Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Nonstandard conditionally specified models for nonignorable missing data

Abstract

Data analyses typically rely upon assumptions about the missingness mechanisms that lead to observed versus missing data, assumptions that are typically unassessable. We explore an approach where the joint distribution of observed data and missing data are specified in a nonstandard way. In this formulation, which traces back to a representation of the joint distribution of the data and missingness mechanism, apparently first proposed by J. W. Tukey, the modeling assumptions about the distributions are either assessable or are designed to allow relatively easy incorporation of substantive knowledge about the problem at hand, thereby offering a possibly realistic portrayal of the data, both observed and missing. We develop Tukey's representation for exponential-family models, propose a computationally tractable approach to inference in this class of models, and offer some general theoretical comments. We then illustrate the utility of this approach with an example in systems biology.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View