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ABSTRACT -

A humerica1'study of heat'transfer_in 90°, constant cross-section
chrved duct,steady,]aminak'f1ow is presenfed. The work is aimed pri-
marily at characterizing the éffects of ducf geometry on heat transfer by -
_qonsidering, especia]]y,>the role of secondary motions during the
déve]bpihg period of the.flow. HoWeVer,:due consideration has also been
. given to varying initial conditions of velocity and temperature at the
entrance section td the duct. In addition, an~assessmeht is made of the
relative contributions of <individual duct walls to heat transfer in the
flow. It fs found that, in geheré], heat tfansfer increases with Dean
number with the largest transfer rates occurring through theAduct side
waT]s andv0uter-curvafure wall. Duct geometries with aspect'ratio greater
or.sma11er than unity have weaker secondafy motions énd are less effective
for heat.fransfer. Similarly, p]ug—f]ow entfance'prof11es for velocity
retard the development of croés-étream flow thus 1nhibitihg a significant
contribution to heat transfer. It is concluded that short ducts with
strong}curvature (ZRC/DH< 10) and 'intense secondary motions cah be as
| effective for heaf transfér as 1ongervducts whi¢h-are less strongly
curved. v

Ca1cu1afions-ére based on fully elliptic (in space) forms of the
transport equations governing'the'fiow. They are of engineering va]ue
and are 1im1ted in accuraéy only by the degrée Qf cbmputationa] mesh
refihement. A combakison With calculations based on parabolic equations
‘has been made and it is shown how the latter can lead to erroneous results

for strongly curved flows.
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curved duct width

curved duct breadth

heat capacity at constant pressure
friction coefficient at ¢ pTane. |

pressure loss coefficient at ¢ plane

' H/2 |
Dean number [Re{—w— Rc

'curved duct hydraulic diameter (4x surface/perimeter)

per1meter average heat transfer coefficient at ¢ p]ane
(@ /(Tw-T))

thermal conductivity

perimeter‘average,Nusse]t number at ¢ plane (ﬁDH/k)
pressure at a pofntvin the flow

surface average preisure at ¢ plane

Prandtl number uc
P at ¢ = 0° plane

heat f]ux at a po1nt on a wall
per1meter averaqe heat flux at ¢ p1ane
radial direction in cylindrical ‘coordinates

inner curvature wall

© outer curvature wall

duct radius of curvature ((r, + re)/2)
DoV

Reynolds number <

- value of temperature at a point fh the flow

mass average temperature at ¢ p]ane

1n1et temperature



wall temperature

modulus of secondary motion vector velocity at a point‘in the flow

" surface average longitudinal velocity at ¢ plane

longitudinal velocity component

radial velocity cbmponent

axial velocity component

axial direction in cylindrical coordinates

. , : : . T, T
non-dimensional temperature at a point in the flow <-Ti_-f—->
: ’ woin

T-T.
non-dimensional mass average temperature at ¢ p1ane< T 1n>
' ‘ o in
viscosity
density

wall shear stress

longitudinal direction in cylindrical coordinates -

iv

S T ST SRR




- INTRODUCTION

" Considerable effdrf.has_been_expended oﬁ'the experimental»”
measurement and calculation of flows in curved ducts of reétanguTaE .
cross-section, principally because of the practical Significance of such
flows. Curved duct geometries frequently arﬁse in engineering con-
figurations where, besides proyidingva necessary conduit for. the fluid,
if may be requ%red to enhance héat and/or mass transport’proéesses. In
curved ducts thﬁs,is achieVed mainly due to the prolonged residence .
times of fluid e]éments which must move along spiraling paths as they -
evolve in the main (10ngitudina1)-f]ow direction. Thus, the gentrifuga]
force-radial preésure_gradient imbalance acting onvs1ow moving f]uid
near the side walls of the duct induces a mofion of thevf1ﬁid a]qng the
side wa]is and directedvfrom the outer towards.the fnner'curvature wall.
In turn, faster moving fluid in the core région of the flow moves along
the center (symmetry) plane of thé'duct,being directed from the inner
to the outer curvature wall. The cross-stream motion Just deséribed is
commonly referred to in the 1iferatureias secondary motioh'of the "fﬁrst
" kind" of, simply, secondary motion [1]. It is obvibus that the extent to
which heat and mass transport fan belenhanced in curved duct flows will be
a strong fuhction of the inténsity and spatial variation of the éecondary
motion. |

