
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Simulation and optimization of a two-wheeled, ball- flinging robot

Permalink
https://escholarship.org/uc/item/5rr9d2sb

Author
Chen, Po-Ting

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5rr9d2sb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Simulation and Optimization of a Two-Wheeled, Ball-Flinging Robot

A thesis submitted in partial satisfaction of the requirements for the degree

Master of Science

in

Engineering Sciences (Aerospace Engineering)

by

Po-Ting Chen

Committee in charge:

 Professor Thomas Bewley, Chair
Professor Frank Talke

 Professor Mauricio de Oliveira

2010

 iii

The Thesis of Po-Ting Chen is approved and it is acceptable in quality and form for

publication on microfilm and electronically:

 Chair

University of California, San Diego

2010

 iv

DEDICATION

 This thesis is dedicated to my parents, who have been with me through the good

and the difficult times. Thank you for your support, guidance, and unconditional love.

Thank you Ching-Hung and Chin-Yi

 v

Table of Contents

Signature Page ... iii

Dedication .. iv

Table of Contents.. v	

List of Figures ...viiii	

Acknowledgements.. ix	

Abstract ... x	

Chapter 1	

Introduction... 1	

1.1 Background ... 1	

1.2 Motivation... 2	

1.3 Outline... 2	

Chapter 2	

Prototype Design... 3	

2.1 How iFling Works?... 4	

2.1.1 Upright/Pickup Mode... 4	

2.1.2 Flinging Mode.. 5	

2.2 Throwing Arm .. 6	

2.3 Actuator... 7	

 vi

Chapter 3	

System Modeling .. 8	

3.1 Dynamics of iFling ... 9	

3.2 Projectile Motion .. 14	

Chapter 4	

Optimization ... 17	

4.1 Input Optimization .. 18	

4.2 Shape Optimization... 20	

4.3 Algorithm.. 21	

Chapter 5	

Results and Discussion ... 22	

5.1 Mechanical Properties and Initial Conditions... 23	

5.1.1 Mechanical Properties.. 23	

5.1.2 Initial Conditions ... 24	

5.1.3 Optimization Constraints ... 24	

5.2 Input Sequence.. 25	

5.3 Throwing Arm Shape.. 26	

5.5 Simulation ... 28	

5.5 Discussion ... 30	

Chapter 6	

Conclusion .. 32	

 vii

Appendix... 34	

A.1... 34	

A.2... 38	

Bibliography ... 39	

 viii

List of Figures

Figure 1: Picture of the current iFling prototype .. 1	

Figure 2: 3D computer model of iFling .. 3	

Figure 3: Illustration of the upright mode... 4	

Figure 4: Illustration of ball pickup. ... 5	

Figure 5: Flinging mode.. 5	

Figure 6: iFling throwing motion with velocity components ... 6	

Figure 7: Solarbotics RM2 DC motors ... 7	

Figure 8: Model of iFling.. 8	

Figure 9: Projectile Motion... 14	

Figure 10: Overall optimization scheme... 17	

Figure 11: Ball launching sequence.. 22	

Figure 12: Coordinate system used for finding mass properties....................................... 23	

Figure 13: Result of the input optimization .. 26	

Figure 14: Result of shape optimization ... 27	

Figure 15: iFling simulation using initial guess and optimal solution.............................. 28	

 ix

Acknowledgements

 I would like to thank Professor Thomas Bewley, my adviser, for his support and

guidance.

 I would also like to thank Rob Krohn for helping me understand the necessary

mathematical background and the optimization strategy. Without his help, I would not be

able to finish this work.

 My sincere thanks goes to Andrew Cavender and Chris Schmidt-Wetekam for

helping me with the modeling and simulation.

 My special thanks goes to my research partner, Benjamin Sams, for the successful

and ingenious prototype.

 x

ABSTRACT OF THE THESIS

Simulation and Optimization of a Two-Wheeled, Ball-Flinging Robot

by

Po-Ting Chen

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2010

Professor Thomas Bewley, Chair

 This paper presents a method for optimizing the throwing distance of a two-

wheeled, self-balancing, remote controlled robot. The robot is maneuverable and

comparable in size to a remote controlled toy car, but it moves around in an upright

configuration using feedback control. In addition, it is capable of automatically picking

up and throwing ping-pong balls. When throwing a ball, the body attached throwing arm

is allowed to rotate quickly from a lay-down position to an upright position utilizing the

principle of conservation of angular momentum.

 xi

 The equations of motions of a representative model of the dynamic system are

derived with Lagrange equation and Rayleigh dissipation functions. The optimization

consists of two parts. The shape optimization is based on the ball’s exit condition from

the arm, which wraps around an adjoint based motor input optimization. In simulation,

this optimization scheme results in a significant increase in throwing distance while

keeping the magnitude of the motor input within comparable range.

 1

Chapter 1

Introduction

Figure 1: Picture of the current iFling prototype

1.1 Background

The UCSD robotics laboratory started iFling robot program several years ago to

develop an agile remote controlled toy car that is capable of throwing ping-pong balls.

There has been several design iterations, and it is now in the third generation. The

second-generation prototype performed very successful in the upright configuration. It

was able to move around nimbly and brought much fun to the user. However, it was

incapable of retrieving ping-pong balls efficiently and was only capable of making a

catapult style lobbing, which resulted in a short throwing distance. The third design

iteration focuses on creating an efficient ball pickup and ball-tossing robot.

