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ABSTRACT OF THE DISSERTATION

Spontaneous Emission and Optical Control of Spins in Quantum Dots

by

Sophia E. Economou

Doctor of Philosophy in Physics

University of California, San Diego, 2006

Professor Lu J. Sham, Chair

Quantum dots are attractive due to their potential technological applications and

the opportunity they provide for study of fundamental physics in the mesoscopic

scale. This dissertation studies optically controlled spins in quantum dots in con-

nection to quantum information processing.

The physical realization of the quantum bit (qubit) consists of the two

spin states of an extra electron confined in a quantum dot. Spin rotations are

performed optically, by use of an intermediate charged exciton (trion) state. The

two spin states and the trion form a Λ-type system. The merits of this system

xiv



for quantum information processing include integrability into a solid-state device,

long spin coherence time, and fast and focused optical control.

In this dissertation, we study the optical decay mechanisms of the trion

state in the quantum dot. Using a master-equation approach, we derive micro-

scopically the optical decay of the three-level system and find a novel term, the

so-called spontaneously generated coherence (SGC). The latter, though predicted

more than a decade ago for atomic Λ-systems satisfying certain conditions, had

not been detected yet in any system. We found that in quantum dots, these con-

ditions can be satisfied. We present the experiment which, in collaboration with

our theory, constituted the first measurement of SGC.

We establish the unification of SGC, polarization entanglement, and two-

pathway decay. By keeping track of the spontaneously emitted photon dynamics,

we find the conditions on the couplings that determine which effect will take place.

We have thus placed SGC in a more quantum informational framework, charac-

terizing it as lack of entanglement between the emitted photon and the three-level

system.

We develop a theory of ultrafast optical single-qubit rotations by use

of 2π pulses, which have the two-fold advantage of minimal trion excitation and

negligible spin precession. The analytically solvable hyperbolic secant pulses of

Rosen and Zener for the two-level system are investigated in the context of the

three-level system. Ultrafast rotations about the quantum dot growth direction

are designed, the angle of spin rotation is expressed analytically, and the fidelity

is studied by simulations. Adaptive feedback loops are employed to correct for

unintended dynamics.
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I.

Introduction

Quantum dots (QDs) are semiconductor nanostructures ranging in size

from several nanometers to about 100 nanometers and grown on a substrate of

different semiconductor material. Their formation is due to lattice mismatch be-

tween the two semiconductors, or due to fluctuations of quantum wells, or it is

achieved via gates on a quantum well. QDs confine electrons and holes in all

three-dimensions owing to their small direct band gap compared to the host ma-

terial. Due to the confinement, they have sharp, atomic-like energy levels and so

they are sometimes termed artificial atoms. However, quite contrary to atoms, the

particles in a quantum-dot are subject to the potential created by a large number

of atoms. An extra electron in the QD is subject to the periodic crystal potential

of the bulk semiconductor plus the confining potential of the QD. Since the char-

acteristic length scale of the latter is much larger than the lattice constant of the

crystal, we can still use concepts like the effective mass and the band structure, in-

cluding valence and conduction bands; however, due to the confining QD potential

the boundary conditions are strongly altered and the properties of the quantum

dot strongly depend on its geometry. As a result, the continuous bands of the

bulk become quantized. It must be stressed that the concept of effective mass of

an extra electron added to the ground state of an insulator or semiconductor and

moving under the action of a slowly varying external potential (such as the one

1



2

due to the quantum dot) is valid not only within the independent-particle approx-

imation, but in the presence of the many body interactions as well [71, 125]. To

incorporate both the underlying semiconductor characteristics and the quantum

dot geometry, the so-called envelope function method is employed. The main idea

is that the wavefunction of the trapped particle can be decomposed into a product

of an envelope, with a characteristic length comparable to the dot dimensions, and

a Bloch function, originating from the semiconductor nature of the structure. This

will be further explained in Chapter II.

As was mentioned before, the quantum dot semiconductor material has

a smaller band gap than the host material, so that it is energetically favorable

for the electrons and holes in addition to the electrons in the ground state to

be confined in the dot. To calculate analytically the electronic structure of QDs

we use the effective masses of the trapped particles, as determined in the bulk,

and model the dot potential by a simple harmonic oscillator or a particle-in-a-box.

Then, Coulomb corrections are taken into account, i.e. direct repulsion (attraction)

between electron and electron (hole), and exchange interaction. With the electronic

structure available, either from theoretical calculations or from experimental data,

one can study the dynamics of the electrons in the dots.

Quantum dots are interesting, both due to their potential technological

applications and due to the opportunity they open up for studying fundamental

physics in the mesoscopic scale, in man-made materials. Among their suggested

applications, quantum dots play a prominent role as candidates in physically re-

alizing quantum information units and thus being used as the basic element of

quantum computing. Besides quantum computing, which is the main motivation

of the research in this dissertation, the significance of optics in semiconductor

quantum-dot systems extends to other tasks of quantum information processing as

well; it is a field of intense research in the context of quantum network interfaces,

single-photon generation, and entangled-photon sources.

Quantum computing is a multidisciplinary field of research. It is of tech-
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nological relevance because it will speed up computations intractable by usual

(classical) computers. Quantum information processing makes use of counterin-

tuitive features of quantum mechanics, such as superposition and entanglement.

Numerous physical schemes have been proposed for implementing quantum infor-

mation units (qubits); out of these, the solid state ones based on semiconductor

QDs are particularly promising, as they should be readily integrable with the ex-

isting semiconductor technology.