Even though experimenta] works on curved duct flows abound (a recent
review may be fpund ih [2]1), data'avdilabiiity for'engineering purposes is
often defficient or simply inadequate. Whereas considerable work has been
carried out to obtain useful design correlations for pressure 1osse§tand
friction coefficients [3], there is no equivalent body of knowledge de-

scribing three-dimensional velocity, energy and mass transport phenomena



in sufficient detail and over a wide enough range of relevant dimensionless
flow parémeters. That this should be the case may be understood by
COnsidering'the phenomena}-task,required only to obtain'detai1ed méasure—
}ments of three velocity components for different conditiohs of duct aspect
ratio, Dean number, radius ratio 2Rc/DH (for turbulent flows [4]) and,.for
| developing flows, at various duct def]ettion angles. It is not surprising
to find therefore that available velocity data is mainly restricted to the
Tongitudinal component direction and that the majority of heat'and méss
‘ transfer studies have focussed on cases of fu11y:deve]oped éurved duct
f]cw with boundary conditions of specific relevance to the particular
éases investigated.

Whereas experimentation in curved duct geometries may be laborious
(and complex), it is;possible, in principTe,_to.compute these f]ows'quifé
accurately jh‘the laminar regime. This has been shown by; among others,
-Chéng and Akiyama [5],-Cheng; Lin and Ou [6] and Joseph, Smith and Adler [7]
for fully devé]oped'flow and.by.Ghia and Sokhey [8] and Humphrey, Taylor and
Whitelaw [9] for developing flow. Of the above only the procedure used by
Humphrey, et. al. [9] is based on fully elliptic forms (in space) of the
equations of motion. ‘Calculations for turbulent flow regime have been .
performed by Pratapland Spalding [10] using a semi-elliptic numerica1
procedure. However, the agreement between calculations and measurements
of ve]ocity.is less satisfactory. in this case. Although the authors
attribute the discrepancies to failings in the model of turbulence employed
in  the calculations, it is possible that theik'neglect of higheh order
curvature terms fn the = equations of motion may have.coﬁtributed to the
under-prediction of secondary Ve1ocity components.

Experimental 1nvéstigations of heat transfer in curved duct f]ows«havé

been described by, for'eXamp1e,'Kre1th [11], Mori, Uchida and Ukon [12]




and Yang and Liao [13] while correspohding numerical calculations afe
reported by Cheng énd Akiyama [5] and Cheng, ef. al. [6].. Except for the
experimenta]'works of Kreith [11] and Yang and Liao [13] (in turbu]ént'
Vregime)vthébremaining studies deal with the prob]ém of fully developed
Jaminar flow. . In genera],:theée and simi]ér studies show that heat transfer
in curved duct flow is enhanced relative to that occurring in straight.
ducts, with-transfer ratés at 6uter curvature walls being typically 2 to 5
times larger thén corresponding vé]des ét inner walls.’ Non-dimensiona1ized .
values of temperature profiles show trends similar to those displayed by |
the 1ongitudina1 velocity component, with makimum values shifted_towardé
the outer cUrvéture-wa11. Equivalent information appears to be 1ack1ng
for the case of developing laminar flow. Especia]iy noticea51e is the
dearth of information for ducts with relatively strong curvature (sma]l'
radius ratio: 2 Re/Dy < 10) where spatial ellipticity in the flow field
may be pronouncéd. |