2

1.2 Motivation

 iFling is a novel radio controlled robot intended for the toy industry. The core

focus is to deliver an affordable toy package that has the agility of a remote controlled car

and the excitement of playing catch and throw. The design has the potential of becoming

everyday toys for the children, group competitions, and possibly serving balls for athletes

by improving the level of automation and by scaling up the system to the appropriate

size.

1.3 Outline

 In this paper, I will present the overall design of the third generation iFling, so the

people can better understand the physical system. Second, I will focus on the theory of

modeling the ball throwing motion, which includes the combined dynamic system and

the trajectory of the ball in the air. From there, I will explain the optimization approach

used to obtain a solution for making a longer ball toss. Finally, simulation results and

comparison of the optimal solution with the initial guess will be presented and discussed.

In addition, I will explore a few possibilities for future research directions to bring the

project to the next level.

 3

Chapter 2

Prototype Design

Figure 2: 3D computer model of iFling

iFling is an unique remote controlled robot. It has many features and detail

designs that make this robot one of a kind. However, the purpose of this paper is not to

focus on the design process or the manufacturing steps of the robot. In this chapter, I will

briefly explain its features and designs relevant to the main topic of this paper, which is

the ball throwing optimization.

4

2.1 How iFling Works?

2.1.1 Upright/Pickup Mode

 (a) moving backward (b) stationary (c) moving forward

Figure 3: Illustration of the upright mode

 iFling’s operation can be separated into two modes. The first mode is the upright

mode. In this mode, the robot self-balances with a PID feedback control, which also acts

as a drive mechanism to move the robot forward and backward. See figure 3. This mode

is also the ball pickup mode. The body and the wheels are spaced apart with a gap of size

slightly less than the diameter of a ping-pong ball, which is about 4cm. This spacing is

designed to provide automatic ping-pong ball pickup. The curvature of the body and the

shape of the wheels are especially design to make sure the ball is caught between the

wheels and the body. See figure 4.a. The rotation of the wheels will smoothly bring the

ball onboard and store them inside a basket. See figure 4.b. In order to prevent the balls

from coming out of the basket during violent maneuver, there are two spring-loaded one-

5

way gates located at each entrance. This design makes ball pick up very simple for the

users because all they have to do is to drive the robot towards the ball with a slight bias

either to the left or to the right of the target ball for pickup.

 (a) (b)

Figure 4: Illustration of ball pickup. (a) The body and the wheel are used to catch the
ping-pong ball. (b) The ball is carried to the basket by the wheel.

2.1.2 Flinging Mode

Figure 5: Flinging mode

6

 Once the balls are stored inside the basket, it lays down to load a single ball onto

the throwing arm. See figure 5. The ball is prevented from rolling down the track with a

ball release mechanism that is actuated with a servomotor located at the bottom of the

robot. In this configuration, the ball is ready to be launched. Once the release

mechanism opens, the ball will roll down the track, and the robot will perform a quick

jerking motion to rotate the body attached throwing arm to fling the ball. See figure 6.

This rotation is possible because of the large difference between the rotational inertia of

the wheels and the body. This optimization of the jerking motion and the shape of the

arm are the main focus in chapter 4.

2.2 Throwing Arm

Figure 6: iFling throwing motion with velocity components

 Originally, two types of throwing arm were considered. The first is the catapult

style, and the second is the Jai Lai style. Their first main difference is the launch

velocity. The initial velocity of the ball impart from a catapult style arm is only the

tangential velocity. On the other hand, the Jai Lai style throwing arm is capable of giving

the ball not only a tangential component but also a radial component. Refer to figure 6.

7

In short, the launch velocity of a ball coming out of the Jai Lai style arm will be higher

than that of the catapult style arm, which directly affects the distance of the throw.

 The second difference is the control input. In order to prevent the arm from

simply dragging the ball from the start of the throwing sequence to the end, the control

input must reverse at some point in the time window. This kind of inherent behavior will

certainly limit the launch velocity since part of the launching time window is dedicated

for slowing down the arm rather than accelerating the ball.

2.3 Actuator

 iFling uses two Solarbotics RM2 RC motors see figure 7 and is powered by two

9V batteries. The motors are placed in the base of the robot. Each motor is coupled with

a 40:1 gearbox located on the right and the left side of the robot. The typical stall torque

for this type of motor is around 0.00373 Nm. Adding the gear ratio and multiply it by

two (iFling has two motors) gives the total torque of around 0.3 Nm. This maximum

torque is the reference used in finding the optimal control solution.

Figure 7: Solarbotics RM2 DC motors

8

Chapter 3

System Modeling

Developing a model is always the first step in optimizing a system. The

optimization result is only effective, when the model of the system is representative. For

iFling, the system modeling can be separated into two parts. The first part is the

dynamics of the iFling and the second is the projectile motion of the ping-pong ball. In

order to simplify the model complexity and optimization strategy, a few assumptions are

made.

Figure 8: Model of iFling

φ
XiFling

YiFling

Ѳ

x

X

Y
m, J

mw , Jw , R

mb

η

L

9

3.1 Dynamics of iFling

iFling’s dynamics is similar to an inverted pendulum on a cart except the motor

input can directly control the position of the body. The center of mass of the body is

above the pivot point, which makes the system unstable. Nevertheless, it can be

stabilized with feedback control by linearizing the system about θ=0. The following is a

list of assumptions for the model of iFling

1. The ping-pong ball is assumed to stay attached to the throwing arm until it

reaches the tip of the arm.

2. No-slip constraint is assumed for the rotation of the wheel.

3. The ping-pong ball is modeled as a point particle that moves on the throwing arm.

4. When θ=0, the center of mass of the body is assumed to be directly above the

rotational axis of the wheel.

