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Abstract We evaluate conditional value-at-risk (CVaR) as a risk measure in
data-driven portfolio optimization. We show that portfolios obtained by solving
mean-CVaR and global minimum CVaR problems are unreliable due to estimation
errors of CVaR and/or the mean, which are aggravated by optimization. This prob-
lem is exacerbated when the tail of the return distribution is made heavier. We
conclude that CVaR, a coherent risk measure, is fragile in portfolio optimization due
to estimation errors.
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1 Introduction

Conditional value-at-risk1 (abbrev. CVaR) has gained considerable attention in
the �nancial risk management literature as a viable risk measure. CVaR at level
� refers to the conditional expectation of losses in the top 100(1 − �)%, and is
anticipated to be a superior risk measure to value-at-risk (VaR), which, at level �,
refers to the threshold level for losses in the top 100(1−�)%. At a time when the use
of VaR is partly blamed for the 2007-2008 �nancial crisis2, CVaR is more appealing
than VaR because it takes into account the contribution from the very rare but very
large losses. Formally, CVaR is a �coherent� risk measure, in that it satis�es [P�ug
(2000), Acerbi and Tasche (2001)] the four coherence axioms3 of Artzner et al. (1999).

There have been many studies on CVaR once its coherence was established. In
statistics/econometrics, there have been studies about CVaR estimation [Scaillet
(2004), Brown (2007) and Chen (2008), to name a few]. Another line of work has
been in incorporating CVaR as a risk measure in portfolio optimization, led by
Rockafellar and Uryasev (2000) and Krokhmal, Palmquist and Uryasev (2002) [and
independently Bertsimas, Lauprete and Samarov (2004)], who developed numerical
methods for computing optimal portfolios with CVaR in the objective or in the
constraint. These papers demonstrate CVaR portfolio optimization from a purely
data-driven approach, i.e. the investor optimizes her portfolio based on empirical
estimates of mean and CVaR.

If the underlying return distribution is multivariate normal and the investor knows
its parameters, then the portfolio that minimizes CVaR with an expected return
R is equivalent to the portfolio that minimizes variance (or VaR) with the same
expected return R [Rockafellar and Uryasev (2000), De Giorgi (2002) and Bertsimas
et al. (2004)]. As a consequence, the frontiers of mean-variance and mean-CVaR
portfolios coincide if plotted on the same scale. The same authors also consider the
case where the investor does not know the model and computes optimal portfolios
purely based on historical data. Using real market data, they empirically show
that the empirical frontiers 4 of mean-variance and mean-CVaR portfolios are very
similar for the (di�erent) assets and time periods under consideration. This merely
indicates that the data used were approximately multivar! iate normal, and deems

1Also known as Mean/Expected Shortfall, Mean/Expected Excess Loss, or Tail VaR.
2See the New York Times article Risk Mismanagement (Jan. 2, 2009) by Joe Nocera, for an

account of the use of VaR as a risk measure in the �nancial industry.
3Translation invariance, subadditivity, positive homogeneity and monotonicity. VaR violates

subadditivity [Artzner, Delbaen, Eber and Heath (1999), Embrechts, Resnick and Samorodnitsky
(1999)], i.e. diversi�cation can result in greater risk.

4See Sec. (2) for a precise de�nition.
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the use of CVaR over variance in a `normal' market unnecessary5. Nevertheless,
the proponents of CVaR argue that its usefulness will be evident when the return
distributions deviate from normality; in particular when they have fat left tails, as
is often the case in `crisis' periods [Litzenberger and Modest (2008)]. However, to
date, no studies on the use of CVaR as a risk measure in such a market have been
done to validate this claim.

One important point that has been omitted by Artzner et al. (and subsequent
works on CVaR) is the role of estimation errors in the computation of a risk measure,
and their e�ect on decision-making, such as portfolio optimization. CVaR may be
coherent, but a large number of observations are needed to estimate it accurately
because it is a tail statistic. However, in �nancial risk management, historical data
older than 5 years are rarely used because underlying distributions are non-stationary
over a long period of time. Thus from a practical perspective, data-driven portfolio
optimization that involves estimated statistics is subject to estimation errors that
may be very signi�cant. Such observations in the context of mean-variance optimiza-
tion have been made by Jorion (1985), Michaud (1989), Broadie (1993) and Chopra
and Ziemba (1993), where the quality of the solution was shown to be greatly a�ected
by estimati! on errors of the mean. We believe that an understanding of the impact
of estimation errors in CVaR (as well as other tail risk measures) is important given
its increasing popularity.

