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THE ROLE OF DEEP INELASTIC PROCESSES 
IN NUCLEAR PHYSICS: 

EXPERIMENTAL AND THEORETICAL ASPECTS OF DEEP INELASTIC 
REACTIONS 

L. G. M o r e t t o 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

ABSTRACT 

The collective mrdes excited in deep-inelastic reactions and 

the i r natural hierarchy provided by the i r character is t ic relaxation 

times i s described. The relaxation of the mass asymmetry mode is 

discussed in terms of a diffusion process. Charge dis t r ibut ions and 

angular distr ibutions as a function of Z calculated with t h i s model 

are in good agreement with experimental data. This diffusion model 

also t rea t s the t ransfer of energy and angular momentum in terms of 

p a r t i c l e transfer , and i s successfully compared with experimental y-ray 

mult ip l ic i t ies as a function of both Q- tralue and mass asymmetry. The 

angular momentum transfer i s again considered in connection with the 

sequential f ission of heavy, deep-inelastic fragments and the excitation 

of col lect ive modes in the exit channel i s considered. The role of the 

giant El mode in the equilibration of the neutron-to-proton ra t io is 

discussed. 
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I. INTRODUCTION 

The spectacular evolution of a nucleus into two new nuclei as 

discovered in fission, faced physicists with a large scale nuclear motion 

that was hardly matched by any well understood collective mode, and 

seemed to defy any attempt for a microscopic explanation. As the shell 

model and nuclear structure fluorished under a steady flow of spectro-

scopical data, nuclear fission for a long time remained a separate and 

stunted branch of nuclear physics. It was really a "vox clamantis in 

deserto" professing an altogether new perspective and phenomenology 

for nuclear physics. 

Strutinski showed how to calculate the potential energy in 

collective space, but the fission process was to remain as mysterious 

as it was tantalizing. No matter how much one probed the compound 

nucleus, forming it with a variety of energies and angular momenta, 

not to speak of mass and charge, it would undergo fission, selecting 

its own collective paths in a way well beyond the view of the experi­

mentalist. 

What was clearly needed was a way to manipulate the initial 

conditions more or less precisely and yet flexibly to test the individual 

degrees of freedom under well defined conditions, possibly one by one. 

In fission this was never possible. At length, it occurred to the 

people of fission persuasion that heavy ions, possibly very heavy ions, 

provided the clue to the solution. The recipe: put together two nuclei 

with various kinetic energy, mass, charge, neutron-to-proton ratio, 

etc., and see what happens. 

The spectacular phenomenology that has sprung forth is now well 
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documented in hundreds of papers and several review articles. Its 
popularity has been confirmed (if it ever needed to be) by the large 
investments in heavy-ion facilities made by the international physics 
community. 

Yet the traditional nuclear physics and the heavy ion phenomenology 
are not completely integrated. The language is still very different 
and, to some, the physics may appear almost unrelated. It may now be 
possible to dispel such worries. The phenomenological and macroscopic 
description of deep-inelastic processes reveals only the surface of a 
large body of microscopic features * But how do the microscopic degrees 
of freedom, so dear to nuclear structure, conspire to create the stupendous 
collective phenomena observed in heavy-ion reactions? This is the 
fundamental quest in heavy-ion studies and the essence of the many-
body problem. It may also become the final and most ambitious goal 
in nuclear structure. At this point the title of this lecture becomes 
justified. The deep-inelastic process may well become, if it is not 
already, the most versatile workbench for the study of the many-body 
problem. 

In what follows we want to briefly illustrate the salient features 
of deep-inelastic collisions and point out the most relevant microscopic 
implications. Rather than striving for completeness, we shall try to 
present those aspects which have particularly attracted the attention of 
our group both experimentally and theoretically. After a schematic 
description of the relevant degrees of freedom, we shall concentrate 
on attempts to undei'stand the Z distributions and angular distributions 
as a function of Z in terms of a diffusion model. This approach will 
guide us towards the problem of angular momentum and energy transfer and 
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the one-body aspects of these processes. The problem of angular 
momentum transfer will be again considered in the study of sequential 
fission where the statistical excitation of collective modes in the 
exit channel will be suggested. Finally, we shall consider the effect 
of the giant El mode on the equilibrium neutron-to-proton ratio of 
deep-inelastic fragments. 

II. DEGREES OF FREEDOM EXCITED IN DEEP-INELASTIC PROCESSES 
AND THEIR RELAXATION TIMES 

Because heavy-ion reactions involve a broad range of interaction 
times, it is useful to associate a characteristic time with the evolution 
of each excited collective mode, namely the relaxation time. Estimates 
of these relaxation times provides a natural hierarchy for categorizing 
the various collective degrees of freedom. The exercise obtained in 
estimating these relaxation times is also very effective in acquainting 
one with the landscape provided by heavy-ion reactions. Let us first 
list the degrees of freedom and try to estimate the relaxation times. 
The most prominent modes to date include the relaxation of the 

1) Relative motion 

2) Neutron-to-proton ratio 

3) Rotational degrees of freedom 

4) Mass asymmetry. 

a) The relaxation of the relative motion degree of freedom 
and the energy thermalization 

Although a wide range of Q-values are observed in heavy-ion 

reactions, extending from zero to nearly complete relaxation, the strong 

energy damping is so prominent that i t has led to the labelling of these 
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reactions as "deep-inelastic" processes. In several cases when the 
ratio of the center-of-mass kinetic energy to the Coulomb barrier, E/B, 
is larger than 1.5, interesting patterns are seen in the cross section 
plotted as contour lines in the total kinetic energy-angle plane (see 
Fig. 1). The pattern can be related to the deflection function if one 
can relate the energy loss with angular displacement from quasi-elastic 
peaks. If one assumes that the system rotates with angular velocity 

- ^ a) 
V'o" 

and that the centroid of the quasi-elastic peak decays exponentially 
with time, one obtains a relaxation time given by 