5. Rolling friction is assumed to be negligible.

Figure 8 shows the model of iFling. φ is the angle describing the wheel rotation

measured with respect to the x-axis, θ is the angle of the body measured with respect to

the y-axis, and η is the parametric variable describing the curve of the arm. The throwing

arm is attached to the body, so its angular position is also measured by θ. Thus, the

generalized coordinates, qi, are [x φ θ η]. R and c are the radius of the wheel and the ball.

m, mb, and mw are the mass of the body, the ping-pong ball and the wheel respectively.

Location of m is the center of gravity of the body, which has length, L, from the wheel

axle. J, and Jw are the rotational inertia of the body, and the wheel. In order to simplify

10

the optimization procedure, a cubic parametric function is chosen to describe the shape of

the throwing arm.

€

xa = a3η (1)

€

ya = b1η
3 + b2η

2 + b3η+ b4, (2)

where η is a scalar from 0 to p, and p is the parametric value corresponding to the arc

length of the throwing arm.

In order to make sure the throwing arm does not go through the ground during

simulation, torsion spring and damper are used to simulate the effect of a ground. The

spring and the dampers are only activated, when the arm or the ball is below certain

equilibrium. The ping-pong ball is prevented from penetrating iFling’s base by using a

similar setup as well. From figure 8, the position and velocity vectors of mw, m and mb

are

€

rw = xˆ i , (3)

€

˙ r w = ˙ x , (4)

€

r = x − L sinθ[] ˆ i + L cosθ[] ˆ j , (5)

€

˙ r = ˙ x − L ˙ θ cosθ[] ˆ i + −L ˙ θ sinθ[] ˆ j , (6)

and

11

€

rb = a3η cosθ − b1η
3 + b2η

2 + b3η + b4() sinθ + x[] ˆ i

+ a3η sinθ + b1η
3 + b2η

2 + b3η + b4() cosθ[] ˆ j ,
 (7)

€

˙ r b = a3 ˙ η cosθ − a3η ˙ θ sinθ − 3b1η
2 + 2b2η+ b3() ˙ η sinθ − b1η

3 + b2η
2 + b3η+ b4() ˙ θ cosθ + ˙ x [] ˆ i

+ a3 ˙ η sinθ + a3η ˙ θ cosθ + 3b1η
2 + 2b2η+ b3() ˙ η cosθ − b1η

3 + b2η
2 + b3η+ b4() ˙ θ sinθ[] ˆ j ,

 (8)

 For a given dynamic system, the Lagrangian can be used to derive the equation of

motions. The Lagrangian is defined as , where T is the kinetic energy and U is

the potential energy of the system. For this particular case, the T and the U are

€

T =
1
2

m ˙ r 2 + J ˙ θ 2() +
1
2

m ˙ r b
2() +

1
2

m ˙ r w
2 + Jw

˙ φ 2() (9)

€

U = mgL cosθ +
1
2
ka θ −θ 0()2

+ mbg b1η
3 + b2η

2 + b3η + b4() cosθ + a3η sinθ[] +
1
2
k η − η0()2

 (10)

where k and ka are spring constants.

€

θ0 andη0 are the equilibrium positions of the

springs and dampers. The Lagrange equation for generalized coordinate qi is

€

∂
∂t

∂L
∂ ˙ q i

⎛

⎝
⎜

⎞

⎠
⎟ −

∂L
∂qi

= Qi, i =1,2,...,n , (11)

where Qi are the generalized inputs and n is the number of generalized coordinates. For

this case the control input, u, is Qi, which acts between the body and the wheel. Rayleigh

dissipation function is used to model the dampers, whose general form is

€

D =
1
2

blk
k

n

∑ ˙ q l ˙ q k
l

n

∑ , (12)

!

L = T "U

12

and for this case it is

€

D =
1
2
b ˙ η 2 +

1
2
ba ˙ θ 2 , (13)

where b and ba are damping coefficients.

 Adding D and the constraint, the modified Lagrange equation becomes

€

∂
∂t

∂L
∂ ˙ q i

⎛

⎝
⎜

⎞

⎠
⎟ −

∂L
∂qi

+
∂D
∂ ˙ q i

− λ jaij
j

w

∑ = Qi, i =1,2,...,n , (14)

where w is the number of constraints. There is only one constraint, which is the no-slip

condition between the wheel and the ground. The constraint written in mathematical

form is

€

Rdφ + dx = 0, (15)

From the two above equations, it is clear that

€

a1φ = R and a1x =1. Then, solving λ1 from

the φ equation to obtain

€

λ1 =
u
R

+
Jw ˙ ̇ φ
R

. (16)

No slip condition was also considered for the ball and the throwing arm. It was not used

because η is not a physical length along the throwing arm. Define γ as the angular

rotation of the ball with respect to the throwing arm, then the distance travel by the ball is

cγ. The relationship between cγ and η is the arc length formula, which is

13

€

cγ =
dxa
dξ

⎛

⎝
⎜

⎞

⎠
⎟

2

+
dya
dξ

⎛

⎝
⎜

⎞

⎠
⎟

2

dξ
0

η

∫ , (17)

where ξ is the integration variable. Due to the square root, there is no explicit solution to

the integral when using the cubic parametric equation. As a result, the γ equation and the

η equation cannot be combined, and that leads to assumption number 3.

