Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Optimally tuned starting point for single-shot GW calculations of solids

Abstract

The dependence of ab initio many-body perturbation theory within the GW approximation on the eigensystem used in calculating quasiparticle corrections limits this method's predictive power. Here, we investigate the accuracy of the recently developed Wannier-localized optimally tuned screened range-separated hybrid (WOT-SRSH) functional as a generalized Kohn-Sham starting point for single-shot GW (G0W0) calculations for a range of semiconductors and insulators. Comparison to calculations based on well-established functionals, namely, PBE, PBE0, and HSE, as well as to self-consistent GW schemes and to experiment, shows that band gaps computed via G0W0@WOT-SRSH have a level of precision and accuracy that is comparable to that of more advanced methods such as quasiparticle self-consistent GW and eigenvalue self-consistent GW. We also find that G0W0@WOT-SRSH improves the description of states deeper in the valence band manifold. Finally, we show that G0W0@WOT-SRSH significantly reduces the sensitivity of computed band gaps to ambiguities in the underlying WOT-SRSH tuning procedure.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.