Skip to main content
eScholarship
Open Access Publications from the University of California

Iterative refinement of a binding pocket model: Active computational steering of lead optimization

  • Author(s): Varela, R
  • Walters, WP
  • Goldman, BB
  • Jain, AN
  • et al.

Published Web Location

http://pubs.acs.org/doi/abs/10.1021/jm301210j
No data is associated with this publication.
Abstract

Computational approaches for binding affinity prediction are most frequently demonstrated through cross-validation within a series of molecules or through performance shown on a blinded test set. Here, we show how such a system performs in an iterative, temporal lead optimization exercise. A series of gyrase inhibitors with known synthetic order formed the set of molecules that could be selected for "synthesis." Beginning with a small number of molecules, based only on structures and activities, a model was constructed. Compound selection was done computationally, each time making five selections based on confident predictions of high activity and five selections based on a quantitative measure of three-dimensional structural novelty. Compound selection was followed by model refinement using the new data. Iterative computational candidate selection produced rapid improvements in selected compound activity, and incorporation of explicitly novel compounds uncovered much more diverse active inhibitors than strategies lacking active novelty selection. © 2012 American Chemical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item