Thus, the generalized coordinates reduce from [x φ θ η] to [φ θ η]. The states of

the system are

€

x = φ ˙ φ θ ˙ θ η ˙ η []T . The set of equations describing the motion of

the ball and the iFling is in the form,

€

M x() dx
dt

= f u, x() on 0 < t < t f ,

x = x0 at t = 0
 (18)

where M is a symmetric matrix that varies with the states and the coefficient of the

throwing arm, u is the control input, and tf is the terminal time. The set of differential

equations is nonlinear and does not have an analytical solution. The coefficients a3, b1, b2,

and b3 describe the curvature of the arm shape. See appendix A.1 for the details of the

equations of motion. Given an initial condition, the above equation can be used to

simulation the system from t = 0 to t = tf.

14

3.2 Projectile Motion

Figure 9: Projectile Motion

 The derivation in this section focuses on the motion of the ball once it leaves the

throwing arm. When the ball leaves the arm, it has not only velocity in x and y directions

but also a backspin. This spin will generate lift force known as the Magnus force.

Because of the spin, its drag is also higher than that of a non-rotating sphere. Modeling

such force is complicated and requires wind tunnel data. Therefore, simplified models

are used for the simulation and optimization. The following is a list of assumptions for

the model.

6. When simulating the projectile motion, the ping-pong ball is assumed to be non-

rotating; therefore, no lift is generated in flight.

7. Furthermore, the model used in optimization computation has no drag at all.

y

x

Fl
v

 α
Fd

g

mb

15

Figure 9 shows the free body diagram of the ball traveling in the air. The sum of

forces in x and y direction are

€

mb
d2x
dt 2

= −Fd cosα − Fl sinα, (19)

€

mb
d2y
dt 2

= −Fd sinα + Fl cosα −mbg. (20)

Since the ball is assumed to generate no lift, Fl can be neglected from the above

equations. The drag of the ball is found using

€

Fd =
1
2
ρAv 2Cd , (21)

where ρ is the density of the air, A is the projected area of the ball, v is the velocity of the

ball, and Cd is the drag coefficient of the ball. Using

€

vx
v

= cosα and
vy
v

= sinα , the

governing equations can be simplified to

€

d2x
dt 2

= −
ρAvCdvx
2mb

 (22)

€

d2y
dt 2

= −
ρAvCdvy
2mb

− g , (23)

where

€

vx = ˙ x , vy = ˙ y , and v = vx
2 + vy

2 . Equations 22 and 23 are used in system

simulation.

16

In the most ideal case where drag is neglected, there is an analytical solution to

the projectile motion problem, which is

€

x = x0 + vxt and

€

y = y0 + vyt −
1
2
gt 2 . Using the

y-equation to solve for t and substituting the result into the x-equation, the formula for the

range of the throw is

€

x = vx
vy + vy

2 + 2y0g
g

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ + x0. (24)

Rename the variable x with d, and it is of the form

€

d = f x0, y0,vx, vy() . Equation 24 is

used in the optimization calculation. x0 , y0, vx, and vy are obtained using equations 7 and

8 by substituting the state values at the final time.

17

Chapter 4

Optimization

 This chapter focuses on the main problem of this paper, which is to compute an

optimal input sequence for the motors, and to determine the optimal throwing arm shape

to be used on iFling to achieve an increase in range. The optimization presented in this

paper is an iterative scheme. Using this scheme the final solution is obtained slowly from

the initial guess. The shape optimization is based on the ball’s exit condition from the

arm, which wraps around an adjoint based input optimization.

Guess Input and Throwing Arm Shape

Input Optimization

Shape Optimization

Figure 10: Overall optimization scheme

18

4.1 Input Optimization

 The iFling system is governed by a set of continuous-time state equations given in

chapter 3. The cost function J is defined to measure the trajectory of the throw,

€

J =
1
2

xTQxx + uQuu
0

t f

∫ dt +
1
2
xT t f()MTQTMx t f() − 12 dQdd (25)

where

€

Qx ≥ 0,Qu > 0,QT ≥ 0, andQd ≥ 0 . The choices of Qx, Qu, QT, and Qd represents

mathematically the objective one wants to achieve. The first two terms in the integral

influence the state and the input during the time window from 0 to tf. The third term

influences the terminal condition of the iFling system, and the fourth term influences the

distance of the throw, where d is the range of the throw. In short, what we want is to

minimize J with respect to the control sequence, u. Note by adding a negative sign in

front of the fourth term is equivalent of maximizing the distance of the throw.

 Second consider how the system change if there is a small perturbation in the

control input, u’. This small perturbation in input at every single time step causes small

perturbation x’ to the state x. Such perturbations are governed by the perturbation

equation,

€

Lx '= Bu' on 0 < t < t f ,
x'= 0 at t = 0,

 (26)

where operator

€

L = M d
dt
− A

⎛

⎝
⎜

⎞

⎠
⎟ and matrix A(t) and B are obtained from linearization of

equation 18 about the trajectory

€

x t,u,a3,b1,b2,b3() , which is obtained with a forward

19

march of the state equations The perturbation x’ and u’ also cause perturbations in the

cost function, which is

€

J'= xTQxx '+uQuu
0

t f

∫ 'dt + xT t f()MTQTMx ' t f() − dQd
∂d
∂xi

⎛

⎝
⎜

⎞

⎠
⎟ x' t f(),

i =1,2,...n
 (27)

Using the perturbed cost function, J’, one can derive the gradient

€

dJ
du

 explicitly. First,

define the weighted inner product

€

a,b = aTbdt
0

t f

∫ . Using the weighted inner product,

the adjoint identity

€

r,Lx ' = L*r, x ' + b (28)

can be derived using integration by parts, which gives

€

L* = − MT d
dt

+ AT⎛

⎝
⎜

⎞

⎠
⎟ and

€

b = rTMx'[]0
t f . The detail of the derivation is given in appendix A.2.