The present study is direcfed toward providing (through numerical
computation) neéessary fluid mechanical and heat transfer data for
developing steady Taminar flow of an incompressible fluid in strongly
curved ducts with 90° deflection angle. The cé]cu]ations are of engineer-
ing accuracy and allow a relétive comparison of duct‘performance and
detailed flow characteristics as a function of relevant dimensionless
parameters, such as Dean and Reynolds number, aspect rati0 and radius ratio.
Because of the numerical apbrdach in the study it has been possible to
examine an extensive combination of geometrical configurations for various
initial and boundary conditions for temperature and velocity. The ex-
perimental equivalent of this (or a similar)-study would bebexceeding1y

laborious, time consuming and expensive to perform. This substantiates



the need for developing and apb]ying calculation procedures which can be
used with'éonfidence; relatively easily and (by compafison to experimehté)
Cat moderate costs.  The numerical procedurevusedfin this stddy is presently
- the basis‘fbr simiTQr calculations in turbulent single and two-phase flow

to be reported at a later date.




CALCULATION PROCEDURE AND TEST CASES

o The ca]éu]ation procedure used to cnmpute the flows in‘this sfudy
has already been describedvin [9]. Extension of the~procedure,to arbitrany
orthogonal cdordinafe geometries and,_espécia]]y, its application to
developing curved pipe flows of strong‘cunvature have been documented by
Humphrey'[ldj. The Tatter reference contains general finite difference
| forms of the consérvation equations for'mass, momentum and'transferabie
'séaian quantities (species and energy). Detaiied information concerning .
. the derivation of the difference equations, their numeriCai.soiution and
resnits for various test cases solved to eva]uate.the procedure ané
reported in the above two references and in [2]. This section bresents
a summary of the essential features characterizing the caiculation |
methnd together with a description of its app]iéatidn fo flows in curved
ducts with heat transfer. Some of the results for twd calculated test .

cases are also reported.

Equations, Boundafy Conditions and Procedure for Numerical‘So]utidnv

Mass conservation, momentum and energy equations for three#dimensionai,
steaGY, incompressible laminar flow in curved ducts of cylindrical geometry

corresponding to Fig. 1-areigiven by
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It is required to solve (1)9(5) together with_various combinations

of the boundary conditions as shown below:

Infet plane (¢ = 0°).

.YF =V, = 0., Y¢

T = constant or f(r)

= P]UQ flow or deVe1qped duct flow - (7)

" Exit plane (all r and z at ¢ = 90°). -

3V SV_ 3V : '
r = z = ¢ = ‘ _a.I = E
% % % 3 0 ' S (8)

with overall continuity of massvand'energy imposed.

Side walls (all ¢ at z = £b/2 and r = r,, r ).

Ve =V, V=0 (9)

T = constant or f(¢) at specified walls

g =0 at SpecifiEd-walls |

Symmetry plane (all r and ¢ at z = 0).
Toav, o av, | | ' | _
'—._..Y_::J— —a-_-[.:'.‘ - . 4

V: T3z oz -~ - 9z 0 ' _ e _ (]0)



» The conditions imposed for velocity at the inlet and exit planes have
been carefully discussed in [14]. It is shown there that the curved duct
has a minimal effect on tho incoming fluid stream, thus allowing a fairly
arbitrary prescription of the velocity distribution at ¢ = 05. While not
strictly correot, the velocity condition at the exit plane (¢ = 90°) is a
good approximation and is substantiated by the satisfactory ogreement found
here (and in [9,14]) between measurements and calculations. |

The finite difierence equations are obtained by integrating (1)-(5)
over volume elements on "ce]]é" discretizing the flow domain. The velocity
components, pressure and temperature:are the dependent variables computed
on a number of staggered, interconnected grids, each of which iS |
associated with a specific variable. The general form of the finite

difference expression is given by

op = % Ajos + S, g Ai B (11)
i=1 i=1
where dp (velocity component,vpressure or_temperature) is the variable
solved for at a position P in the discretized flow domain. The Ai co-
efficients ane.determined at fne cell surfaces and represent the combined
contributions of oonvection and diffusion to the.baiance of ¢. Other
contribufions arising from pressure, booy forces and temperature (sources
or sinko) are contained in So. Detai]éd forms forvSO,in variable property
flows are available in [15].
Solution of the systén of finité difference transport equations with
appropriateiy differenced boundary conditions is achieved by means of a
cyclic series of predictor-corrector operations as described in [9,14].

