described by the coordinate
notation as

am =

(
1

2
,
1

2
, 0

)
; bm =

(
0, 0,

1

2

)
; cm =

(
1

2
,−1

2
, 0

)
. (8.12)
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The a, b, c coordinate system preserves the key features used to discuss the other
lattices, namely that bonds lying along the c axis carry Kitaev coupling b = z, while
remaining bonds are diagonal to the a, b, c axes and form the d-bonds zigzag chains.
Equivalently, we choose a right handed orthorhombic coordinate system, with the c
axis as the unique axis along which one third of Ir-Ir bonds are aligned, and the b
axis as the unique axis along which one third of Ir-O bonds are aligned.

Primitive unit cell (2 sites, denoted A and B):(
0, 0, 0

)
;

(
1

4
,−1

4
,

1

12

)
(8.13)

Bravais lattice vectors, here denoted as a1, a2, a3:

a1 =

(
1

2
,−1

2
, 0

)
; a2 =

(
−1

4
,
1

4
,
1

4

)
; a3 =

(
1

2
,
1

2
, 0

)
(8.14)

where the first two vectors span the 2D honeycomb plane. These vectors are all of
the same length (

√
6 in units of Ir-O distance), and span the six second neighbors

within a honeycomb plane, plus one of the two additional pairs of sites on adjacent
planes which are at the same distance, given by vectors ±a3 = ±(x̂ + ŷ + 2ẑ) (the
remaining pair belongs to the opposite sublattice).

Within a honeycomb plane, the nearest neighbor vectors from A to B are r1, r2, r3,
with r3 = −r1−r2 and

r1 =

(
−1

4
,
1

4
,

1

12

)
; r2 =

(
1

4
,−1

4
,

1

12

)
. (8.15)

The Bravais vectors above are related by a1 = r2 − r1, a2 = r1 − r3. For reference we
also note these Ir-Ir vectors in the Ir-O coordinate system, r1 = −ŷ + ẑ, r2 = x̂− ẑ,
r3 = −x̂ + ŷ. This immediately implies that the Kitaev labels for (r1, r2, r3) bonds
are (x, y, z) respectively.

Zigzag chain as basic structural unit:
The 1D zigzag chain is composed of sites A and B,(

0, 0, 0

)
;

(
1

4
,−1

4
,

1

12

)
, (8.16)

together with a single (1D) Bravais lattice vector,

a1 =

(
1

2
,−1

2
, 0

)
. (8.17)

The reflection b→ −b takes this zigzag chain to its symmetry-equivalent partner, in
which the minus sign in the two equations above is replaced by a plus sign.

In this notation it is evident that the zigzag chains forms the basic structural unit
in all three Li2IrO3 polytypes. In each lattice, sites are naturally partitioned into
pairs which match this zigzag chain unit cell, and each lattice contains the chain’s
Bravais lattice vector. The magnetic Hamiltonian on each lattice is constructed as
the sum of zigzag chain Hamiltonians plus inter-chain interaction terms.
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8.2.2 Ising interactions

The Ising term defined in Eq. 1 is distinct from any combination of Kitaev and
Heisenberg exchanges. (The geometry is visualized in Fig. 8.5.) It can be related
to the “off-diagonal” symmetric interactions which have recently appeared in the
literature[186, 212, 133] under the symbols Γ or D. For instance, if on a z-bond one
writes the term +Γ(Sxi S

y
j + Syi S

x
j ), then the triplet KJI reproduces JKΓ by setting

(K, J , I) = (K−Γ, J+Γ,−2Γ). The bond-Ising interaction may be preferred as its
definition, unlike Γ, is independent of coordinate system.

In Eq. 1 we have included the Ising coupling only on c-bonds, for the following
reasons. First consider the coplanar spiral mode. Since rij ⊥ γij and on d-bonds
γij = (x̂, ŷ), the d-bond rij take values ((ŷ, x̂)±ẑ)/

√
2, projecting Id into a Heisenberg-

Kitaev term when 〈Sz〉=0. In contrast Ic couples spin component ĉ=(x̂−ŷ)/
√

2 and
helps stabilize the spiral (Supplementary Fig. 8.4). Second, we observe that the
experimentally-observed pattern of non-coplanar tilts is not favored by the d-bonds
Ising exchange, whose rij orientations favor a different symmetry breaking pattern.
The correct Sb tilts are instead stabilized by the Kc Kitaev term.