 Now we define the adjoint function, driven by the system states, such that

€

L*r =Qxx on 0 < t < t f ,

r =QTMx − M −1()T ∂d
dxi

⎛

⎝
⎜

⎞

⎠
⎟

T

Qdd at t = t f .
 (29)

Substitute equation 29 into the adjoint identity to obtain

€

rTBu'dt =
0

t f

∫ xTQxx 'dt + xT t f()MTQTMx ' t f() − dQd
∂d
∂xi

x' t f()
0

t f

∫ (30)

20

Then combine equation 30 and equation 27 to get

€

J'= BT r +Quu()T u'dt =
dJ
du
, u'

0

t f

∫ . (31)

The gradient of J with respect to u is given by

€

dJ
du

= BT r +Quu. (32)

This gradient can be used to update the entire input sequence at each input optimization

iteration using steepest descent or conjugate gradient. The size of the step for each

iteration is determined using Brent’s method.

4.2 Shape Optimization

 The objective of the shape optimization is to determine the coefficients, a3, b1, b2,

and b3, of the parametric equation to achieve the longest throw. a3 for the initial guess is

assumed to be positive because most athletic throwing arms curve forward in the

direction of the throw. Examples are Lacrosse stick and Jai Lai basket. The basic shape

optimization scheme is similar to the input optimization, where a gradient is needed to

maximize the distance of the throw. Since equation 24 gives an explicit relationship

between the range of the throw and the slope of the tip of the throwing arm, the gradient

can be analytically determined by taking the partial derivatives of d with respect to the

coefficients. The gradient is,

€

∇d =
∂d
∂a3

∂d
∂b1

∂d
∂b2

∂d
∂b3

⎡

⎣
⎢

⎤

⎦
⎥ . (33)

21

In short, the shape optimization tries to find out a new throwing arm shape for each

iteration, so the distance of the throw is longer than that of the previous iteration.

4.3 Algorithm

 The input optimization will find the best input for a given shape with respect to

the cost function. Then the shape optimization will find a better shape with respect to the

distance of the throw. The following is an outline of the algorithm for optimizing the

control input and the throwing arm shape,

1. Give an initial condition

2. Guess a control input and throw arm shape

3. March the state equations forward

4. March the adjoint equations backward

5. Compute the gradient given in equation 32

6. Find the step size using Brent’s method

7. Update control input, u

8. Repeat step 5 to 7 until a minimum is reached

9. Compute the gradient given in equation 33

10. Find the step size using Brent’s method

11. Update throwing arm shape

12. Repeat step 3 to step 11 until a minimum is reached

The result of the optimization is presented in chapter 5.

22

Chapter 5

Results and Discussion

 In this chapter, I will present the result of the optimization along with the

mechanical properties and initial conditions used. A simulation of the initial guess and

the optimal solution is shown and discussed in details.

Figure 11: Ball launching sequence

23

5.1 Mechanical Properties and Initial Conditions

Figure 12: Coordinate system used for finding mass properties

5.1.1 Mechanical Properties

 In order to obtain accurate mass properties, a 3D model is drawn in Solidworks.

Components with uniform density are calculated with their corresponding material

properties. Most of the parts are made of ABS plastics with a few acrylic parts.

However, certain components such as the motors, batteries, circuit board, radio receivers

and servomotors do not have uniform density and are difficult to model. Therefore, their

weights are measured separately and manually entered into the 3D model. The center of

gravity and the weight of the body are obtained using the built in Mass Properties

Calculator. The coordinate system is arranged so the x-axis is parallel to the wheel’s axis

Y

 Z

X

24

of rotation, the y-axis points up vertically, and the z-axis follows the right hand rule. See

figure 12.

The iFling uses standard size ping-pong balls. It has a radius of

€

0.02 m, weights

€

0.0027 kg . The radius of the wheel is

€

0.07 m, weights

€

0.0606 kg and the rotational

inertia is

€

1.9176 ×10−4 kgm4 . The weight of the body of the robot is

€

0.5338 kg , and its

rotational inertia about the center of mass is

€

1.976 ×10−3 kgm2 . When θ=0, the center of

mass of the body is located at

€

0.0094 m above the rotational axis of the wheel.

5.1.2 Initial Conditions

 The robot starts at rest in the lay-down position, and the ball is positioned

€

0.045 m down the throwing arm measuring from the rotational axis of the body.

5.1.3 Optimization Constraints

With this input optimization scheme, one can set many different constraints, such

as the position or velocity of the arm or the position of the ball at the terminal time and

many others. In order to simplify the optimization procedure, I used the following

constraints to obtain a reasonable solution.

1. The time window is chosen to be 0.5 s.

2. The arc length of the throwing arm is 0.3 m.

3. At t=tf the ball reaches the end of the throwing arm.

4. The applied torque cannot exceed ±0.3 Nm.

25

The terminal condition for the position of the arm was not set because it is not

possible to know before hand which position will result in the longest throw. The

following section shows the result of the optimization and simulation.