E a) L <ECe) - E„ U T c = JLlifaj—p "° M (2) 

where 8 is the grazing angle, 8 is the angle of observation, and E(8) 
is the centroid of the kinetic energy at that angle. For a typical system 
one obtains T E a 3.0 x 10" 2 2 sec which is very short time indeed and is 
barely larger than a nucleonic period. For E/B ratios smaller than 1.5, 
the cross section patterns in the kinetic energy-angle plane are more 
complex, and depend dramatically upon the mass asymmetry (Fig. 2). 
However t the mean kinetic energies, for angles far removed from grazing 
are well below the Coulomb energies of two touching spheres (Fig. 3). 
One may question where the kinetic energy goes. It is remarkable that, 
for the most part, the missing kinetic energy is found as fragment 

excitation energy and the two fragments appear to be in thermal equilib-
7 8 7 

rium. ' Figure 4 shows some results obtained in our study of the 
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reaction 340 MeV Ar and Ag. The simultaneous detection of both 

fragments together with the measurement of both kinetic energies, both 

angles and the Z of one fragment enables one to reconstruct the average 

kinematics and deduce the pre-evaporation fragment masses as well as the 

mean number of neutrons emitted by each fragment. The results of such 

an analysis are consistent with an isothermal sharing of the excitation 

energy. 

The thermalization of kinetic energy is substantial even at 

high bombarding energies. In an experiment, 6^Cu was bombarded with 2 0Ne 

at 158, 252 and 343 MeV. The coincident fragments were identified in 

Z and their kinetic energy measured. The missing charge near symmetric 

spli t t ing could then be determined as a function of total exit channel 

kinetic energy (Fig. 5a). The missing charge dramatically increases 

with bombarding energy, and depends linearly upon the excitation energy 

which can be estimated from kinematics (Fig. 5b). The slope of the line 

corresponds to about 25 MeV/charge. Since the total mass loss is about 

twice the evaporated charge, one obtains an average energy loss for 

particles of ~12.5 MeV, consistent with a simple estimate from 

evaporation. This indicates that even at the highest bombarding energies 

the near symmetric fragments are very close to complete thermalization. 

Recent results based upon the direct measurement of the emitted neutrons 

shows that this thermal equilibrium between fragments is established 
9 10 for a broad range of Q values. ' 

b) The neutron-to-proton ratio 

When two nuclei having different neutron-to-proton ratios come in 

contact, i t is expected that their neutron-to-proton ratio will change 

so that the potential energy of the two touching nuclei is minimized. 



11-13 This has been seen in several instances. Even more interesting 
is the observation (see Fig. 6) that for a given fragment Z the isotopic 
distribution changes as one moves in angle from the quasi-elastic to the 

3 
deep-inelastic region. In the quasi-elastic region the neutron-to-
proton ratio is correlated with that of the projectile while in the 
relaxed region the ratio is more typical of the equilibrated system. 
Using the same method as above, one estimates a relaxation time of 
TN/Z ~ **' X 1 ° " 2 Z s e c » e v e n faster t n a n t n e relaxation of the kinetic 
energy. 

c) The rotational degrees of freedom 

As two nuclei approach one another, the angular momentum is exclu­
sively concentrated in orbital motion. During the interaction, the two 
nuclei can start spinning as angular momentum is transferred from orbital 
to .intrinsic rotation. A secular equilibrium is reached when the angular 
velocities of the orbital and intrinsic motion are matched. At this point 
the system is said to be rotating rigidly. Rigid rotation implies a 
definite partition of angular momentum between orbital and intrinsic 
motion. Intrinsic angular momentum can be inferred from the Y-ray 
multiplicity associated with deep;-inelastic collisions. In the reaction 
n*sAg + 175 MeV ^Ne (see Fig. 7) the rigid rotation limit is attained 
at Sfgi. •* 90°Awhile at more forward angles rigid rotation is not observed. 
Assuming'that the events at 90° correspond to trajectories which have 
orbited past 0°, one obtains an upper limit for the angular momentum 

-22 
relaxation time, T. = 15.0 * 10 sec. 
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d) The mass asymmetry 

A great variety• * of mass or charge distributions have been 

observed in deep-ineiastic reactions — from extremely narrow ones for 

ratios of E/B < 1.5, to very broad ones for ratios of E/B > 1.5 (see 

Fig. 8). As the interaction time increases, the particle exchange also 

increases, leading to mass or charge distributions which are progressively 

broader. Even at fixed bombarding energy the breadth of the mass distri-
17 bution is seen to vary with angle. From the angular dependence of 

the mass distribution breadth one can infer the relaxation time: 

T a 60 xio" sec, by far the largest observed so far. It is indeed 

the length of this relaxation time, slightly longer than the typical 

interaction times, that has allowed a detailed study of the equilibration 

of the mass asymmetry degree of freedom and has led to the formulation 

of diffusion models. 

III. THE TIME EVOLUTION OF THE MASS ASYMMETRY MODE 

IN TERMS OF DIFFUSION THEORIES 

The varied pattern of equilibrium and nonequilibrium features 

characteristic of heavy ion reactions prompted the suggestion that a 

diffusive regime should be prevailing at least for the slowest collective 
18-20 modes. •- In other words, it was expected that a slow collective mode 

like the mass asymmetry would evolve in a Markovian fashion toward 

equilibrium by maintaining a strong coupling to the heat bath provided 

by all the other degrees of freedom. The applicability of the Master 

equation and of the Fokker Planck equation to the time evolution of the 

various collective modes has been discussed in detail without a clear-cut 

conclusion. However, the success of their application to a great variety 
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of features in heavy-ion reactions is undoubtable. Therefore, we shall 
try to illustrate some of their applications to the analysis of the Z 
distributions, angular distributions, and angular momentum transfer. 

If we assume that the intermediate complex has a shape close to 
that of two touching fragments, the asymmetry of the system can be 
characterized by either the mass or the charge of one of the two fragments. 
We further assume that the time- evolution along the asymmetry coordinate 
is diffusive in nature and describable in terms of the Master Equation: 

i(Z,t) = y"dZ'[A(Z,Z'H(Z',t) - A(Z',Z).|>(Z,t)] (3) 

where <f>(Z,t) and 4>(Z,t) are the populations of the configurations 
characterized by the atomic number Z of one of the fragments and their 
time derivative at time t; and A(Z,Z') and A(Z',Z) are the macroscopic 
transition probabilities. 