8.2.3 Details of relation between Ising and Γ terms

We show more explicitly how the off-diagonal symmetric interaction term, some-
times called the “Γ” exchange, can be made equivalent to the Ising term introduced
above by appropriately modifying the strength of the Kitaev and Heisenberg cou-
plings. This can be seen by writing the spin interaction matrix Ja,b for the interaction
SaJa,bSb (summation implied) of neighboring spins. Let us again write it in the KJI
and JKΓ notations for the interaction on a c-bond, in the x, y, z basis, 1

2
Ic+J −1

2
Ic 0

−1
2
Ic

1
2
Ic+J 0

0 0 K+J

←→
 J Γc 0

Γc J 0
0 0 K+J

 (8.18)

where we have kept the c subscript on Ic and Γc to denote that these are the pa-
rameters for the c-type bond. The set of interaction matrices spanned by K, J , I is
equivalent to that spanned by J ,K,±Γ. In particular, our K, J , Ic model, with Ising
interactions on c-bonds, is related to a K, J , Γc model with off-diagonal Γc couplings
on c bonds.

The bond-Ising interaction may be preferred for two reasons. First, its geomet-
ric definition, coupling the spin component along the Ir-Ir bond, is independent of
coordinate system and thus free of sign ambiguities. In contrast, distinguishing +Γ
from −Γ is coordinate-dependent. This is most evident for the x and y bonds on the
3D lattices, where in the Γ notation the interaction appears with a positive sign on
half of the x-bonds and a negative sign on the remaining x-bonds. In contrast, the
Ising term directly sets the coupled spin component to the direction of the displace-
ment vector between the two sites, and is invariant to the vector’s sign. Second, the
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Ising coupling, of spin components along the bond, transparently indicates that this
exchange is symmetry-permitted even for ideal O6 octahedra.

8.2.4 Details of the 1D zigzag-chain solution

Here we present the full solution of the zigzag-chain model within the ansatz
shown in the text. The quickest route to deriving the energy function Eq. 8.4 is to
plug in the spin-spin correlations into the Hamiltonian Eq. 8.2. The nearest-neighbor
correlations are given in Eq. 8.5; the second neighbor correlations are 〈S·S〉= cos(qa1).
These two equations are sufficient for solving the model.

Alternatively, plugging in the ansatz Eq. 8.3 into the Hamiltonian Eq. 8.2 gives
the following energy function,

E1D =
∑
r=na1

[
J2

(
2 cos(θ)

)
+K

(
cos (θ/2) cos(f−(r))

+ sin (θ/2) sin(f+(r))

)
+ J

(
2 cos (θ/2) cos(f−(r))

) ]
f±(r) =

[
(φA ± φB) + r(qA ± qB)

]
(8.19)

with θ = a1qB. Performing the average over 1D Bravais lattice sites r = na1, we
observe four possibilities. If qA = qB 6= 0,π/a1, then the term with f+ vanishes,
while f− are replaced by (φA − φB). This co-rotating spiral is set by the interplay
of primarily Heisenberg first and second neighbor exchanges, requires the typical
geometrical frustration here encoded by J and J2 of the same sign, and is the typical
spiral one expects from frustrated Heisenberg models. If qA = −qB 6= 0,π/a1, then the
terms with f− vanish, while f+ are replaced by (φA+φB). This is the counter-rotating
spiral. The final possibilities are θ = ±π, leading to the stripy antiferromagnet, or
θ = 0, leading to the ferromagnet (in both cases f± are replaced by (φA ± φB)),
discussed above.

When studying the counter-rotating spiral, it is important to keep in mind the
behavior of the phases under lattice translations. Due to the counter-rotation, here
the average phase is the physical quantity; the arbitrary “overall phase” of the spiral,
freely modified (for incommensurate q) by shifting r, is then the difference of phases
φA−φB. We may choose the phases φA=φB=π/4 to satisfy φA+φB=π/2, keeping in
mind that shifting the overall phase does not permit these phases to simultaneously
be set to zero.

The stabilization of the spiral by Kitaev interactions can also be observed via
Eq. 8.5 by fixing φA+φB = π/2. While the Heisenberg correlator vanishes, the spin



153

component matching the Kitaev bond type exhibits nonzero correlations, 〈SxrSxr+r1〉x =
(1/2) sin(θ/2).