5.2 Input Sequence

 Figure 13 shows the initial guess and the optimal input solution. The two inputs

are very different, but they are both in between the assumed ± 0.3 Nm motor limit. The

desire input magnitude can be adjusted by tuning the Qu parameter. In order to throw the

ball, the control input must move the robot forward to allow the ball to roll down the arm

then backward to swing the arm. Therefore, an obvious solution to the throwing problem

would be an input that is linear with respect to time and with a negative slope. Using this

intuition, the initial guess for the input starts at 0.23 Nm and decreases linearly with time

to -0.25 Nm. It does not result in a launch condition that is close to the optimal solution.

This guess is tuned to satisfy the first optimization constraint for the purpose of

comparison with the optimal solution.

 On the other hand, the optimal solution is not a straight line, and has much more

features. Section A of the input is similar to the first portion of the initial guess, which

indicates the robot is moving forward to allow the ball to roll towards the end of the arm.

Section B is to slow down the robot to manipulate the ball to a good location before

initializing the fast rotation of the arm. Section C is the arm swing up and consists of a

drop from almost zero torque to high torque. The manipulating of the ball’s position

before launch and the high torque to rotate the body is the essence of input optimization.

The optimization takes into account the above two factors to compute the input sequence

26

to produce an optimal launch condition. If the ball’s position before the throw is not

optimized, then it can result in a short throw. In general, a larger torque is more helpful

towards the distance of the throw, which is apparent in figure 13. The magnitude of

section C of the optimal solution is larger than the throwing portion of the initial guess.

However, a high motor torque at the end can also make the ball to overshoot before the

terminal time. It is a balance between throwing distance and the terminal condition.

Figure 11 illustrates the launch sequence.

Figure 13: Result of the input optimization

5.3 Throwing Arm Shape

 The constraints for the throwing arm are the cubic function constraint and the arc

length. The arc length is set to be 0.3 m. The parametric value, p, varies to satisfy this

Section B

Section C

Section A

27

constraint. The initial guess for the coefficients, a3, b1, b2, and b3, were 0.01, 0.002, -

0.024, and 0.15. These numbers were chosen arbitrarily. Using the shape optimization

scheme, the refined coefficients were computed to be 0.0088, 0.0014, -0.0247, and

0.01493. Both the initial and the refined arm shape are shown in figure 14. Even though

all four coefficients changed, the new shape is only slightly different from the original

guess. The only noticeable change is the shape at the tip. The overall shape seems to be

more bent, which allows the ball to leave the throwing arm at a lower launch angle. After

trying many different initial guesses, the computed shape never changes drastically from

the original guess. Therefore, I believe this method is only capable of finding a refined

shape for a particular input sequence, not a complete redesign of the throwing arm.

Figure 14: Result of shape optimization

28

5.5 Simulation

 (a) (b)

 (c) (d)

Figure 15: iFling simulation using initial guess and optimal solution

 Figure 15 presents the simulation of the system from t = 0 to t = 0.5 s. Figure

15.a shows the movement and the velocity of iFling in time. The solid line is the optimal

solution and the dash line is the initial guess. Note since

€

φ is positive in the

counterclockwise direction, the forward motion corresponds to negative values in the

figure. Using the optimal solution, the iFling only travels about 0.01 m forward, which is

almost stationary, whereas the guess results in a longer displacement of 0.18m. For both

29

cases the velocities behave similarly. The robot is moving backward at the terminal time

for both cases. An interesting point is that optimal solution arrives at a much higher

backward velocity, and that indicates a more powerful throw.

 Figure 15.b shows the motion of the throwing arm. The positive direction for

angle θ is the same as φ. Therefore, when the arm swings forward, the plot will show the

angle changes from positive to negative. The transient oscillatory behavior is due to the

torsion spring and damper that are used to simulate the ground. Focusing on the optimal

solution, the arm starts at around 100 degrees and remains at rest, until t ≅ 0.29 s then it

starts to rotate forward to fling the ball. The terminal angle is about 6 degrees for the

optimal solution. The terminal tangential velocity at the tip for the optimal solution is

about two times more than the initial guess, which contributes to the longer throwing

distance.

 Figure 15.c describes the movement of the ping-pong ball on the throwing arm

and the time rate of change of η. Both simulations show the ball reaches the end of the

arm at t=tf. Looking at the solid line, the ball slowly rolls down the track until t ≅ 0.43 s.

At that time, it moves rapidly towards the end of the arm and reaches the tip at t=tf. Even

though the rate of change of η is not the physical velocity of the ball traveling down the

arm, it gives a general trend to the actual speed. It is clear from figure 15.c that the rate

of change of η at terminal time is a lot higher than the initial guess. I believe this

distinction is due to the higher motor torque in section C of figure 13. Together with the

increase in tangential velocity, and the release position, they are the main factors in the

improvement of the throwing distance.

30

 Figure 15.d displays the motion of the ping-pong ball after t > 0.5 s. The

projectile motion presented in this figure includes the pressure drag of a smooth sphere.

The effect of the drag is apparent because the trajectory is asymmetric, whereas an ideal

projectile motion has a symmetric parabolic trajectory. The launch velocity and angle for

the guess and optimal solution are 2.75 m/s and 73.9 degrees, and 6.25 m/s and 25.5

degrees respectively. The resulting ranges are 0.42 m and 2.81 m. The optimal solution

gives a significant improvement over the initial guess. This increases is mainly because

of the much higher launch speed and lower launch angle.

5.5 Discussion

 I have tried different initial conditions to see if they will converge to the same

input solution. If the adjustment is small, then I get the same solution, but if the change

is relatively larger, then the solution is different. Therefore, I believe this method is only

capable of finding a local minimum. It is expected because the derivation does not insure

a global minimum solution. Despite this disadvantage, this method is still very powerful

simply because it gives a reasonable solution to a complex problem. Even though the

results are different when the initial conditions are changed, the solutions for the input all

have similar shape and features. They all start from a positive value and decease with

time, then a non-smooth region follows next. After that, the large motor torque is used to

perform the swing up motion.