Briefly, the method invo1ves using an initial or intermediate va]ue;of the



pressure fiéfd to sb]ve for ah intérmediate.ve1ocity field. A pressure
: corfectidn to the pressure field is determined by bringing-intermediate
velocities into ¢0nformity with Continuity, Correctfons to the pressure
and ve]oéfty fields are applied and the energy equation is solved for T
(in flows where:énergy and.momentum are not linked through temperature
effects this Tast step can be-taken after the velocity and-préssure
fields haVe.been determihed). The above steps are repeated>unti1 some

pre-established convergence criterion is satisfied.

Test Cases

Extensive testing and an evaluation of the calculation procedure for
prédicting'f]owé without heat transfer have been documented in [2] and
reported in part fn:[9,14]. Tt has been showri in these references that
fully e111ptic, three-dimensiona]vcomputations of sufficient accdracy for
engineering.purposeé can be_obtained oﬁ unequally spated grids'as cbarse
as 12 x 12 x 20 (r x z X ¢). The predictiohs presented here and 1n‘the
following sections have been performed on a 12 x 15 x 20 mesh. While finer
grids are capable of yielding mofe accurate’kesu]fs? they are increaéing]y
more expensive to compute. whereas numerical schemes baséd on paraboiic or
semi-elliptic forms of the tkansport*equations will handle equivalent and
finer calculation meshes atvsignificant1y=1ess cost, for flows such as the
ones of interest here where curvature effects can be pronounced, it is not
possib]ebto determine a priori if less than fully elliptic equations are
justifiéd. For two interesting examples involving f]ow’keversa1 in cufved
dqcts, seé [9,14]. |

| Profiles of longitudinal ve]bcity and pressure, respectively ca]éu]ated

using elliptic and_parabo]ic forms of the transport equations, are shown

in Fig. 2(a-c) where they are compared with experimental velocity data from




[9]. The parabolic calculations were readily obtained by modifying the
elliptic proceddré of [9,14] as exp]ained.in,'for example, Launder [16]. -Thé
plots allow a relative comparison between‘the two approaches for a duct of
re]atfve]yvstrong curvature (case 1 in Table 1). It can be seen that the
elliptic results‘yie1d significantly better predictiohs of longitudinal |
velocity (and Cr&ss—stream components not.showﬁ here),‘espec1a11y between
¢ ='30° and ¢ = 90° where elliptic effects are strongest. The pressure |
profiles in Fig. 2-c show, in part, the reason for the discrepancy. In the
parabo]ic calculations pressure links in the longitudinal direction are
decoup]ed.and lead to ovér—predicted values at r = "o and under-predicted
values at r = rse _Thus, even though the ve]oéity field is "parabolic" in
that it contains no revefsed flow zones, ellipticity in the pressure field
is sti11rstfong and muét bé dealt with aécording]y. |

Additional indications of the differences which can arise between
elliptic and parabo]ic computational approaches in strongly curved flows
may be gleaned from a comparison of the results presented for velocity
components and temperature in Figs, 4-a and 4-h, respectively. _The figures
contain plots of calculated results at ¢ = 90° which are significantly dis-
similar. In particu]af, the parabolic 1ongitudina] velocity contours show
high speed fluid trapped near the outer curvature wall between the side
- wall and symmetry plane. This effect contradicts experimental evidence
in [9]‘and is due to the'ovef—prediction of an.unfavorable Tongitudinal
bressurebgradient at the oufer curvature wall. - The over-prediction’a1so
explains why secondary mofion at the-outer radius wall, near the symmetry
plane, is directed away from the wa11 and into the flow. Of course,
differences in the temperature contours will arise because of the differences

in velocity and will be in error as well. It may be concluded that for
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developing curved duct flows with De > 350, significant error-can arise

through the use of parabolic schemes. All the calculations performed for

the parametric study presented in the next seétion have been_based on |

fu]]yve1liptic‘forms of the transport equations as‘gi?en‘in (1)-(5). |
As a check for the validity of the calculation proceduré in the