8.2.5 Details of the semiclassical solution

Here we give technical details for the semiclassical solution. First note that the
16-site unit cell of the orthorhombic axes contains 4 sites along the spiral propagation
direction a; in contrast, the zigzag-chain 1D Bravais vector a1 spans two sites. Hence
a wavevector in units of π/a1 is roughly analogous to one in units of 2π/a.

For all three lattices, we use an 8-site unit cell with a base-centered orthorhombic
Bravais lattice. In this choice of unit cell, the Brillouin zone is rotated (by 45 degrees)
and doubled in area from the BZ associated with the conventional orthorhombic
coordinate system; e.g. it extends from −2π/a to +2π/a along the a-axis.

Let us write the explicit process of solution for the wavevector within the Fourier
transform (FT). For concreteness we focus on the minimal parameters (K, J , Ic) =
(−12, 0.6,−4.5) meV, on the β (hyperhoneycomb) lattice. This Hamiltonian is mini-
mized at ~q = 0.57×2π/|a|× â. The FT ground state at this wavevector, energy -14.8

meV, has ordered spin moment ~S ∝ ĉ± i0.48â, where the ± sign alternates between
successive sites in the unit cells (shown above) when they are listed in order of their c
coordinate. The second excited state at this wavevector, energy -12.1 meV is capable
of mixing with this ground state, and exhibits a wavefunction ±b̂ where this distinct
± symbol is chosen to give the same sign on two sites connected by a c-bond, and
opposite sign on two sites connected by a d-bond; in other words, it alternates in
pairs when sites are listed by their c coordinate. Observe that these definitions of
sign structure are consistent with the definition of the wavefunction given in the text,
Eq. 8.6.

The mixing mode energy can be tuned towards the ground state, for example
in the nearby set of parameters with bond-strength anisotropy in the Kitaev term,
(Kc,Kd, J , Ic) = (−13.2,−11, 0.6,−4.5) (in meV), the ground state coplanar mode
has energy -13.8 meV, and the tilt mode is its first excited state, at energy -13.5 meV
higher. This combined noncoplanar state is found on all three lattices. As discussed
in the text, it agrees with the spiral order observed experimentally on both the β and
the γ polytypes.
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α
β

γ

Figure 8.1: Lattices of Ir in α, β, γ-Li2IrO3, with parent orthorhombic a, b, c axes.
Experiments on the 3D lattices, β- and γ-Li2IrO3, found strikingly similar spiral
orders.
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Figure 8.2: Phase diagrams on α, β, γ-Li2IrO3. In the vicinity of the spiral phase
(shaded blue) which contains the experimentally observed magnetic order, the semi-
classical phase diagrams appear remarkably similar across the α, β, γ-Li2IrO3 lattices.
(A) The nearest-neighbor KJIc model (J2=0) is sufficient for capturing the observed
spiral, and exhibits this cross-lattice similarity. (B) (Left) the spiral from the 1D
zigzag chain model persists to the full lattices; (right) taking J2 → 0 requires large
|K|/J ; see parameters below. For the 2D α-polytype, shading indicates the equivalent
spiral q along a as described in the text.
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Figure 8.3: Zigzag chain and spiral. As evident in this 1D minimal model for the
Li2IrO3 lattices (top left), the counter-rotating coplanar spiral order can be stabilized
by Kitaev interactions (bottom left; here with K<0, J=|K|/3). For each lattice,
restoring the inter-chain couplings preserves the counter-rotating Sa,Sc spiral (top
right), while also introducing non-coplanar Sb components (overlayed in blue, bottom
right). Together they form the experimentally observed order.
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Figure 8.4: Here we observe that for J = |K|/20, finite Ic < 0 is required regardless
of the sign or magnitude of J2.
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γ (Kitaev) 

r (Ising)

Figure 8.5: Visualization of geometry of Kitaev and Ising exchanges. The two neigh-
boring Ir sites (purple spheres), with surrounding oxygens (vertices of octahedra),
are shown. The oxygen octahedra of neighboring Ir sites are edge-sharing in these
structures. The axes for the anisotropic interaction terms are then determined as
follows (see the discussion following Eq. 1 of the main text for details). The Ising
interaction axis ~r is the vector connecting the two Ir sites. The Kitaev interaction
axis γ is perpendicular to the plane which contains r and the shared octahedra edge.
For both interaction terms, the coupling axis for the quadratic spin interaction is
defined as an axis with no orientation; here it is shown as an arrow (with an arbitrary
direction of the arrow head) for ease of visualization.