 On the other hand, the shape variation from one to another is small. The reasons

that the change is small are because the shape is limited to a cubic shape and the arc

length is limited. Despite this limitation, the improvement in throwing distance due to

31

the throwing arm change is comparable to the improvement due to new input. Therefore,

the overall improvement in throwing distance dependents on both the motor inputs and

the shape of the arm.

Because of the assumptions and simplifications made in the derivation, the

models used in optimization and simulations are ideal, so the distance of the throw shown

in simulation may seem too much for a small robot. In reality, the actual distance will be

shorter due to more drag, rolling friction, friction of the arm, motor damping, and many

other factors.

32

Chapter 6

Conclusion

iFling has gone through several design iterations, the current design iteration

focuses on the ball pick up and ball throwing capabilities. This paper gave an

introduction of the iFling program, explained the features of the robot design, derived the

equations of motion for the system, and formulated a method for finding the control input

for the motors and the shape for the throwing arm. Results of the optimization and

simulation shows a significant increase in distance and indicates the input and the shape

both played significant parts in the throwing distance. The adjoint-based calculation is

capable of finding a local optimal solution to the problem. On the other hand the shape

optimization is capable of finding a refined answer to the initial guess, not a redesign.

Nevertheless, the input optimization method is powerful because it is not restricted to

only this problem. It can be used to optimize many different systems provided the state

equations and cost functions are known.

 Even though this paper provides a theoretical solution to the problem, there are

still a lot of possibilities for improving this mathematical solution. First the iFling

dynamic model can be more refined by adding friction, and air resistance. The projectile

model can be more realistic by adding pressure drag and the effect of the rotation of the

ball. The function describing the curve can be revised by using a Legendre polynomial to

generate a more general curve, which will lead to a better optimal solution. The

33

optimization strategy can also be improved by combining the shape and input

calculations into one single optimization loop, which may reduce the time, computing

resources, and provide a true optimal solution.

Implementation of the optimized solution is an obvious next step in this project.

In order to implement the solution, one would need to model the dynamics of the motor

and approximate the control input with piecewise mathematical functions to save the

memory space of the onboard electronics. There are two ways in implementing the

solution. First option is open loop control. However, due to the un-modeled dynamics,

the open loop method required more fine-tuning to make it to work. A second way

would be to implement a feedback control on top of the open loop control to force iFling

to follow the computed trajectory, which is a lot more difficult. That being said I believe

a more feasible and easier way would be to redesign the system to make it lighter, so the

weight to torque ratio would be higher. Then use on/off control and manually adjust the

run time for each segment to achieve the throw.

34

Appendix

A.1

Equations of Motion for iFling

€

M x() dx
dt

= f u, x() on 0 < t < t f ,

x = x0 at t = 0

€

x = φ ˙ φ θ ˙ θ η ˙ η []T

M(x)=[1, 0, 0, 0, 0, 0;

 0, M(2,2), 0, M(2,4), 0, M(2,6);

 0, 0, 1, 0, 0, 0;

 0, M(4,2), 0, M(4,4), 0, M(4,6);

 0, 0, 0, 0, 1, 0;

 0, M(6,2), 0, M(6,4), 0, M(6,6)];

M(2,2)=Jw + R^2*m + R^2*mb + R^2*mw;

M(2,4)=R*(b4*mb*cos(X(3)) + L*m*cos(X(3)) + b3*X(5)*mb*cos(X(3)) +

a3*X(5)*mb*sin(X(3)) + b1*X(5)^3*mb*cos(X(3)) + b2*X(5)^2*mb*cos(X(3)));

35

M(2,6)=R*mb*(3*b1*sin(X(3))*X(5)^2 + 2*b2*sin(X(3))*X(5) - a3*cos(X(3)) +

b3*sin(X(3)));

M(4,2)=R*(b4*mb*cos(X(3)) + L*m*cos(X(3)) + b3*X(5)*mb*cos(X(3)) +

a3*X(5)*mb*sin(X(3)) + b1*X(5)^3*mb*cos(X(3)) + b2*X(5)^2*mb*cos(X(3)));

M(4,4)=m*L^2 + mb*a3^2*X(5)^2 + mb*b1^2*X(5)^6 + 2*mb*b1*b2*X(5)^5 +

2*mb*b1*b3*X(5)^4 + 2*mb*b1*b4*X(5)^3 + mb*b2^2*X(5)^4 +

2*mb*b2*b3*X(5)^3 + 2*mb*b2*b4*X(5)^2 + mb*b3^2*X(5)^2 + 2*mb*b3*b4*X(5)

+ mb*b4^2 + J;

M(4,6)=mb*(- a3*b4 + 2*a3*b1*X(5)^3 + a3*b2*X(5)^2);

M(6,2)=R*mb*(3*b1*sin(X(3))*X(5)^2 + 2*b2*sin(X(3))*X(5) - a3*cos(X(3)) +

b3*sin(X(3)));

M(6,4)=mb*(- a3*b4+ 2*a3*b1*X(5)^3 + a3*b2*X(5)^2);

M(6,6)=mb*(a3^2 + 9*b1^2*X(5)^4 + 12*b1*b2*X(5)^3 + 6*b1*b3*X(5)^2 +

4*b2^2*X(5)^2 + 4*b2*b3*X(5) + b3^2);

f(1,1)=X(2);