presence of heat transfer effecté, numerical computations were performed

fdr two of the experimenta] cases présehted by Mori, et. al. [12] for

fully developed curved duct flow. The agreement between calculations

and mea§urements can be judged from the.proff1es for velocity and

temperature shown in Fig. 3. It 1s.§onsidered to be satisfactory given

the uncertainty reported in connection with the experiments which

~were affected by the presence of large turbulence fluctuations at the

entrance sectfon of the curved- duct. vIt is shown in [2] that fhe largest

“turbulent f]uctuations in curved square duct flow arise at the outer

curvature wall. The fluctuations will contribute to turbulent diffusion

from the wall region into the core flow and can account for the lower

experimental values of temperature found in [12] at the outer radius

wall.

Rigorously, the procedure should be tested for its capacity to predicﬁ
momentum and heat transfer effects during the developing period of duct
flow. However, the authors are unaware of any experimental data in curved
ducts which would serve for such a comparison. Notwithstanding, calculations
performed for developing temberature profiles in straight duct flow show
excellent agreement with experimental measurements and analytical results. | .
For this and more detailed discussion of the test cases reported here see

Yee [17].




1.

CASE STUDIEs; RESULTS AND DISCUSSION

A sUmmary of the case studies and conditions ca]CuTated}for this
investigatfqn is presented in fabu]ated form in Table 1. From the table
ft will be seen that various curved duct geometries were combined with
parabo]ie (fully developed straight duct flow) profi]ee for ve1oc1ty’and

uniform temperature (T, = 3009K) distributions at the entrance plane

in

(¢ = O°). The effects of varying initial temperature and»ve1bcity

distribution were}also investigated. Finally, the effecte of heating

curved duct walls singly, with adiabafic cenditions,imposed,for the re-

maining walls, were explored. In all casesAthe‘boundary condition was that

of constant wall temperature.(Tw,= 350°K) except for where the adiabatie

veonditioniwas enforced. Although not calculated Here, variable wall

temperature or variable (or constant) heat flux condﬁtions cou1d have just

_as’readi]y been specified at the boundaries. |
Incompreséib]e, constant property (Pr = 1.0) flow was assumed for the

ca]cuiations and is an'acceptable subposition for the range of temperatures Con—‘

sidered here. While the calculation of temperature dependent f]ufd properties

{s a standard feature in the numerical procedure; it‘doesvincfeeSe the cost

of predictions through additional sterage and combuting time requirements.

Typical values for storage and CP times for the case studies.presented here

were 160 K, and 235 seconds, respectively on a CDC 7600. The average time

8
required per node x iteration for all runs was 1.44 x 1073 CP seconds.

The remainder of this section is devoted to the presentation and
and discussion of somebof the results calculated for the test eases in Table 1.
The presentation is subdivided according_to'the topic ofvinterest-both for
ease of discussion and to enhance the separate ro]ee of the various

parameters affecting heat transfer in curved duct flow.
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Calculated case studies.
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Velocity and-Temperature Distributions

Plots of non-dimensional ve]oCity'ahd temperature distributions
are givenvin Fig. 4(a-h). Longitudinal Ve]oeity'and temperature'are shewn'
in the.fdrm of equa1-va1ue contours whereas the cross-stream motion is

indicated in vectorial form,

Bend angle (9).

The distributiohs shown in the figures are_typiea1 of the bulk of the

results -and 111ustrate‘c1ear1y the important role played by secondary motions

insofar as heat and momentum transport are concerned. Thus, for example, the

Sequence shown in Fig. 4-a,b,c provides a clear impression of the way
the flow and temperature fields evolve to produce maximum va]uesbin the
respective distributioné displaced toward the outer-radfus wall. The
similarity between longitudinal VeTocity-and temperature contours is
strikfng but not §Urprising in view of the convective nature‘of the_f]ow.
The energy field is decoupTed from the momentum field and in all cases

evolves in a manner dictated primarily by the fluid mechanics.

Aspect ratio (b/a).