157

Chapter 9

Conclusion

As of current writing, much potential remains for the study of Li2IrO3 and related
compounds. With the analysis above and further evidence for the relevance of Kitaev
exchange in the model magnetic Hamiltonian, this material can contribute to a shift
in our understanding of the landscape of possible magnetic exchanges which can can
be reasonably expected to arise in spin-orbit coupled systems. Indeed spin orbit
coupling is a key ingredient for many topological phases, band-insulating as well as
metallic, which are currently being explored. Its effects in interacting systems, and
possibilities for both short-ranged-entangled phases as well as phases with long range
entanglement, such as the Kitaev spin liquid discussed above, remain at the forefront
of current research.

Multiple research avenues could be fruitfully explored. It would be most useful
to find theoretical techniques to probe entanglement; though by their very nature,
these will likely require a detailed understanding of the physics of the specific system,
and may not form a general solution. The concrete features of the three-dimensional
spin liquids described above, such as the surrounding phase diagram as well as their
finite temperature transition, form the starting point for identifying fractionalization
in this context. For future experimental searches, an additional question concerns the
quantitative extent of the stability of long range entangled phases (in non-chiral set-
tings such as spin liquids), to the presence of disorder or finite competing interactions.
Finally, the conducting states which emerge from fractionalization, which served as
some of the original motivations for studying spin liquid, remain in parts mysterious.
Though it is difficult to know how reliable, quantitatively or even qualitatively, these
predictions may be, as in the analysis above, we expect unconventional conducting
or superconducting behavior upon doping a spin liquid,

Experimentally, the possibility of charge doping presents one possible route to re-
alizing exotic physics. Even starting from a magnetic Hamiltonin within an ordered
state but close to the transition into a spin liquid, upon charge doping one could un-
cover the correlated physics associated with the nearby fractionalized phase. Here the
experimental handle on entanglement would be again quite indirect, but nonetheless
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present its own interesting physics. Controlling such an experimental identification,
of underlying fractionalization in a doped system, remains a challenge but should
be amenable to proposals in a particular concrete context, as in the transition from
spin-triplet to spin-singlet superconductivity expected from the analysis above of a
doped antiferromagnetic Kitaev model.

The introduction of mobile charges by chemical doping or using various means of
gating presents its own complications, such as disorder, which not captured by the
multi-band multi-interacting Hubbard models employed as the microscopic starting
point for this study, and would benefit from complementary studies. Good theoretical
control of this problem might not be achieved, however; but this should not bottle-
neck the field. Charge doping may harbor one of the most exciting possibilities for
new physics. For this possibility, as for much of the research presented within this
present manuscript, collaborations with various physicists including material scien-
tists, crystal growers and device chemists, are likely to lead the way.



159

Bibliography

[1] I. Kimchi, S. A. Parameswaran, A. M. Turner, F. Wang, A. Vishwanath. Pro-
ceedings of the National Academy of Sciences 110 (41): 16378-16383 (2013).

[2] S. A. Parameswaran, I. Kimchi, A. M. Turner, D. M. Stamper-Kurn, A. Vish-
wanath. Phys. Rev. Lett. 110, 125301 (2013).

[3] S. Yan, D. A. Huse, and S. R. White, Science 332, 6034 (2011).

[4] A. F. Albuquerque, D. Schwandt, B. Hetanyi, S. Capponi, M. Mambrini, and
A.M. Lauchli, Phys. Rev. B 84, 024406 (2011).

[5] J. B. Fouet, P. Sindzingre, and C. Lhuillier, Eur. Phys. J. B 20, 241 (2001).

[6] J. Reuther, D. A. Abanin, and R. Thomale, Phys. Rev. B 84, 014417 (2011).

[7] D. J. J. Farnell, R. F. Bishop, P. H. Y. Li, J. Richter, and C. E. Campbell,
Phys. Rev. B 84, 012403 (2011).

[8] J. Oitmaa and R. R. P. Singh, Phys. Rev. B 84, 094424 (2011).