The goal of this paper is thus to provide an objective analysis of the use of CVaR
as a risk measure in data-driven portfolio optimization. Speci�cally, we set out to
answer the following questions:

∙ How do estimation errors a�ect data-driven portfolio optimization that mini-
mize CVaR as an objective?

∙ Is CVaR a reliable risk measure, in terms of estimation errors, for portfolio
optimization in a heavy-tailed market?

To address these questions, we look at the mean-CVaR frontiers associated with the
solution of empirical mean-CVaR problems constructed from data generated under
di�erent market models. We will �rst show that these empirical mean-CVaR frontiers
vary wildly when both mean and CVaR are empirically estimated (call this problem
EMEC, for empirical mean-empirical CVaR). Of course, such a variation may be
due to the well-known problem of estimation errors of the mean. To isolate the
e�ect of the mean, we also consider (i) global minimum CVaR portfolio optimization
(GMC) and (ii) mean-CVaR problem where the true mean is known (TMEC for

5Of the four papers, only De Giorgi correctly identi�es this point.
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true mean-empirical CVaR). For comparative purposes, we also analyze empirical

mean-empirical variance (EMEV), global minimum variance (GMV) and true mean-

empirical variance (TMEV) problems.
To see the e�ect of the tail behavior of return distributions, we do the analysis

mentioned above for three di�erent market scenarios: excess return distributions are
multivariate normal (ℳ1), mixture of multivariate normal and negative exponential
tail (ℳ2), or mixture of multivariate normal and one-sided power tail (ℳ3). Such
mixture distributions represent a normal market that undergoes a shock with a small
probability, with increasing heaviness in the tail.

The details of the evaluation methodology can be found in Sec. (2), of the opti-
mization problems in Sec. (3) and simulation results and discussion in Sec. (4).

2 Evaluation Methodology

We consider single-period portfolio optimization with n risky assets. We denote
the excess returns of the assets by the random vector X = [X1, . . . , Xn]

′. To see
how estimation errors a�ect EMEC portfolio optimization, we employ the following
procedure6:

1. Choose � (usually, 95% or 99%) and a model ℳ for the distribution of the
underlying assets. For example,ℳ could be a multivariate normal distribution
with parameters (�,V).

2. Simulate asset returns D = [x1 . . . ,xq] for a time period of size q under ℳ.
This is the historical data the investor observes.

3. Fix a portfolio return level R. Compute the optimal solution of the EMEC(R;D, �)
problem (see Sec. (3) for details on the optimization). For the same data set
D, vary the range of R to compute a family of optimal portfolios. Note this
family is random since the input data D is random.

4. For each portfolio in the family of optimal portfolios computed in Step 3,
compute its expected (excess) return and CVaR under the true model ℳ, and
plot the resulting mean-CVaR values. This generates a curve, the empirical

frontier, representing the mean and CVaR of the portfolios computed in Step
3 under the true model ℳ. We do this because we are interested in the

6We employ a similar procedure for TMEC/TMEV and GMC/GMV portfolio optimization; the
only di�erence is in the optimization problem we solve in Step 3.
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true performance of the EMEC portfolios. Note the empirical frontier is also
random.

5. Repeat Steps 3-4 for EMEV(R;D, �) portfolio optimization.

6. Repeat Steps 2-5 many times (50 in our study), each time with fresh input
data D. We can now compare the distribution of EMEC and EMEV empirical
frontiers.

To see the e�ect of the tail of return distributions, we consider market models ℳ
with increasingly heavier one-sided tail; the exact characterizations of these markets
are in Sec. (4.2). Next, we provide details of the optimization.

3 Data-driven Portfolio Optimization

3.1 Data-driven mean-variance portfolio optimization

The optimal data-driven mean-variance portfolio �∗MV is given by solving the
quadratic program:

min
�

�′V (q)� (1a)

s.t.
n∑
i=1

�i = 1 (1b)

�′g ≥ R, (1c)

where V (q) is the sample covariance matrix computed from the observed data. For
the EMEV problem, g = q−1

∑q
i=1 xi, i.e. the sample mean, and for the TMEV

problem, g = E(X). For the GMV problem, we omit the constraint (1c).

