Erosion of cohesive grains by an impinging turbulent jet
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Erosion of cohesive grains by an impinging turbulent jet

Abstract

The erosion and transport of particles by an impinging turbulent jet in air is observed in various situations, such as the cleaning of a surface or during the landing of a spacecraft. The presence of inter-particle cohesive forces modifies the erosion threshold, beyond which grains are transported. The cohesion also influences the resulting formation and shape of the crater. In this paper, we characterize the role of the cohesive forces on the erosion of a flat granular bed by an impinging normal turbulent jet in air. We perform experiments using a cohesion-controlled granular material to finely tune the cohesion between particles while keeping the other properties constant. We investigate the effects of the cohesion on the erosion threshold and show that the results can be rationalized by a cohesive Shields number that accounts for the inter-particles cohesion force. Despite the complex nature of a turbulent jet, we can provide a scaling law to correlate the jet erosion threshold, based on the outlet velocity at the nozzle, to a local cohesive Shields number. The presence of cohesion between the grains also modifies the shape of the resulting crater, the transport of grains, and the local erosion process.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View