The effect of varying aspect katie'may be shown by a relative cdmparisdn
of Figs. 4-c,d,e. It is immediately obvious that the vector plots for
cross-stream velocity differ'considerab1y depehding on the aspect ratio.

For b/a = T the secondary motion is relatively high in the region of’fhe
inner-curvature (r = ri) and side (z = b/2) walls, whereas for b/a = 3 it
is high at all three walls but localized mainly in the region of the side
wall. For b/a = 1/3 the croes—stream flow is intense along both the duct
symmetry plane endvside walls but, by comparison,‘is re]afive]y weak at

the inner- and outer-curvature walls. Longitudinal velocity and temperature

12.






'confours shpw diétributionsicorréspohding to-the'sénse of the secondary
motion. For b/a = 1/3 it is worth remarking on the péak value of longi-
‘tudinal velocity which has been'diSb]aced from the duct symmetfy'p]ane

- whence it evolved. A correspondiné peak in the temperature distribufion
is not observed. In addition, for this last cése,]ongitudina] velocity
and temperature brofi]es are most dissimilar and is probably due to a
relatively 1arge’contribution to heat trénsfér throughléondUCtion along

the z axis.

Velocity entrance condition.

The effect of a plug flow entrance condition may be aééeséed by
comparing Figs. 4-c and f. Secondary flow evolves considerably mohe sTowly
in the case of a flat profile entrance condition and is to be expected
since the boundary layers 6n the sidé walls, where the transverse pressdre |
gradient has ifs strohgest effect, are initially very thin. As a
consequence both the 1ongitudina1Ave1oc1ty and temperatufe deve]bp slowly
also. Although not shdwn-hére,_the longitudinal velocity for this case
was observed to develop a poténtia]—fibw—]ike'appearance ovér the first
20 to 30 degrees in the duct. While this‘effect is'hérd1y noticeable at
¢ = 90°, remnants of its presence may be detected in the témperature profiles

which display double maxima near the inner-radius wall.

Individually heated walls. ‘

Figure 4-g shoWs temperature distributions at 90° for three cases
in Tab]e 1 where on]y‘one'bf the two curved walls or both of fhe side walls
were heated while keeping the remaining walls adiabatic. The fluid mechanics
of these cases are identical to Figs. 4-a, b and c but the manner in which

the temperature fields evolve are striking1y different. In all cases the

13.
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calculations show graphically how the secondary motion scoops warm fluid

from thg vicinity of the heated wall and convects it in the sense of the
secondary motion. it'woﬁ1d éppear that this is achieved most successfully
- for case 11 with heat f]oWing into the duct through the side walls, The
boint that emerges clearly from the comparison is that heat transfer rates
through the three typés of walls present invcdrved duct flow can, and in
general will, differ markedly depending on flow conditions, geometriéal

characteristics ahd fluid propérties.

Pressure 1oss~(CP) and friction (Cf) coefficients.

Phpfi1es for the pressure loss and friction coefficients corresponding
toithe case sthdies in Table 1 are vaen in Figs. 5(&)’and (b). Cp is |
seen io decrease with increasing duct angle ¢ and decreasing De, and_(frbm
tHe_treﬁd in the results at ¢ = 1.5 radiahs) withvdecréasing b/a. The Cp
curvevfgf the'p1ug f]ow entrance profi]e is aiso p]otted for COmpérison
with the other cases. |

)

increases (at 1eastbinitia11y) with incredsing duct angle. However, the

In all cases the friction coefficient at the outer wall (r = o
rate 6f increase s 1argest for b/a = 1 and smallest for b/a = 1/3. High -

are initially favored by low values of De but the

values of Cf at r =T,

reverse is true for ¢ 3‘1.2.radian$. At the inner curvature wall Cf3

appeafs to be re1étive]y'insensit1ve to éhanges in De and‘for ¢‘3 .7 s
largest for b/a = 3. The potential flow prpfiles show Cf decreasing ét r=rg
and iﬁtreasing at r = rss respective1y and‘is dué to the-boundary 1ayer

growth occurring on these walls.

deiation of temperature and Nusselt number.