If in Bq. (3) one writes V = Z+h and all the quantities are 
expanded about Z in powers of h, one obtains to low order: 

•CZ,t) = - — M l +%^-[ya« (4) 

which is the well-known Fokker-Planck equation. The quantities y : and 
u 2 in Eq. (4) are the first and second moment of the transition 
probabilities 

W t = /M(Z,h)dh ; u 2 = /h2A(Z,h)dh . (5) 

The Fokker-Planck equation has simple analytical solutions when V .̂Vij 

are constants and for the in i t ia l condition <(>(Z,0) • 6(Z-ZQ): 

• CZ.t) = C2 1 ru 2 t ) ^exp { - [Z - (Z L +u 1 t ) J 2 / 2u 2 t } . (6) 
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Notice that the centroid of the Gaussian moves with velocity u x which can 
be related to the driving force F = -V2 and to the friction coefficient 
K by the relation: K = UjF. 

When the force is harmonic, 

V a £ ( Z - Z l * a % ch 2 , z 2 synr * ' 

an analytic solution is also available 

k T / 2ct\i"^ ( c[h-h exp-ct /K]) 
• (h.t) - c* [ZsTfl -exp - £±U x exp { 5 I 

V K / J ( 2T(1 -exp-2ct/K) J 

(7) 

where we have made use of the Einstein relation Vj/u2 <= -V /̂ZT and T is 
the temperature. From general phase space considerations one can consider 
the following ansatz for the transition probabilities. 

Kfp 
A(Z,Z') = X(Z,Z')p z = ^ g -

(P Z P Z ,P 

where X(Z,Z') is the microscopic transition probability, p z is the final 

state density, K is a particle flux, and f is the window area between 

the two fragments. This can be rewritten as 

A(Z,h) = Kfexp(-V zh/2T) . (8) 

The* Fokker-Planck coefficients can then be calculated as 
Kfv: 

Uj = -2ief sinh VZ/2T <* 

u = 2xf cosh V'/2T « 2Kf 
2 <£ 

0) 

which for large T satisfies the Einstein relation. Such an ansatz 
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implies for the friction coefficient: K - T/icf. 

In Eq. (9), the quantity vcf can be considered a form factor for 

the transition probability, which should depend upon the overlap between 

the two fragments. If one takes the idea of a particle transfer 

seriously, i t is possible to write such a quantity, which is a particle 
21 transfer rate, as suggested by Randrup 

K£ J ndo = 2Trn0Rb i|»(S) (10) 

where n is the particle flux in nuclear matter at saturation density, 

R = C ^ / (CJ+C2) is a reduced radius expressed in terms of the central 

radii of the two fragments, b is the skin thickness, and \ji(̂ ) is a 

universal function depending upon the separation between the sharp 

surface of the two fragments in units of the surface thickness. This 

approach neatly factors out the geometrical features of the problem. 

In general, the potential energy of the intermediate complex as 

a function of Z can be written as 

vcz,A) ;- V L D C Z ) + v L D ( z T - z ) + v p r o x ( Z , < D • v C o u l + v r o t (ID 

where i. is the total angular momentum, Vy* represents the liquid drop 
energies of the two fragments, and V" is the nuclear interaction or 

°̂  prox 
proximity energy. 

the total potentxal V depends on the fissionability of the 
system x, on 1 and on the distance between centers D. At low values 
of all these parameters, V monotdnically increases from Z=0 to Z 
whore it reaches a maximum. As x, I, and D increase, the second 
derivative &t"Z__ goes through zero and changes sign; thus for large 
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values o£ these parameters, V initially increases with Z, it reaches a 
maximum at some intermediate value of Z, it then decreases until it 
reaches a minimum at Z_.„. 

sym 
The driving force which arises from this potential depends dramat­

ically on the entrance channel asymmetry, as well as on x, (L, D. It may 
either drive the system towards symmetry or towards extreme asymmetries. 
For a reaction like 620 MeV Kr+Au, the driving force is in the direction 17 of symmetry most of the time. The potential energies for such a system 
are plotted in Fig. 9 as a function of the Z of one of the fragments for 
various angular momenta. The. Master Equation can be solved to obtain 
the probability distribution along the main asymmetry coordinate as a 
function of time. The results of such a calculation can be seen in 
Fig. 10 for the potential energies shown in Fig. 9. The one-body 
friction has been used with moderate success to evaluate the dynamical 
aspects of the reaction. From it an average interaction time can by 
obtained as well as an average window to be used in the diffusion calcu­
lation. With these quantities one can then solve either the Fokker-Planck 
or the Master Equation to obtain the charge and angular distributions. 

23 197 
Tlie results of a calculation of the latter type for the reaction Au 

1 ftl R 6 
and Ta + Kr are shown in Fig. 11 and 12. It is rewarding to notice 
that not only are the Z distributions reproduced with remarkable accuracy, 
but also the angular distributions associated with individual asymmetries. 
The latter fit is perhaps the most demanding of the theory. It can be 
obtained only if the A dependence of the interaction times and of the 
diffusion coefficient are accurately predicted. Any theory will find it 
relatively easy to fit the Z distribution but will have to prove its 
soundness in fitting the angular distribution as a function of Z. 
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IV. THE RELAXATION OF ROTATIONAL DEGREES OF FREEDOM 

Encouraged by this success we can try to study, a problem which is 

intimately related, namely the dependence of the angular momentum 
24 transfer upon Q value and mass asymmetry. The total kinetic energy 

can be written as 

L o u l 2p(Z) d2(Z) 

where a , is the orbital angular momentum in the exit channel, y is the 

reduced mass, d is the distance of the two fragments at scission, and 

Z is the atomic number of one of the two fragments. It follows that the 

above problem is equivalent to drawing the lines of constant entrance 

channel angular momentum in the plane of the total kinetic energy and of 

the fragment atomic number. Empirical precriptions suggesting that such 

lines are horizontal lines parallel to the Z axis" appear so dangerous 

that a deeper study is warranted. 