36

f(2,1)=L*R*X(4)^2*m*sin(X(3)) - u(i) - 2*R*b2*X(6)^2*mb*sin(X(3)) +

R*b4*X(4)^2*mb*sin(X(3)) - 2*R*b3*X(6)*X(4)*mb*cos(X(3)) -

2*R*a3*X(6)*X(4)*mb*sin(X(3)) - R*a3*X(4)^2*X(5)*mb*cos(X(3)) -

6*R*b1*X(6)^2*X(5)*mb*sin(X(3)) + R*b3*X(4)^2*X(5)*mb*sin(X(3)) +

R*b1*X(4)^2*X(5)^3*mb*sin(X(3)) + R*b2*X(4)^2*X(5)^2*mb*sin(X(3)) -

4*R*b2*X(6)*X(4)*X(5)*mb*cos(X(3)) - 6*R*b1*X(6)*X(4)*X(5)^2*mb*cos(X(3));

f(3,1)=X(4);

f(4,1)=- 2*X(4)*mb*a3^2*X(6)*X(5) - 6*mb*a3*b1*X(6)^2*X(5)^2 -

2*mb*a3*b2*X(6)^2*X(5) - g*mb*cos(X(3))*a3*X(5) -

6*X(4)*mb*b1^2*X(6)*X(5)^5 - 10*X(4)*mb*b1*b2*X(6)*X(5)^4 -

8*X(4)*mb*b1*b3*X(6)*X(5)^3 - 6*b4*X(4)*mb*b1*X(6)*X(5)^2 +

g*mb*sin(X(3))*b1*X(5)^3 - 4*X(4)*mb*b2^2*X(6)*X(5)^3 -

6*X(4)*mb*b2*b3*X(6)*X(5)^2 - 4*b4*X(4)*mb*b2*X(6)*X(5) +

g*mb*sin(X(3))*b2*X(5)^2 - 2*X(4)*mb*b3^2*X(6)*X(5) - 2*b4*X(4)*mb*b3*X(6) +

g*mb*sin(X(3))*b3*X(5) + u(i) - ba*X(4) - ka*X(3) + ka*th0 + L*g*m*sin(X(3)) +

b4*g*mb*sin(X(3));

f(5,1)=X(6);

f(6,1)=mb*a3^2*X(4)^2*X(5) - g*mb*sin(X(3))*a3 - 18*mb*b1^2*X(6)^2*X(5)^3 +

3*mb*b1^2*X(4)^2*X(5)^5 - 18*mb*b1*b2*X(6)^2*X(5)^2 +

37

5*mb*b1*b2*X(4)^2*X(5)^4 - 6*mb*b1*b3*X(6)^2*X(5) +

4*mb*b1*b3*X(4)^2*X(5)^3 + 3*b4*mb*b1*X(4)^2*X(5)^2 -

3*g*mb*cos(X(3))*b1*X(5)^2 - 4*mb*b2^2*X(6)^2*X(5) +

2*mb*b2^2*X(4)^2*X(5)^3 - 2*mb*b2*b3*X(6)^2 + 3*mb*b2*b3*X(4)^2*X(5)^2 +

2*b4*mb*b2*X(4)^2*X(5) - 2*g*mb*cos(X(3))*b2*X(5) + mb*b3^2*X(4)^2*X(5) +

b4*mb*b3*X(4)^2 - g*mb*cos(X(3))*b3 - b*X(6) - k*X(5) + k*et0;

38

A.2

€

r,Lx ' = L*r, x ' + b

€

r,Lx ' = rT M dx '
dt

− Ax'
⎛

⎝
⎜

⎞

⎠
⎟

0

t f

∫ dt integrating by parts

= rTM dx'
dt

− rT Ax'
0

t f

∫ dt u = rT dv = M dx '
dt

= −
drT

dt
Mx'−rT Ax'

0

t f

∫ dt + rTMx '
0

t f du =
drT

dt
v = Mx'

= −MT dr
dt
− AT r

⎛

⎝
⎜

⎞

⎠
⎟
T

x'
0

t f

∫ dt + rTMx'
0

t f

= L*r, x' + b,

where

L* = − MT d
dt

+ AT⎛

⎝
⎜

⎞

⎠
⎟

b = rTMx'
0

t f

39

Bibliography

[1] Bewley, T.R., Numerical Renaissance: Simulation, Optimization, and Control.
Renaissance Press, San Diego, CA, 2009
http://numerical-renaissance.com/Numerical_Renaissance.html

[2] Brody, Howard, Rodney Cross, and Crawford Lindsey. The Physics and
Technology of Tennis. Solana Beach, Calif.: Racquet Tech Pub., 2002.

[3] Bryson, Arthur E., and Yu-Chi Ho. Applied Optimal Control: Optimization,
Estimation, and Control. Levittown, PA. Taylor & Francis, 1975

[4] Cavender, Andrew. “iFling: Introduction, Equations of Motion, and Assorted
Stuff”, University of California, San Diego 2010

[5] Greiner, Walter. Classical Mechanics: Systems of Particles and Hamiltonian
Dynamics. New York: Springer, 2003

[6] How, Deyst, Aerospace Dynamics, Spring 2003. (Massachusetts Institute of
Technology: MIT OpenCouseWare), http://ocw.mit.edu (Accessed May 1, 2010).
License: Creative Commons BY-NC-SA

[7] Landau, L. D., and E. M. Lifshitz. Mechanics. Oxford: Butterworth-Heinemann,
1999.

	