‘Figures 6-a, b and c show the effects of duct geometry, flow

characteristics and duct entrance conditions on normalized temperature and
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Nusselt number; respectively. In the plots the Nusselt number has been

calculated from

=
[
-

where T is the (local) heat transfer coefficient averaged over the duct

perimeter at a dutt}ang1e . Thué,
h = 9/(T -T) , | | (8)

where q is the (perimeter) averaged heat flux at the ¢ plane and Tw and T
“are the wall temperature and averagé flow temperatures, respectively, at
the same longitudinal position. i

The curveé in Fig. 6-a a]]vshdw Nu 1ncfeasing asymptotically with-
duct arc-length, aftér an initial.and rather abrupt'periodvof decay. The
inifia] decrease in Nu is due to the relatively weak mixing effect of the
secondary motion during this stage of the flow. However; as the flow
develops and the intensity of the secondary motion increases, heat transfer
is enhanced and Nu increases with ¢. The minima in the curves are seeh |
to depend on the value of De and, in general, Nu increases with increasing
De. Initially, the average temperature of fluid in the ducts appears to

be insensitive to .variation in the De number. - Eventually, however,
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secondafy motions in the shorter but more strongly curved duct

(De = 106) enhance.heat trénsfer td the point whgre é definite trend

in the temperature'profi1es emerges. It may be concluded therefore.

that, for certain conditions, short ducts with inténse secondary motion can -
transfer as much heat or more compared to ducts of Tonger length but with
weaker cross-stream flow. That this is indeed the case was independently
confirmed by‘performihg total heat balances for caSes 1 and 1A in Table 1.
Thus, for conditions of equa1 arc length, 1.15 times more heat was

added to the duct with higher De.

From Fig. 6-b it is seen that Nu is higheét for b/a = 1 for ¢ > .4
radians. It would appear that initial heat trénsfer gains through increased
surface area are event&a]]y offset by reductions,due to weaker cross-stream
flows for both b/a = 3 and b/a = 1/3. The plots also show that temperature
gradients at the outer radius wall have a more pronouhced effect on the
rate of heat transfer than corresponding gradienfs,at the inner wall. This
is bart]y due to a surface effect but.also to the presence of higher |
gradients of velocity at the outer radius wall.

In order 'to assess the relative contributions to heat transfer
arising from separate duct walls during flow deveTopmeﬁt, calculations were
performed for the conditions corresponding to cases 10-12 in Table 1. The
results for Nu and eB are shown fn Fig. 6-c. If allowance is made for the
difference in wall areas among the cases the plots still indicate that the
highest rates of heat transfer oécur through the side and outer radius walls
in curved duct flow. This result is linked to'the'high values of secondary
motion which arise, especially in the vicinity of the side wa11s, and is the cause

for the pronounced.maximum in the Nu plot corresponding to case 11. By




- comparison similar variations and maximum'Values of Nu are less for the
casé'of heat transfer through the inner curvature wall. fEnergy balances
for these three cases show that the total heat added to the duct heated

- through the outer wall was 1.58 times larger théh that added to the duct
heated through the inner wall. - In turn,vthe tota] heat added to the duct
heated through the side walls (a]iOwing for the fact that there were two)
was 1.02 times 1arger_fhan that added to the ductbheatedbthrough the outer

wall.

7.



CONCLUSIONS

- The.following majOr'conc]usions are derived from the present

study:

1.

Secondary motions in developing curved duct flow are largely

responsible for enhanced rates of heat transfer after an

initial périod transpires -to allow significant development of

the cross-stream flow. ‘In the present study this period

corresponded to a bend angle of 30° < ¢ < 50° approximately..

Short ducts with strong curvature may transfer as much or more .
heat (to a moving fluid in which the secondary motion is
intense) as longer ducts which are not as strongly curved

(and in which the secondary motion is weaker).

Higher rates of heat transfer are favored by large De,
b/a = 1, parabolic velocity entrance conditions, and large
temperature and velocity gradient conditions at outer curvature

and side walls, respectively.

For a plug-flow entrance velocity condition initial heat

transfer rates are large but are subsequently reduced (quite
considerably) due to the much slower development of the cross-

stream flow.