In the limit of infinite radial friction (the relevance of which is 

discussed in a later section of this lecture), there are two limiting 

patterns these lines should display, corresponding to the two extreme 

regimes associated With the rotational degrees of freedom of the inter­

mediate complex. In the first limiting case the reaction occurs with 

no transfer of angular momentum from orbital motion to intrinsic spin. 

In this case, the angular momentum of relative motion as a function of Z, 

Jlrel(Z,Jl) is a constant independent of Z and equal to &. The curves 

in Fig. 13a show examples for this case assuming the shape of the complex 

to be two touching spheres. 
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In the second limiting case the complex is rotating as a rigid 
body at the time of scission, regardless of the impact parameter (A-wave), 
In this case, the relative angular momentum is Z-dependent, and given by 

y Z d Z KelV,IL) = 2
 L A (12b) 

r e i y zd^ + I(Z) + ICZT-Z) 

where I (Z) is the moment of inertia of a fragment with charge Z about 
its own axis, and Z„ is the total charge in the composite system. This 
expression can be substituted in Eq. (12a) to calculate the lines of 
constant A for this case. The curves in Fig. 13b show examples of this 
behavior for the same A-waves as for the previous case. 

These two cases may be considered as the regimes prevailing at 
short and long interaction times, respectively. For short interaction 
times, as in nearly grazing trajectories, the first mechanism is expected 
to be relevant for Z's close to the projectile. If angular momentum 
transfer (from orbital to intrinsic spin) is mediated by nucleon exchange 
between the reaction partners, the amount of A-transfer must be a function 
of the number of nucleon exchanges, which is directly related to the 
interaction time. Even though the average lifetime of the complex may 
be short, the fragments with Z's far removed from the projectile are 
associated with systems which have survived the longest. Thus, one 
would expect the A-transfer for that particle asymmetry to be very large. 
Qualitatively, one would expect the correct curve for near grazing 
A-waves tc look like the dotted curve in Fig. 13c. For A-waves 
associated with longer interaction times, one would expect the A-transfer 
to be almost complete, even for Z's near the projectile, since many 
nuclear exchanges will have occurred during the time of interaction, 
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although the net exchange may be small. Therefore, one would expect 

the qurves to look like those in Fig. 13b. A more reliable conclusion 

on the qualitative and quantitative aspects of this problem can be 

obtained from a model calculation. 

Consistent with experiment, it is assumed that the radial 

kinetic energy is dissipated immediately at the interaction radius. 

(For the lowest Jl-waves, the interaction times appear to be long compared 

to the relaxation time of the radial kinetic energy, and for the highest 

£-waves, even though the interaction times are short, very little of the 

kinetic energy is in the radial coordinate). The analysis is restricted 

to a system of two spheres separated by an ^-dependent distance, d(&), 

dynamically determined as described further on in the text. We need to 

calculate how the orbital angular momentum 0L--,) is transferred into 

the spins of the nuclei (I., I 7) and the functional dependence of I 
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and 1 2 on the asymmetry of the complex (Z). This calculation may be 

performed in two steps: 

1) The complex, initially at asymmetry Z , is assumed to live at 

time t and to decay with asymmetry Z. The average rate of change of 

the charge of nucleus 1 is Z. = (Z-Zp)/t. Since the charge-to-mass 

ratio has been shown experimentally to equilibrate on a much faster 

time scale than the charge-asymmetry mode, one may write 

Aj = (Z-Zp)a/t (13) 

where A, is the mass of nucleus 1 and a is the A/Z ratio for the composite 

system. The average rate of nucleon transfer from one nucleus to the 

other is given by n o , where n is the bulk flux of nuclear matter and 

o is the effective window between the nuclei. By forcing the system 

to arrive at asymmetry Z at time t, we impose an asymmetry on the 

right (r-to) and left (r2i) nucleon transfer rates, which can be written as 

r12 = no - * k l > 
(14) 

r21 = no + ^ A 1 * 

Knowing these transfer rates, we can write the following system of coupled 

differential equations for the spins and the orbital angular momenta: 

*i = ; di[ ri2 di c° -*i> + r z i d 2 ^ -e 2)] / * 
- •• . (15) , . 

h " d 2 t T l A » " Ql> + r 21 d 2^ " °2>] / n 

. • • • 
*rel = " ^ l + h^ 

where d, and d>,, are the distances of the nuclear centers from the window 
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and 0, 9,, 9, are the rotational frequencies for the orbital motion, 
spin 1 and spin 2, respectively. By integrating Bqs. (15) and (13), 
subject to the proper initial conditions, we arrive at values for 
I^Z.Jljt) and I2(Z,A,t). 

2) The functions I 1(Z,£), I2(2,A) are obtained by integrating out 
the time dependence. The average lifetime of the complex for a given 
fc-wave is approximated as the time necessary for the dynamical system 
with no mass transfer to return to the strong absorption radius under 
the influence of the Coulomb and the Proximity potentials and subject to 
Proximity friction. A Gaussian lifetime distribution, Tr(t,Jl)> about this 
average value is used with a variance given by a 2 (A) = 1.5 T ( £ ) . The 
quantity d(Jl) [mentioned earlier] is the average value of the distance 
between centers along the trajectory using the Proximity Flux function 
ty(r) for the probability weight function. It is also necessary to weight 
the I. (Z,£,t) by the probability for forming the system Z at time t. 
This function, (|>(Z,t), can be obtained by solving a Master Equation or 
an associated Fokker-Planck equation. 

Figure 14a shows the predictions of the model of the system 1156 MeV 
Xe + Au. Each pair of adjacent lines brackets 5% of the reaction 

cross section. The qualitative behavior predicted above is now very 
apparent. Figure 14b shows the upper portion of Fig. 14a with contours 
of constant cross section (as calculated by the Fokker-Planck equation) 
drawn in. The horizontal lines divide the data into ten bins, 30 MeV wide. 
(Only every other line is shown for ease of viewing.) The lines of 
constant i. calculated by the model are chosen to coincide with the 
parallel lines at the Z of the projectile. Figure 15 is a plot of the 
ratio of the variance predicted by the present model and the variance 
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derived from the parallel cuts. Note the large difference for the first 
few bins. It is exactly in this energy region that a previously mentioned 
discrepancy between the experimental and theoretical (one-body theory) 
energy loss per particle was found. The empirical analyses seemed to 
indicate that the experimental energy loss per particle, calculated as 

r<4 • a i 
« - - ^ — — ( l f i ) 

was between two and three times larger than that expected from a one-body 
dissipation mechanism. If the empirical variances are in error by as 
much as indicated by the present work, the discrepancy between theory 
and experiment disappears. 

