Skip to main content
eScholarship
Open Access Publications from the University of California

Manufacturing and Characterization of Temperature-Stable, Novel, Viscoelastic Polyurea Based Foams for Impact Management

  • Author(s): Ramirez, Brian Josue
  • Advisor(s): Gupta, Vijay
  • et al.
Abstract

The aim of this thesis was to develop advance, high performance polyurea foams for multi-hit capability in protective equipment that respond over a range of impact energies, temperatures, and strain rates. In addition, the microstructure of these materials should be tunable such that the peak stress (or force) transmitted across the foam section can be limited to a specific value defined by an injury threshold while maximizing impact energy absorption.

Novel polyurea foams were manufactured and found to exhibit a reversible viscoelastic shear deformation at the molecular level. The intrinsic shear dissipation process is synergistically coupled to controlled collapse of a novel pore structure. The microstructure compromises of stochastic polyhedral cells ranging from 200 – 500 μm with perforated membranes with small apertures (~ 20 μm). This makes them strain rate sensitive as the rate at which the air escapes the cells depend upon the loading rate. These mechanisms operate simultaneously and sequentially, thereby significantly reducing the transmitted impact forces across the foam section. Thus, they behave as an elastically modulated layered composite because the cells stiffen or soften in response to the changing loading rate. Therefore, the newly developed polyurea foams are able to manage the varying material strain rate that occurs within the same loading event without the need to modulate the stiffness or density. Additionally, polyurea foams were found to retain its excellent impact properties over a range of temperatures (0�C to 40�C) by having a glass transition temperature well below 0�C. This is in contrast to commercially available high performance foams that have the glass transition temperature near 0�C and absorb energy through phase transformation at ambient conditions, but significantly stiffen at lower temperatures, and dramatically soften at higher temperatures. This expands the application domain of polyurea foam material considerably as it can be tailored to withstand a range of dynamic forces and impact velocities, showing further improvement over currently used protective foams.

This thesis also presents a new composite foam concept that involves infiltrating a polyurea-based foam through an open 3D lattice structure with a truss-like network of 2 mm-size struts. The combination of dynamic buckling at the macro (preform lattice struts) and the micro (foam pores) levels increases the stiffness and plateau strength of the composite polyurea foam. The composite foams absorb more impact energy in same section thickness, while keeping both the peak stress and impulse duration low compared to high performance expanded polystyrene (EPS) and Poron foam technology, but without the material crushing or undergoing phase shift, respectively. Most importantly, the composite foams display stability at both low (0�C) and high temperatures (40�C) because of its extremely low Tg of -50�C. Being viscoelastic, they recover fully within 30 s after each impact, without loss of any energy absorption capability. These properties should allow these materials to have a wide range of military and civilian applications, especially in advance armors and protective body and headgear systems.

Main Content
Current View