3.2 Data-driven mean-CVaR portfolio optimization

The optimal data-driven mean-CVaR portfolio �∗CV aR is given by solving:

min
�,�

� +
1

q(1− �)

q∑
i=1

(−�′xi − �)+ (2a)

s.t.
n∑
i=1

�i = 1 (2b)

�′g ≥ R, (2c)

5



where D = [x1, . . . ,xq] are vectors of observed asset returns. We know from Rock-
afellar and Uryasev (2000) that (2) can be transformed into a linear program. Again,
for the EMEC problem, g = q−1

∑q
i=1 xi, and for the TMEC problem, g = E(X),

and for the GMC problem, we omit the constraint (2c).
The objective (2a) is a sample estimate of the following7:

Theorem (Rockafellar and Uryasev (2000)). Let X be a vector of iid asset

returns, with a continuous cdf and a density function f . Then CVaR at level � of a

portfolio � can be expressed as an optimization problem:

CVaR(�; �) = min
�∈R

� +
1

1− �

∫
x∈Rn

(−�− �′x)+f(x)dx.

4 Results and Discussion

4.1 Returns ∼ multivariate normal

4.1.1 Model Description

We �rst consider the case where excess returns of n = 5 assets have a multivariate
normal distribution:

X ∼ N(�,V ) (ℳ1)

where8

� =
[
26.11, 25.21, 28.90, 28.68, 24.18

]
× 10−4,

V =

⎡⎢⎢⎢⎢⎣
3.715, 3.730, 4.420, 3.606, 3.673
3.730, 3.908, 4.943, 3.732, 3.916
4.420, 4.943, 8.885, 4.378, 5.010
3.606, 3.732, 4.378, 3.930, 3.789
3.673, 3.916, 5.010, 3.799, 4.027

⎤⎥⎥⎥⎥⎦× 10−4.

The histogram for the 10,000 sample returns of X1 is shown in Fig. (2a).

7For a �xed portfolio �, the sample estimate (2a) is a non-parametric estimator for the port-
folio's CVaR. It can be shown that this estimator is related to another popular non-parametric
estimator of CVaR, and both are weakly consistent and asymptotically normal with data size q.
Note, however, that this does not say that the empirical CVaR of the optimized portfolio is asymp-
totically normal. See Lim, Shanthikumar and Vahn (n.d.) for details.

8The vector � and the matrix V are the sample mean and covariance matrix of 299 monthly
excess returns of 5 stock indicies (NYA, GSPC, IXIC,DJI,OEX) from the period spanning August
3, 1984 to June 1, 2009.
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4.1.2 Empirical mean-Empirical CVaR (EMEC) problem

As described in Sec. (2), we generate data using model ℳ1 and solve for EMEC
and EMEV portfolios for a number of target expected returns R. We then simulate
the returns for these portfolios under modelℳ1 to compute the true expected return
and true CVaR, and generate the empirical frontiers in Fig. (1). Note we could have
equally chosen true variance as the common risk scale. We also emphasize that the
frontiers are not observed by the investor herself; they show the variability in the
performance of empirical portfolio optimization under the true model.

Figure 1: The frontiers of empirical mean-empirical CVaR (red) and empirical mean-
empirical variance (blue) portfolios under modelℳ1. All scales are bps/mth.

The EMEC and EMEV frontiers both vary wildly; for example, with q = 50 (≈ 4
years), the range of expected excess return of a portfolio with CVaR = 1000 bps/mth
per dollar invested9 is greater than the range 25�72 bps/mth, which translates to
a relative excess return ratio greater than (1.007212 − 1)/(1.002512 − 1) ≈ 300%
per year. The performance of EMEC and EMEV portfolios are very similar in
that the positions and the spread of the frontiers are very similar. This is not
very surprising, since, as previously mentioned, theoretical mean-variance and mean-
CVaR problems yield equivalent solutions if the underlying asset returns have a
multivariate normal distribution. Thus in a normal market, the EMEC problem is
subject to large estimation errors of the mean, as is the EMEV problem. The same
shortcomings apply to markets with heavier tails, as estimating the mean becomes
more di�cult as the underlyi! ng distribution becomes more irregular.