This model, which allows one to calculate the Z and Q value dependence 
of the intrinsic angular momentum, can be used to analyze the experimental 

2fi 27 
y-ray multiplicities. ' All that is needed is a transformation from 

angular momentum to y-xay multiplicity. The transformation from fragment 

spin to y-ray multiplicity is based upon the assumption that most of the 

fragment angular momentum is removed by stretched E2 decay. More 

specifically we use the following transformation: 

< \(\\) > + <hCW > ''''" 2 N y " 2 a ) C 1 7 ) 

where Ij and I 2 are the fragment spins, M is the y-ray multiplicity, 
and a is the mean number of statistical yrays emitted by each fragment. 
Compound nucleus studies with heavy-ion reactions indicate that a a 2-3.5 

28 depending upon the nucleus. Because of this uncertainty, caution must 
be exercised in comparing the absolute values of the measured and 
calculated multiplicities. 
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The kinetic energy dependence of the y-ray multiplicities will be 
considered first. In Fig. 16 the Y'^ay multiplicity My associated with 
both fragments in the reactions Au, Ho, Ag + 618 MeV Kr is plotted as 
a function of the total kinetic energy of each pair. Both in the experi­
ment and in the theory, the yray multiplicities are integrated over all 
the exit channel asymmetries. The number of statistical y-rays per 
fragment is taken to be three. 

The plateau in the experimental multiplicities and the maximum in the 
calculated multiplicities corresponds to a regime very close to rigid 
rotation. The theoretical drop at lower kinetic energies is due to the 
effect of the Coulomb energy (which in the model is taken to be that of 
two touching spheres) and the fact that lower angular momenta, in the 
limit of rigidly rotating touching spheres, are associated with lower 
kinetic energies. The experiment does not show a drop in multiplicity 
as large as the theory does because the exit channel configuration is not 
constrained to that of two touching spheres. Thus the deep-inelastic 
component is spread over an energy range extending well below the Coulomb 
barrier. .Fur thermore, fluctuations in shape may destroy the simple 
correlation between kinetic energy and angular momentum predicted by the 
model at>these low energies. 

"<The second aspect to be analyzed is the Z-dependence of My in the 
quasi-elastic region; Examples of data are shown in Fig. 7 and 17. 
Calculations for some of these cases are shown in Fig. 19. The charac­
teristic V-shaped pattern is very nicely reproduced by the calculations. 
The qualitative: explanation of this pattern is again rather simple. 
Fragments close in Z to the projectile and with substantial kinetic 
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energy on the average have exchanged fewer nucleons than fragments 
farther removed in Z from the projectile. Thus less angular momentum 
is transferred to the former than to the latter fragments, giving rise 
to the rapid increase of the y-Tay multiplicity as one moves away from 
the projectile in either direction. This good agreement is consistent 
with the agreement observed between experiment end theory in Fig. 16 at 
the highest kinetic energies. From both of these figures one is tempted 
to conclude that particle exchange is sufficient to quantitatively 
explain the dependence of the angular momentum transfer upon kinetic 
energy loss, without invoking the excitation of giant collective modes. 
Apparently the same one-body theory that reproduces both the Z distributions 
and the angular distributions versus Z so satisfactorily, also handles the 
energy and angular momentum transfer more than adequately. 

The final aspect to be considered is the Z dependence of the y-ray 
multiplicity in the deep-inelastic region. Examples of data are shown in 
Fig. 18 and of calculations are given in Fig. 19. Again, the experimental 
data are, reproduced quite well. It must be emphasized that in this 
energy region the calculation predicts near rigid rotation throughout 
the Z range. Yet the rise of NL with decreasing Z, commonly considered 
a fingerprint of rigid rotation is conspicuously absent. The reason for 
this behavior is to be found in the angular momentum fractionation along 
the mass asymmetry coordinate as first inferred elsewhere. The main 
cause for angular momentum fractionation is the interaction time 
dependence upon A. The high i.-waves are characterized by a short 
interaction time and cannot spread too far away from the entrance channel 
asymmetry. The low A-waves are characterized by a longer interaction 
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time and can populate asymmetries farther removed from the entrance 
channel. Consequently as one moves towards more extreme asymmetries 
one selects progressively lower &-waves. 

Furthermore, at high angular momentum, the driving force is strongly 
directed towards the higher Z's and discourages any diffusion towards 
low Z's (see Fig. 9). As the angular momentum decreases, the driving 
force also diminishes and may even reverse its direction, thus allowing 
for a substantial diffusion to occur in the direction of the low Z's. 
Consequently the low Z's are selectively populated by low Z-waves and 
hence the lack of rise in the yray multiplicity with decreasing Z. 

V. SEQUENTIAL FISSION AND THE EXCITATION OF COLLECTIVE 
MODE IN THE EXIT CHANNEL OF DEEP-INELASTIC REACTIONS 

An interesting phenomenon, accompanying the deep-inelastic process, 
30 namely the fission of the heavy partner, has recently been observed in 

the reaction Au + 979 MeV 1 3 6 X e . This special kind of decay can 
potentially provide information on: 

a) the transfer of angular momentum from orbital to intrinsic 
rotation 

b) the transfer of energy from the entrance channel to internal 
degrees of freedom 

c) the possibility of prompt fission of the heavy partner in 
the Coulomb and nuclear fields of the light fragment. 

31 197 
Recently we have studied sequential fission in the reaction Au 

Oft 

+ 620 MeV Kr with an apparatus consisting of a AE(gas), ECsolid state) 
telescope to identify the atomic number Z_ and energy E, of the light 
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partner, and a large, solid angle, X-Y position-sensitive counter to 
simultaneously detect either the heavy partner (Z^) or one of its fission 

32 fragments. The latter detector, which has a position resolution of 
1°, and subtends 24° both radially and vertically, provides information 
on both the energy E. and the in- and out-of-plane angular distributions 
of the correlated fragments. 

