Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Rethinking PICO in the Machine Learning Era: ML-PICO

Abstract

Background

Machine learning (ML) has captured the attention of many clinicians who may not have formal training in this area but are otherwise increasingly exposed to ML literature that may be relevant to their clinical specialties. ML papers that follow an outcomes-based research format can be assessed using clinical research appraisal frameworks such as PICO (Population, Intervention, Comparison, Outcome). However, the PICO frameworks strain when applied to ML papers that create new ML models, which are akin to diagnostic tests. There is a need for a new framework to help assess such papers.

Objective

We propose a new framework to help clinicians systematically read and evaluate medical ML papers whose aim is to create a new ML model: ML-PICO (Machine Learning, Population, Identification, Crosscheck, Outcomes). We describe how the ML-PICO framework can be applied toward appraising literature describing ML models for health care.

Conclusion

The relevance of ML to practitioners of clinical medicine is steadily increasing with a growing body of literature. Therefore, it is increasingly important for clinicians to be familiar with how to assess and best utilize these tools. In this paper we have described a practical framework on how to read ML papers that create a new ML model (or diagnostic test): ML-PICO. We hope that this can be used by clinicians to better evaluate the quality and utility of ML papers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View