9We will omit `per dollar invested' hereafter.
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However, we cannot attribute the variation of the empirical frontiers solely to
errors of the mean. What if we remove the expected return constraint, or assume
the investor knows the true mean of asset returns? Removing the expected return
constraint is a natural extension of EMEC and EMEV problems10, and allows us
to compare errors of CVaR and variance without errors of the mean. On the other
hand, assuming the investor knows the true mean is an idealization of the situation
where the investor has a good estimate of the mean obtained from alternatives to
the sample average, e.g. based on CAPM [Huang and Litzenberger (1988)], forecasts
of exceptional returns [Grinold and Kahn (2000)], factor models [Fama and French
(1993)], or incorporating investor knowledge via Black-Litterman [Black and Litter-
man (1991)]. In this regard, the TMEC model will allow us to evaluate whether the
hard work put into estimating the mean can be destroyed by the errors associated
with estimating CVaR. Hence, for the rest of the paper, we consider (i) GMC/GMV
and (ii) TMEC/TMEV problems.

4.1.3 Global minimum CVaR (GMC) problem

We plot expected return vs. true CVaR of portfolios that solve the GMC problem
(red) for ℳ1 in Fig. 4(a). For comparative purposes, GMV portfolios are also
plotted (blue). In Table 1, we give the ranges for CVaR and expected return values
corresponding to the solutions of GMC/GMV problems from our 50 simulations. We
observe that GMV portfolios outperform GMC portfolios in that most blue stars are
found on the left of the red stars (i.e. more accurate) and also are less spread out (i.e.
more precise). The GMC portfolios are not precise at all; e.g. for our 50 simulations,
when q = 50, the range of expected return is 9.15�43.2 bps/mth (481% per year
relative di�erence) and for CVaR is 465�723 bps/mth.

What are the origins of the variation in the GMC empirical frontiers? In order
to distinguish between the e�ects of inherent estimation errors and the optimiza-
tion procedure, we plot in Fig. 3(a) Perceived CVaR and Random Empirical CVaR

against True CVaR. By Perceived CVaR we mean the optimal objective from solving
the GMC problem, i.e. the CVaR value perceived by the investor. By Random Em-

pirical CVaR we mean the empirical CVaR11 of portfolios that are randomly drawn12

from the set of portfolios that satisfy the constraint (2b). True CVaR refers to the
true CVaR value of a portfolio. Thus the scatter plot of Random Empirical CVaR

10The GMV problem is currently being studied as an alternative to the EMEV problem [see
Jagannathan and Ma (2003), DeMiguel, Garlappi, Nogales and Uppal (2009)].

11De�ned by (2a).
12Note the drawing procedure was not uniform.
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against True CVaR (blue) gives an indication of the inherent estimation errors before
optimization, and the scatter plot of Perceived CVaR against True CVaR (re! d) gives
an indication of how the optimization a�ects the already present estimation errors.
We observe that empirical CVaR values of randomly drawn, unoptimized portfolios
are slightly biased in the direction of underestimating the true CVaR13. However,
this underestimation is aggravated by the optimization procedure, as can be seen by
the position of the red dots� they are generally further below the black line (perfect
estimation) than the blue dots. In Table 1, we highlight this phenomenon by listing
the ranges of Perceived CVaR as well as the true CVaR for the GMC problem.

4.1.4 True mean-Empirical CVaR (TMEC) problem

Figure 5(a) shows TMEV empirical frontiers (blue) and TMEC(� = 0.99) empir-
ical frontiers (red) for di�erent data sizes q = 50, 200, 400 (months). We also plot the
theoretical mean-variance (equivalently, mean-CVaR) frontiers in green (left-edge of
the blue curves). In Table 2, we give the ranges for CVaR and expected return values
corresponding to the solutions of TMEC/TMEV problems from our 50 simulations.
In all three instances, the spreads of the TMEV empirical frontiers are signi�cantly
smaller than the TMEC empirical frontiers, and the TMEV empirical frontiers lie
on the left-most side of the TMEC curves, closer to the theoretical frontier. Thus a
portfolio manager who wishes to �nd the optimal TMEC portfolio should solve the
TMEV problem to get a portfolio with higher accuracy and precision. For example,
a manager with risk level CVaR = 1000 bps/mth and q = 50 using TMEV optimiza-
tion generates an average excess re! turn of 56.6 bps/mth, but a manager with the
same risk level using TMEC optimization generates 52.3 bps/mth� ≈ 8.5% per year
higher excess return, on average. Furthermore, the TMEV manager is more reliable;
e.g. for our 50 simulations and q = 50, the range of true CVaR is 613�691 bps/mth
whereas for the TMEC manager it is 621�942 bps/mth for the same expected return
of 40 bps/mth.