Figure 20a depicts cross section contour lines in the E^-Z, plane 
and illustrates the clear separation between the non-fissioning binary 
events and the sequential fission events. To obtain the fission 
probability of the heavy fragment (ZJ, the number of singles events for 
the corresponding Z- value were compared with the number of coincidence, 
non-fission events (after correction for the coincidence efficiency 
which was measured with elastic scattering). In Fig. 20b, this fission 
probability, integrated over the deep-inelastic region of E,, is shown 
as a function of Z-. Although the fission probability is quite small, 
around Z,=40 (Z.=75), it rises very rapidly and approaches 100% for 
Z 3 < 30 ( Z 4 > 75). 

In Fig. 21 the fission probabilities for the heavy recoils are shown 
as a function of the light fragment kinetic energy for representative 
atomic numbers. For all cases the fission probability increases with 
decreasing kinetic energy E-. Qualitatively, these features can be 
understood in terms of a fission barrier which decreases with increasing 
Z. and an excitation energy E. which increases with decreasing E-. These 
fission probabilities reach astoundingly large values at the highest 
excitation energies, namely > 80% even for recoils with an atomic number 
of 79. Because of partial wave distribution in heavy-ion reactions, 
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fission may select out the very highest angular momentum transfers 
which enhances the fission probability* Thus the A-distributibn of the 
sequential fission channel may not at all reflect the overall JL-distri-
busion for the deep-inelastic process as a whole. 

The out-of-plane angular distributions of the fragments from 
sequential fission are nearly Gaussian and are peaked on the reaction 
plane. The FWHM of these distributions in the laboratory and in the cm. 
of the recoiling heavy fragment are shown as a function of Z, in Fig. 22. 
For fission fragments originating from elements heavier than the target 
(Z, < 36) the cm. width is 47°-50°, in agreement with the previously 
measured value, which is an average over the entire Z-distribution. 
One should note that the out-of-plane angular •"istribution for a binary 
reaction not followed by fission (see Fig. 22) appears to be consistent 
with the de-excitation of both fragments mainly by neutron emission. 

The out-of-plane angular distribution of fission fragments may be 
due to two possible causes (which are not mutually exclusive): 1) the 
fluctuations of the fission axis about the normal to the angular momentum; 
and 2) the misalignment of the primary fragment angular momentum. If 
the angular momentum of the primary fragments is aligned (M=J), the 
Cwdtted gamma rays, which are expected to be mostly stretched E2 decays, 
should show a strong anisotropy, though attenuated by the presence of El 
decays. The expressions for the angular distributions arising from 
completely aligned systems are 

E2: W(6) = (5/4)(1 -cosV) s El : W(8) = (3/4)(1 +cos 26) 

where 8 is the angle of emission with respect to the angular momentum 
direction. However, the evidence ' is that the gamma ray angular 
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distribution is isotropic to within 5-351. This fact can, to some extent, 

be explained away by invoking El decay. However, a very unlikely 50-50 

contribution from El and E2 is barely sufficient to explain the largest 

measured anisotropy of 1.35. This dilemma forces one to either abandon 

the assumption of stretched E2 decays, which is disastrous because i t 

compromises al l our understanding of the yrast decay, or to seek another 
35 explanation. Recently, Berlanger et al proposed that bending vibrations 

could be excited in the primary deep-inelastic process. Along the same 

line, but more generally, we suggest that collective modes like bending 

(doubly degenerate) and twisting (non-degenerate) may be thermally excited 

thus generating random components in the angular momentum. 

If we assume such a depolarization mechanism, simple s ta t is t ical 

considerations lead to the following parti t ion function (for simplicity 

an intermediate complex consisting of two equal touching spheres is 

assumed) 

Z = ( 4 T T ) 2 / I 2 exp(-I 2/<j3 rT) dl (18) 

and 
AnZ = a + 3/2 An&if T) (19) 

where *Jf is the moment of inertia of one fragment, T is the temperature, 

and a is a constant. The resulting rms angular momentum per fragment 

is: 

J2. = - 3 **z = J ^ T > ( 2 0 ) 

3 [1A(TT] £ 

For the present reaction of 618 MeV 8 6Kr + 1 9 7 A u and using r Q = 1.22 frn 
and T = 2-3 MeV, (I y 1 is estimated to be about 13 to 16 n per fragment, 
randomly oriented, rather than perpendicular to the recoil direction. 
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(These results are not very sensitive to small deviations from symmetric 

spl i t t ing.) 

By randomly coupling this angular momentum to that transferred from 

orbital motion (~30 n as is inferred from gamma-ray multiplicity data ) 

one obtains a rms angular momentum misalignment *' of the order of 24° 

to 28°, more than adequate to explain by i tself the width of the out-of-

plane sequential fission distribution. This misalignment comes from 

the deep-inelastic process itself. If this is the case, the explanation 

of the fission fragment out-of-plane distribution lies in a depolarization 

inherent to the deep-inelastic process and not in the fission mechanism. 

This explanation does not contradict the existence of fluctuations in 
—5 v 

the fission direction. However, one should note that the ( I 6 ) ^ generated 

by these bending and twisting modes may be larger than K and thus may 

be the dominant effect in producing the out-of-plane fission widths. 

The presence of such a depolarization substantially helps to explain 

the gamma-ray anisotropy with a much smaller amount of El transitions. 

VI. THE'GIANT'E^MOttE AND ITS ENERGY BROADENING FROM 

THE CHARGE DISTRIBUTIONSIN HEAVY-ION REACTIONS 

The giant El mode i s best known through i t s photoexcitation which 

is manifested in a peak at an energy E = 78 A ' MeV with a width of 

typically 4-6 MeV. The same degree of freedom is involved in the charge 
37 distribution at fixed mass asymmetry in binary heavy-ion reactions 

(and in fission). Since the equilibration of the El mode in heavy-ion 

reactions, or the equilibration of the neutron-to-proton rat io of the 

two fragments, seems1 to occur quickly, the most probable charges can be 
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obtained by minimizing the potential energy of the two fragments in 
contact with respect to the charge of one of the fragments at constant 
fragment mass. This well documented feature of heavy-ion reactions 
only provides information about the potential energy term of the collec­
tive El Hamiltonian. In principle one could obtain information for 
the whole Hamiltonian by a measurement of the charge distribution at 
fixed mass. 