[9] Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad and A. Muramatsu, Nature
(London) 464, 847-851 (2010).

[10] B. K. Clark, D. A. Abanin, and S. L. Sondhi, Phys. Rev. Lett. 107, 087204
(2011).

[11] H.Y. Yang and K.P. Schmidt, Europhys. Lett. 94, 17004 (2011).

[12] A. Yu. Kitaev, Ann. Phys. 321, 2 (2006).

[13] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009).

[14] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett. 105, 027204
(2010).

[15] Y. Singh and P. Gegenwart, Phys. Rev. B, 82, 064412 (2010).



160

[16] Y. Singh, S. Manni, and P. Gegenwart, arXiv:1106.0429.

[17] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Young-June Kim, H. Gretars-
son, Yogesh Singh, P. Gegenwart, and J. P. Hill, Phys. Rev. B 83, 220403(R)
(2011).

[18] H.-C. Jiang, Z.-C. Gu, X.-L. Qi, and S. Trebst, Phys. Rev. B, 83, 245104 (2011).

[19] J. Reuther, R. Thomale, and S. Trebst, Phys. Rev. B 84, 100406(R) (2011).

[20] F. Trousselet, G. Khaliullin, and P. Horsch, Phys. Rev. B 84, 054409 (2011).

[21] H. Jin, H. Kim, H. Jeong, C. H. Kim, and J. Yu, arXiv:0907.0743.

[22] S. Bhattacharjee, S. S. Lee, and Y. B. Kim, arXiv:1108.1806.

[23] For a related result see B. J. Yang and Y. B. Kim, Phys. Rev. B 82, 085111
(2010).

[24] An alternative scenario is explored in A. Shitade, H. Katsura, J. Kunes, X.-L.
Qi, S.-C. Zhang, and N. Nagaosa, Phys. Rev. Lett. 102, 256403 (2009).

[25] P. W. Anderson, Phys. Rev. 79, 705 (1950).

[26] ALPS collaboration [http://alps.comp-phys.org/]: B. Bauer et al., J. Stat.
Mech. P05001 (2011), and A.F. Albuquerque et al., J. of Magn. and Magn.
Materials 310, 1187 (2007).

[27] Yi-Zhuang You, Itamar Kimchi, and Ashvin Vishwanath, arXiv:1109.4155.

[28] J. Orenstein and A. J. Millis, Science 288, 468 (2000). Y. Tokura and N. Na-
gaosa, Science 288, 462 (2000).

[29] L. Balents, Nature (London) 464, 199 (2010).

[30] A. Yu. Kitaev, Ann. Phys. 321, 2 (2006).

[31] Y. Singh and P. Gegenwart, Phys. Rev. B, 82, 064412 (2010).

[32] Y. Singh, S. Manni, and P. Gegenwart, arXiv:1106.0429v1.

[33] B. J. Kim et al., Phys. Rev. Lett. 101, 076402 (2008); B. J. Kim et al., Science
323, 1329 (2009).

[34] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102,017205 (2009).

[35] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)
.



161

[36] H.-C. Jiang, Z.-C. Gu, X.-L. Qi, and S. Trebst, Phys. Rev. B, 83, 245104 (2011).

[37] X. Liu et al., Phys. Rev. B 83, 220403(R) (2011).

[38] J. Reuther, R. Thomale, and S. Trebst, arXiv:1105.2005v1.

[39] I. Kimchi and Y. Z. You, Phys. Rev. B 84, 180407(R) (2011).

[40] Subhro Bhattacharjee, Sung-Sik Lee, Yong Baek Kim, arXiv:1108.1806.

[41] H. Jin et al., arXiv:0907.0743.

[42] A. Shitade, H. Katsura, J. Kunes, X.-L. Qi, S.-C. Zhang, and N. Nagaosa, Phys.
Rev. Lett. 102, 256403 (2009).

[43] Di Xiao, Wenguang Zhu, Ying Ran, Naoto Nagaosa, Satoshi Okamoto,
arXiv:1106.4296

[44] P. W. Anderson, Science, 235, 1196 (1987).

[45] X.-G. Wen, and P. A. Lee, Phys. Rev. Lett. 76, 503 (1996);

[46] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[47] X.-G. Wen, Phys. Rev. B, 65, 165113 (2002).