As with the GMC problem, the variation in the TMEC portfolios is due to inher-
ent estimation errors of CVaR coupled with the e�ect of optimization. In Fig. 3(b)
we plot the Perceived CVaR of GMC portfolios in red, and empirical CVaR of ran-
dom portfolios that satisfy (2b) in blue; notice the red dots are generally further
below the black line (perfect estimation) than the blue dots. This is further veri�ed
by the CVaR (per) column in Table 2. This tells us that the TMEC investor can
substantially underestimate the true CVaR value of her `optimal' portfolio and be

13This is because the sample estimator from (2a) is biased in the direction of underestimation
[Lim et al. (n.d.)].
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exposed to more risk than suggested by her perceived value.
Lastly, we comment on the di�erence between the performance of TMEC and

TMEV empirical frontiers. Theoretically, the mean-CVaR and mean-variance em-
pirical frontiers coincide; thus the discrepancy in the observed performance suggests
that estimation errors of CVaR are more signi�cant than of variance. This is not
surprising since the mean vector and the covariance matrix are minimal su�cient
statistics of a multivariate normal model. Thus minimizing portfolio variance only
contains errors of the covariance matrix, which are less signi�cant than errors of the
mean, whereas minimizing portfolio CVaR contains errors of both the mean vector
and the covariance matrix.

4.2 Returns ∼ multivariate normal + heavy loss tail

Recall that one of our objective is to evaluate CVaR portfolio optimization in mar-
kets with heavier tails. We now present analysis of GMC/GMV and TMEC/TMEV
problems for two such markets.

4.2.1 Negative exponential Tail

Let us consider returns being driven by a mixture of multivariate normal and
negative exponential distributions, such that with a small probability, all assets su�er
a perfectly correlated exponential-tail loss. Formally,

X ∼ (1− I(�))N(�,V) + I(�)(Y e+ f), (ℳ2)

where I(�) is a Bernoulli random variable with parameter �, e is a n×1 vector of ones,
and f = [f1, . . . , fn]

′ is a n × 1 vector of constants, and Y is a negative exponential
random variable with density

P (Y = y) =

{
�e�y, if y ≤ 0

0 otherwise.

In our simulations, we consider � = 0.05 (i.e. one shock every ≈ 1.7 years), fi =
�i −

√
Vii and � = 10. The histograms for 10, 000 sample returns of X1 is shown in

Fig. (2b).

4.2.2 One-sided power tail

Finally, we consider returns being driven by a mixture of multivariate normal and
one-sided power distribution, such that with a small probability, all assets su�er a
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perfectly correlated power-tail loss. Formally,

X ∼ (1− I(�))N(�,V) + I(�)Z()f , (ℳ3)

where I(�) is a Bernoulli random variable with parameter �, f = [f1, . . . , fn]
′ is a

n× 1 vector of constants, and Z() is a random variable de�ned for  ≥ 1 such that

P (Z() = z) =

{
( − 1)(−z)− if z ≤ −1
0 otherwise.

Note X under ℳ3 has �nite variance for  > 3. In our simulations, we consider
� = 0.05, fi = �i − 5

√
Vii, and  = 3.5. The histogram for 10, 000 sample returns of

X1 is shown in Fig.(2c).

4.3 Discussion of results

4.3.1 Global minimum CVaR (GMC) problem

The expected return vs. true CVaR of GMC and GMV portfolios under models
ℳ1�3 are plotted in Fig. (4). In Table 1, we give the ranges for CVaR and expected
return values corresponding to the solutions of GMC and GMV problems from our
50 simulations. In ℳ1 and ℳ2, the GMV portfolios perform better than GMC
portfolios in that the blue stars are further to the left (i.e. more accurate) and have
substantially smaller vertical and horizontal spreads (i.e. more precise) than the red
stars. Inℳ3, the GMV portfolios are slightly more accurate and precise than GMC
portfolios when q = 50, but the GMC portfolios converge faster with increasing data
size. However, as �nancial data older than 5 years is rarely used in practice, q = 50
presents the most realistic scenario, and in this case, the GMV problem is clearly
more reliable than the GMC problem across all models. In addition, when q = 50, t!
he investor substantially underestimates the CVaR value� for our 50 simulations,
True CVaR range is 2736�10610 bps/mth, whereas Perceived CVaR range is 1053�
4957 bps/mth for the same expected return 40 bps/mth.

