Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Calcium-Dependent Arrhythmogenic Foci Created by Weakly Coupled Myocytes in the Failing Heart

Published Web Location

http://circres.ahajournals.org/content/121/12/1379
No data is associated with this publication.
Abstract

Rationale

Intercellular uncoupling and Ca2+ (Ca) mishandling can initiate triggered ventricular arrhythmias. Spontaneous Ca release activates inward current which depolarizes membrane potential (Vm) and can trigger action potentials in isolated myocytes. However, cell-cell coupling in intact hearts limits local depolarization and may protect hearts from this arrhythmogenic mechanism. Traditional optical mapping lacks the spatial resolution to assess coupling of individual myocytes.

Objective

We investigate local intercellular coupling in Ca-induced depolarization in intact hearts, using confocal microscopy to measure local Vm and intracellular [Ca] simultaneously.

Methods and results

We used isolated Langendorff-perfused hearts from control (CTL) and heart failure (HF) mice (HF induced by transaortic constriction). In CTL hearts, 1.4% of myocytes were poorly synchronized with neighboring cells and exhibited asynchronous (AS) Ca transients. These AS myocytes were much more frequent in HF (10.8% of myocytes, P<0.05 versus CTL). Local Ca waves depolarized Vm in HF but not CTL hearts, suggesting weaker gap junction coupling in HF-AS versus CTL-AS myocytes. Cell-cell coupling was assessed by calcein fluorescence recovery after photobleach during intracellular [Ca] recording. All regions in CTL hearts exhibited faster calcein diffusion than in HF, with HF-AS myocyte being slowest. In HF-AS, enhancing gap junction conductance (with rotigaptide) increased coupling and suppressed Vm depolarization during Ca waves. Conversely, in CTL hearts, gap junction inhibition (carbenoxolone) decreased coupling and allowed Ca wave-induced depolarizations. Synchronization of Ca wave initiation and triggered action potentials were observed in HF hearts and computational models.

Conclusions

Well-coupled CTL myocytes are effectively voltage-clamped during Ca waves, protecting the heart from triggered arrhythmias. Spontaneous Ca waves are much more common in HF myocytes and these AS myocytes are also poorly coupled, enabling local Ca-induced inward current of sufficient source strength to overcome a weakened current sink to depolarize Vm and trigger action potentials.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item