Since in the great majority of cases the El phonon energy is 
expected to be much larger than the temperature, the El mode is expected 
to be in its ground state. As an example, let us consider the reaction 
Ni + Ar at 280 MeV bombarding energy whose mass and charge distributions 
have been studied in detail. From the maximum linear dimension of 
the intermediate complex one obtains the relevant El phonon energy: 
ftu = 94/d = 8-10 MeV, where d is the semi-major axis of the intermediate 
complex. From the internal excitation energy of the complex one obtains 
T = V ^ / a = 2 MeV. Since h<o/T * 4-5 » 1, the collective El mode 
should be mainly in its ground state. Therefore the Z distribution 
at fixed mass asymmetry should be given by the modulus square of the 
ground state wave function and the second moment of the distribution 
is expected to be 

CTz = "if" a M - 0 - 8 (charge units) 2 

where c is the stiffness constant associated with the El mode, or 

c ( z - z ) 2 

V(E1) 2 ' 

The analysis of the experimental charge and mass distribution shows that 
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mass and charge are strongly correlated as expected, with a correlation 
coefficient r * 0.97. However, the intriguing result for the second 
moment of the Z distribution at constant A is a\ = 0.3 (charge units) , 
substantially smaller than expected. The disagreement is all the more 
evident since the experimental a* should be (and has not been) corrected 
for particle evaporation, which could decrease its value by an additional 
amount. Even more surprising is the fact that the experimental value 
of al is well reproduced if one assumes just a classical statistical 
distribution in Z, namely, 

0 2 = T/C ss 0.3 (charge units) 

The outstanding problem is then to understand why the distribution in 
Z is classical rather than quantal, as one would expect. 

The explanation may reside in che damping of the collective El 
mode. In photoexcitation, the giant resonance is mainly a lp,lh state 
and presumably owes its width to the coupling into the 2p,2h states. 
In the present case, at relatively high excitation energy (60 MeV), 
the collective mode is an (np,nh) state which may couple into 
(n+lp, n + lh) or (np,nh), or again, ((n-l)p,(n-l)h) states. The 
resulting damping is energy-dependent and due mainly to the increasing 
density of the doorway states with increasing energy. It is interesting 
to see the consequence of this coupling to the Z distribution. 

38 Following Bohr arid Mottelson with a simple generalization, we can 
describe the coupling of the collective state |a> to the doorway states 
|a>. The exact state |i> is given by 

|i> = | a> + 1 V|a> (21) 
1 Ej - H 0 - V ' 
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where P = ]f |<x> <<x|, H is the unperturbed Hamiltonian, and V is a the perturbation. 
The relevant charge distribution is given by p-^z) = / dx|ij).(z,x)| , 

where ^(z.x) = <z,x|i> , and x denotes all other variables which 
must be projected out. In order to compare theory with experiment we 
have to consider the average of the distribution over an energy interval 
around E^. We can write 

Pi^ave " / d x [l^iC Z,x)> a v e| 2
 + t|*f (z,x)| 2> a v e] 

(22) 
with tyf = % -{'/'--}-,„ the "fluctuating" wave, function. The fluctuating 

1 X I 3-VC 
part can be shown to be responsible for the broadening of the distribution. 
It leads to a statistical distribution for 1 . We want to show that the 
first term can lead to a narrowing of the distribution. For this purpose 
we have to consider the averaged Green function {1/(EJ JH-V)}„,_ . 

X O oVc 39 This average has been considered extensively in the literature. 
For large systems and high excitation energies only the average diagonal 
matrix elements of the resolvent have to be considered and it can be 
shown that 

,{<a a> - — • (23) 
1 1 Bj-F^-V ' 'ave E ^ E ^ - i r 

where r is the imaginary part of the "equivalent optical potential" 
describing the dissipation of the state |a> into the states |ot>. The 
amplitude of the state |a> contained in the average eigenstate |i> is 
given by 
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2 -% 

c a(i) = ( l + 2 " a 2 ) ' » <24> 

D being the spacing of the states a. 

In summary, and omitting for simplicity the bracket of the 

average, 

|i> = c (i)|a> + J c fi) |o> • (25) 
a 

The next step is to establish that the sum over a is the above 

equation is a coherent one and thus the corresponding term describes a 

wave packet, i . e . , i t leads to a narrowing of the distribution. One 

can prove that if V is random, the vectors |a > contain phases which 

destroy the random property of V . Having established this point 

from f i rs t principles, we are entitled to use as f i r s t guess a simple-

as-possible model. The average wave function associated with the 

charge asymmetry coordinate can be written as 

*i(z) - c a(iD« a(z) + | j d E a c a ( i) ^(z) (26) 

where D is the level-spacing of the available doorway states and 4»_(z) 

is the groundstate wave function of the El mode: i|>_(z) = V2iriuu/c 

exp[-czz/2n?o]. Qualitatively one sees already that , as the coupling 

increases, the integral in Eq. (26) becomes progressively dominant and 

the more |a> states that are called into play by the strength of the 

coupling, the narrower $. (z) becomes. As a qualitative f irs t guess on 

the i|> (z) we can use the plane wave expression 

<J»a(z) = V2ir1iu)/c exp (izVc/Zfiu VEa/Dj ) 

(27) 
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where the plane waves are normalized to unity in a z box of volume 
corresponding to that of the harmonic oscillator. By taking r = 
1i(X+ + X° + X~), where X , X°,X~ are the transition probabilities from 

37 (np,nh) to (n+lp, n+lh), (np,nh) and (n-lp, n-lh) states, respectively, 
the integral in Bq. (26) can be evaluated and gives as a result 

2ir exp f-iz Vc/2nw \TU^ y/B±- ir J . (28) 

The second moment of the z distribution, al, can then be obtained 
from the z distributions given by the modulus square of Eq. (26). 