4.3.2 True mean-Empirical CVaR (TMEC) problem

The empirical frontiers of TMEC and TMEV portfolios under models ℳ1�3 are
plotted in Fig. (5). In Table 2, we give the ranges for CVaR and expected return
values corresponding to the solutions of TMEC/TMEV problems from our 50 simula-
tions. For comparison, we also provide the ranges for EMEC/EMEV problems under
ℳ1. Across all models, the TMEV empirical frontiers perform better than TMEV

11



empirical frontiers in that the blue curves are further to the left and have smaller
spreads than the red curves. There are di�erences between the models, however�
the TMEV most out-perform TMEC portfolios in ℳ2, whereas in ℳ3, the out-
performance of TMEV empirical frontiers at q = 50 diminishes with increasing data.
However, as previously mentioned, q = 50 presents the most realistic scenario, and
in this case, the TMEV problem is clearly more reliable than the TMEC problem
across all models. The inve! stor remains too optimistic when q = 50� for our
50 simulations, True CVaR range is 1123�1778 bps/mth, whereas Perceived CVaR
range is 461�916 bps/mth for the same expected return 40 bps/mth.

We can also see the e�ect of assuming the investor knows the true mean� from
the ℳ1 columns in Table 2 and comparing Fig. (1) and Fig. (5(a)), we see that
the variation of both mean-variance and mean-CVaR empirical frontiers decrease
substantially when the true mean is known. However, even if the investor estimates
the mean exactly, estimation errors in CVaR can signi�cantly a�ect the reliability of
empirical frontiers, as is the case for ℳ2.

5 Conclusion

In this paper, we have empirically evaluated CVaR as a risk measure in data-
driven portfolio optimization. We have focused on two goals: to see the e�ects of
estimation errors on portfolio optimization that minimize CVaR as an objective,
and to determine whether such optimization is reliable in heavy-tailed markets. We
summarize our �ndings below.

∙ Estimation errors of the mean plague the empirical mean-empirical CVaR
problem, just as the empirical mean-empirical variance problem. As the dif-
�culty in estimating the mean is well-known, we focused on global minimum
CVaR/variance and true mean-empirical CVaR/variance problems for the rest
of the paper.

∙ The portfolio solutions of GMC and TMEC problems are unreliable due to
statistical errors associated with estimating CVaR coupled with the e�ect of
optimization, which tends to amplify the statistical errors. An investor who
minimizes CVaR is thus likely to �nd a portfolio that is far from being e�-
cient with substantially underestimated CVaR; her risk exposure is likely to be
substantially higher than she might otherwise realize.

∙ The analysis of the TMEC problem show that any bene�ts of accurately esti-
mating expected return are destroyed by estimation errors of CVaR.
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Appendix

Figure 2: Histogram for 10,000 samples of X1 (bps/mth) under model (a) ℳ1, (b) ℳ2
and (c)ℳ3.
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(a)

(b)

Figure 3: Random Empirical CVaR vs. True CVaR (blue) and Perceived CVaR vs. True
CVaR (red) for (a) true mean-empirical CVaR problem and (b) global minimum CVaR
problem under modelℳ1. All scales are bps/mth.
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(a)

(b)

(c)

Figure 4: The empirical frontiers of global minimum variance (blue) and global minimum
CVaR (red) portfolios under models (a)ℳ1 (b)ℳ2 and (c)ℳ3. All scales are bps/mth.
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(a)

(b)

(c)

Figure 5: The empirical frontiers of true mean-empirical variance (blue) and true mean-
empirical CVaR (red) portfolios under models (a)ℳ1 (b)ℳ2 and (c)ℳ3. In (a), we also
plot the theoretical mean-variance (equivalently, mean-CVaR) frontier in green (found at
the left-most edge of the blue curves). All scales are bps/mth.
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