Whereas high values of De number favor large heat transfer rates,
the advantage'must be weighedtagainst corresponding increases in

friction losses.

18.




6. Flows in curved ducts with strdng curvature require a fully
elliptic numerical treatment to yield sat1sfactory computations.
Ca]cu]at1ons based on parab011c forms of the transport equations

can. produce erroneous results.

In general, thevstudy éhows thaf heat transfer in developing curved
ductITaminar flow can be usefully and comprehensiyely 1nvest1gatéd'through
numerical computation of finite differencé transpbrt equations, The._ |
.kesQ]tSZObtained are of sufficient accuracy for ehgineéking use and érei
limited in resolution only by the degree of mesh refinement imposed 1n'fhe
calculations. Equivalent experiments would be ]ébor%ous, time consuming

and expensive to perform.

The calculation procedure used for th1s work is presently the basis

for turbulent single and two-phase flow pred1ct1ons 1n curved duct geometrles.

Because of the high turbulence fluctuations observed at the curved and
side walls in theée flows [2], it is anticipated that contributidns-

through turbulent diffusion of partic]és-and/or heat will significantly
influence scalar transport evén:though the fluid mechanics appear to be

dictated primarily by pressure gradient and'body force field effects.

19.
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.FIGURE CAPTIONS

Fig. I Curved duct Cy1indr1ca1'coordinate'geometry‘

Fig. 2-a,b Comparison of elliptic (—) and parabo11c

' (---) calculations with experimental (0)
measurements of Tongitudinal velocity.
Measurements are from Humphrey, et a1. [9].

(a ): Z/(b/2) = 0; (b): 2/(b/2)

Fig. 2-c -Compar1son of elliptic (—-) and parabolic (---)
: calculations of pressure at inner and outer
curvature walls.

: Fig. 3-a,b Calculated (—) and measured (d'A) longitudinal
‘ velocity. Exper1ments are from Mor1, et. al.

[12]. (a): /2 De = 389; (b) K=/2 De = 876;

Fig. 3-c,d Calculated (~—) and measured (o, A) temperature.
Exper1ments are from Mori, et. al. [12].
1s wa]] tem erature gradient 0.49°C/cm.

2 De = 389; d) K=/2De = 876.
Fig. 4-a - Long1tud1na1 ve]oc1ty (V /V ), secondary
motion ( V. Ny ) and temperature 6 at
¢ = Q° for Case 1-in Table 1.

Fig. 4-b ‘Longitudinal velocity (V¢/VB)’ secondary
motion ( V /Vg) and temperature 6 at
¢ = 45° for Case 1 in Table 1.

Fig. 4-c Longitudinal velocity (V /Ny ), secondary
motion ( V Vg ) and temperature 6 at
¢ = 90° for Case 1 in Table 1.

Fig. 4-d  Longitudinal velocity (V /Vg), secondary
motion ( V /Vg) and temperature 6 at
¢ = 90° for Case 2 in Table 1.

Fig. 4-e Longitudinal velocity (V¢/VB),'secondary
motion ( V'/VB) and temperature 6 at
¢ ='90° for Case 3 in Table 1.

Fig. 4-f Longitudinal velocity (V¢/VB), secondary
motion ( V‘/VB) and temperature
¢ = 90° for Case 7 in Table 1.
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Fig.

Fig.

4-g

4-h

24,

Temperature at 90° for Cases 10, 11 and 12
in Table 1. '

v Longitudina].ve1ocity”(V¢/VB),ISecondary

motion ( V'/VB) and temperature 6 at
¢ = 90° for Case 13 in Table 1 .

Pressure loss curves for case studies- in
Table 1.

Friction coefficient curves for case

studies in Table 1.

Longitudinal variation of Nusselt and
temperature for different De.

" Longitudinal variation of Nusselt for .-

different b/a (Cases 1,2,3) and for
different temperature and velocity

~entrance conditions (Cases 7,8,9).

Longitudinal variation of Nusselt and
temperature for individually heated walls.
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