The calculated second moment of the distribution a* versus 
excitation energy is shown in Fig. 23. The narrowing of the distribution 
with increasing energy is quite evident. Since this calculation does 
not include thermal fluctuations, they are introduced in the simplest 
way, 

°z " az,Q + 0z,T < 2 9> 

where the labels Q and T stand for quantal and thermal. The possibility 
of experimentally observing the minimum of a| and its rapid rise with 
decreasing energy is of extreme interest because it would provide us 
with information on the damping of a giant resonance in a hot nucleus. 
This is particularly attractive considering the extremely difficult 
alternatives, like gamma decay from highly excited nuclei. 
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V. CONCLUSION 

In summary, the general features of deep-inelastic reactions h a w 
been discussed emphasizing the mass asymmetry mode, the relative motion, 
the transfer of angular momentum and the equilibration of the neutron-
to-proton degree of freedom. For the mass asymmetry mode, good agreement 
has .been observed between the experimental data and a diffusion model. 
In addition, a natural extension of this model to include the transfer 
of energy and of angular momentum via a particle transfer mechanism 
has been discussed and successfully compared with experiment. The 
agreement with gamma-multiplicity data not only supports the underlying 
features of the diffusion model, but also lends credence to the one-body 
nature of the energy and angular momentum transport processes. Further­
more, on the basis of sequential fission data it has been suggested 
that the angular momentum transferred in deep-inelastic reactions may 
be partially depolarized through the excitation of collective modes at 
scission. This mechanism also explains the absence of an appreciable 
gamma-ray anisotropy. Finally, the effect of. the giant El mode on 
the equilibrium neutron-to-proton ratio of deep-inelastic fragments 
has been described. It has been shown that the widths of the Z distri­
butions for fixed mass asymmetry can be explained by the coupling of the 
El mode to the intrinsic degrees of freedom. 

This work was supported by the Nuclear Science Division of 
the U.S. Department of Energy. 
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FIGURE CAPTIONS 
Fig. 1. Contour map of the cross section for K ions in the E„ - 6 

2-zn An cm. 
plane for the reaction °*Th + 388 MeV H UAr. 

Fig. 2. Contour plots of the cross section in the total kinetic 
energy-angle plane for various exit channel asymmetries in 
the reaction 620 MeV 8 6Rr + 1 9 7Au. 

Fig. 3. Mean, center of masb fragment kinetic energies and widths as 
a function of fragment Z. 

Fig. 4. Masses prior to evaporation and number of evaporated neutrons 
versus the Z before evaporation. Symbols A and • refer to 
the light and heavy fragments, respectively. 

Fig. 5. a) Missing charge versus total exit channel kinetic energy 
for various bombarding energies in the reaction Ne + 0 
b) Missing charge versus excitation energy. 

Fig. 6. Contour plots of dzo/dE d8 (arbitrary units) in the E. b, 
mass plane for the K isotopes detected at 8, . = 18° (close 
to the 6 ^ and 6 l a b » 8^. 

Fig. 7. Gamma-multiplicity as a function of Z for the n a t A g + 175 MeV 20 Ne reaction at three lab angles. 
197 Fig. 8. a) Lab charge distributions for the reaction Au + 506 MeV 

Kr. b) Lab charge distributions for the reaction n Ag + 
732 MeV 8 6Kr. 
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Fig. 9. Potential energies versus the atomic number of one fragment 
86 1Q7 

for various angular momenta for the system Kr + • Au. 

Fig. 10. Diffusion calculations for te system 620 MeV 8 6Kr + 1 9 7 A u 
for the same I waves as in Fig. 9. 

Fig. 11. Z distributions calculated from the diffusion model for 
1 9 7 A u and 1 8 1 T a + 620 MeV 8 6Kr. The dots are the experimental 
results. 

Fig. 12. Angular distributions for fragments of different atomic 
number for the reactions 1 9 7 A u and 1 8 1 T a + 620 MeV 8 6Kr. 
The solid lines represent the theoretical results. 

Fig. 13. a) Lines of constant total angular momentum in the Z, TKE 
plane without angular momentum transfer; b) Same as in a) 
for a rigidly rotating system; c) Qualitative expectations 
for the correct lines of constant angular momentum. 

Fig. 14. a) Lines of constant angular momentum in the TKE versus Z 
plane, b) An expanded view of a) including contours of 
constant cross section. 

Fig. 15. The ratio of the charge widths calculated for energy cuts 
along lines of constant angular momentum and of constant 
total kinetic energy versus the bin number for the energy 
loss. 

Of. 

Fig. 16. WL versus total kinetic energy for three Kr-induced reactions. 
The data have been averaged over ten Z-values. The solid and 
dashed curves are fits to the data. 

Fig. 17. Gamma-ray multiplicities versus Z for the quasi-elastic 
component in 618 MeV 8 6Kr + 1 6 5 G o and 1 9 7 A u . 

Fig. 18. Gamma-ray multiplicities versus Z for the deep-inelastic 
component in 618 MeV 8 6 K r + 1 0 7 ' 1 0 9 A g , 1 6 5 H b and 1 9 7 A u . 
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Fig. 19. My versus Z 3 for the reactions 1 0 7 ' 1 0 9 A g and 1 6 S H o + 618 MeV 
Kr for the quasi-elastic (open symbols) and deep-;inelastic 

(solid symbols) components. Solid curves are fits to the data. 

Fig. 20. (Top): Cross section contour lines in the E^-Zj plane for 
coincident events. (Bottom): Percent fission of heavy 
recoils (Z 4 » 115-Zj) integrated over the deep-inelastic 
component. 

Fig. 21, Percent fission of heavy recoils as a function of the lab 
energy of the light fragment. 

Fig. 22. FWHM of the out-of-plane fission and non-fission components 
as a function of Z-. 

Fig. 23. The quantal curve (curve 1) and classical (curve 2) widths 
of the Z-distribution for fixed mass a^mmetry versus 
excitation energy. Curve 3 is the sue. < ; both contributions 
and the triangle indicates the experimental value. 
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