Skip to main content
Download PDF
- Main
Regional myocardial strain measurements from 4DCT in patients with normal LV function.
Abstract
Background
CT SQUEEZ is a new automated technique to evaluate regional endocardial strain by tracking features on the endocardium from 4D cine CT data. The objective of this study was to measure the range of endocardial regional strain (RSCT) values obtained with CT SQUEEZ in the normal human left ventricle (LV) from standard clinical 4D coronary CTA exams.Methods
RSCT was measured over the heart cycle in 25 humans with normal LV function using cine CT from three vendors. Mean and standard deviation of RSCT values were computed in 16 AHA LV segments to estimate the range of values expected in the normal LV.Results
Curves describing RSCT vs. time were consistent between subjects. There was a slight gradient of decreasing minimum RSCT value (increased shortening) from the base to the apex of the heart. Mean RSCT values at end-systole were: base = -32% ± 1%, mid = -33% ± 1%, apex = -36% ± 1%. The standard deviation of the minimum systolic RSCT in each segment over all subjects was 5%. The average time to reach maximum shortening was 34% of the RR interval.Conclusions
Regional strain (RSCT) can be rapidly obtained from standard gated coronary CCTA protocols using 4DCT SQUEEZ processing. We estimate that 95% of normal LV end-systolic RSCT values will fall between -23% and -43%; therefore, we hypothesize that an RSCT value higher than -23% will indicate a hypokinetic segment in the human heart.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%