[48] T. Hyart, A. R. Wright, G. Khaliullin, B. Rosenow, Phys. Rev. B 85, 140510(R)
(2012).

[49] J.-W. Mei, Phys. Rev. Lett. 108, 227207 (2012).

[50] M. Hermele, Phys. Rev. B, 76, 035125 (2007).

[51] F. J. Burnell and C. Nayak, arXiv:1104.5485.

[52] X.-G. Wen, Quantum Field Theory of Many-Body Systems, Ch. 9, Oxford
(2008).

[53] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett. 98, 247201 (2007).

[54] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).

[55] Y.-M. Lu and Y. Ran, Phys. Rev. B, 84, 024420 (2011).

[56] See Supplementary material.

[57] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17-85 (2006).

[58] M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).



162

[59] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

[60] L. Ioffe and A. Larkin, Phys. Rev. B 39, 8988 (1989).

[61] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[62] S. Kivelson Phys. Rev. B 39, 259-264 (1989). N. Read and B. Chakraborty,
Phys. Rev. B 40, 7133-7140 (1989).

[63] F. Trousselet, G. Khaliullin, and P. Horsch, arXiv:1104.4707v1.

[64] A. J. Willans, J. T. Chalker, and R. Moessner, Phys. Rev. Lett. 104, 237203
(2010).

[65] F. Wang and T. Senthil, Phys. Rev. Lett. 106, 136402 (2011).

[66] G. Cao, J. Bolivar, S. McCall,J. E. Crow and R. P. Guertin, Phys. Rev. B 57,
R11039R11042 (1998).

[67] A. J. Leggett, Rev. Mod. Phys. 47, 331-414 (1975).

[68] A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).

[69] J. Chaloupka, G. Jackeli and G. Khaliullin, Phys. Rev. Lett.105, 027204 (2010).

[70] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, T. Arima,
Science 323, 1329 (2009).

[71] Y. Singh, P. Gegenwart, Phys. Rev. B82, 064412 (2010).

[72] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. M. Tsvelik, Young-June Kim, H. Gre-
tarsson, Yogesh Singh, P. Gegenwart, and J. P. Hill, Phys. Rev. B83, 220403(R)
(2011).

[73] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I. Mazin, S. J. Blun-
dell, P. G. Radaelli, Yogesh Singh, P. Gegenwart, K. R. Choi, S.-W. Cheong,
P. J. Baker, C. Stock, and J. Taylor, Phys. Rev. Lett.108, 127204 (2012).

[74] F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-Baca, R. Custel-
cean, T. F. Qi, O. B. Korneta, and G. Cao, Phys. Rev. B85, 180403(R) (2012).

[75] H. Gretarsson, J. P. Clancy, Y. Singh, P. Gegenwart, J. P. Hill, J. Kim, M. H.
Upton, A. H. Said, D. Casa, T. Gog, and Y.-J. Kim, Phys. Rev. B87, 220407(R)
(2013).

[76] M. J. O’Malley, H. Verweij and P.M. Woodward, J. Solid State Chem. 181,
1803 (2008).



163

[77] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and
P. Gegenwart, Phys. Rev. Lett.108, 127203 (2012).

[78] S. Mandal and N. Surendran, Phys. Rev. B79, 024426 (2009).

[79] Eric Kin-Ho Lee, R. Schaffer, S. Bhattacharjee, and Y. B. Kim, Phys. Rev. B
89, 045117 (2014).

[80] I. Kimchi, J. G. Analytis, A. Vishwanath, arXiv:1309.1171 (2013).

[81] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Takagi, arXiv.org/1403.3296
(2014).

[82] K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay, A. Biffin, S. Choi, R.
D. Johnson, R. Coldea, P. Watkins-Curry, G. T. McCandless, J. Y. Chan, F.
Gandara, Z. Islam, A. Vishwanath, A. Shekhter, R. D. McDonald, and J. G.
Analytis, Nature Comm 5, 4203 (2014).

[83] J. P. Hill, D. F. McMorrow, Acta Cryst A 52, 236, (1996).

[84] G. Jackeli and G. Khaliullin, Phys. Rev. Lett.102, 017205 (2009).

[85] Supplemental material

[86] S. Boseggia, R. Springell, H. C. Walker, H. M. Rønnow, Ch. Rüegg, H. Okabe,
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