This dissertation adopts the suggestion that the spin of an excess electron

in a quantum dot can acts as a quantum bit (qubit) of information in quantum

computation implementation schemes [79, 61]. The single-qubit control can be

carried out directly via transitions between the two spin states by use of a pulsed

magnetic field [79], or optically by use of an auxiliary optically excited state that

lies outside the computational subspace [61]. This excited state is a bound state

of the electron and the exciton created by the laser. Optical manipulation of

quantum dots exploits the advanced laser technology and employs features of the

laser such as speed and focusing. The operations can therefore be fast compared

to the dephasing time and each dot can be addressed separately with near-field

techniques [17].

One of the challenges of implementing schemes of quantum computing

is the compromise between long coherence times–which implies weak coupling to

the environment–and the need for fast and robust quantum control of the system–

which suggests strong coupling to a classical system, the controlling system (e.g.

the laser). Any realistic proposal however has to account for the deteriorating

mechanisms of coupling to the environment.

The research described in this dissertation heads towards the implemen-

tation of quantum computing with all-optically manipulated spins in quantum

dots.

In Chapter II we briefly review the electronic structure and optical proper-

ties (selection rules) of quantum dots. We employ the effective mass approximation
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for the semiconductor, and the envelope function approach for the dot. We account

also for electron-electron and electron-hole direct and electron-electron exchange

Coulomb interactions. Optical quantum computing schemes in quantum dots are

discussed.

Chapter III introduces basic concepts of optics and interaction between

the electromagnetic field and quantum systems, such as atoms and quantum dots.

The stress is towards the optics of quantum dots, mostly in relation to the research

in this dissertation. A broader overview of current research activities in the field

of optics in quantum dots is also briefly given.

In Chapter IV we develop the theory underlying a nonlinear pump-probe

experiment in quantum dots using a density-matrix formalism. This gives an

explicit expression to compute and to test the theory against experiments. We

explain why the acousto-optical modulation of the pump and probe followed by a

homodyne measurement at the difference of the modulation frequencies measures

the differential nonlinear signal. An analysis of the experimental initialization,

control and measurement of the spin is also given.

In Chapter V we address the issue of optical decay during the optical

pulse, out of which we find occurrence of intriguing physics, namely spin coherence

generated through spontaneous emission of the optically excited state. We derive

this term by employing a master-equation approach. Once this term is accounted

for in the decay equations, we show how it alters the nonlinear signal in a pump-

probe experiment in a quantum dot. We also show experimental results, obtained

by the experimental group of Professor Steel, which are interpreted by our theory

as spontaneously generated coherence.

In Chapter VI we examine the spontaneously generated coherence in a

more quantum information theoretical context. We show that it can be understood

as lack of entanglement between the system (spin) and the bath (spontaneously

emitted photon). A unified theory is developed which shows how these effects

naturally emerge when spontaneous emission is viewed as unitary evolution of a
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single whole (‘system’+bath), much in the spirit of Weisskopf-Wigner theory of

spontaneous emission [141]. We also propose a scheme to create and measure

entanglement between the spin states in a quantum dot and the spontaneously

emitted photon from a light-hole trion state.

In Chapter VII, after briefly reviewing existing proposals, we develop

a new scheme for ultrafast single-qubit operations, which reduces the three-level

system to a two-level system during the fast duration of the pulse. The exactly

solvable hyperbolic secant pulses of Rosen and Zener [117] are employed, such that

the angle of rotation has an analytical form as a function of the pulse parameters.

We also design an experiment to measure spin rotation about the quantum-dot

growth direction by use of the aforementioned pulses. We address experimental

issues, such as uncertainty in the laser parameters and issues related to incomplete

characterization of the quantum dot, such as valence-band mixing. Feedback loops

are used to select the ideal pulses, based on known pulse envelopes but without

assumption of knowledge of pulse parameters.



II.

Electronic Structure and Selection

Rules of the III-V Semiconductor:

From Bulk to the Quantum Dot

In this chapter, after briefly reviewing the electronic structure of the zinc-

blend semiconductors, we review the electronic structure of the quantum dot in

the envelope-function approximation and particularly the optically excited spectra

and selection rules. As mentioned already, the quantum dots retain partially the

underlying symmetry of the semiconductor.

The most important property of a crystal is invariance under specific

translations. Most crystals additionally possess rotational and reflection symme-

tries. Most semiconductors have high rotational symmetries, which greatly facili-

tate band structure calculations.

When a particle moves in a periodic potential its energy eigenfunctions

can be expressed in the form of Bloch functions, which are plane waves modulated

by a function with the same periodicity as the crystal potential, V (r). They have

the form

Φk(r) = uk(r)e
ik·r, (II.1)

with uk(r + R`) = uk(r), where R` is a lattice vector of the crystal: R` = `1α1 +

6
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`2α2 + `3α3; in the latter `i are integers and α1, α2, α3 are three non-coplanar

vectors. The quantum number k is called the wave vector and h̄k is the crystal

momentum.

Schrödinger’s equation, HΦ = EΦ, where H = p2/2m + V (r), leads to

the following equation for the periodic part uk(r):

(
p2

2m
+

h̄k · p
m

+
h̄2k2

2m
+ V

)
unk(r) = Enkunk(r), (II.2)

where p = −ih̄∇, and the additional index n = 1, 2, 3, ... is called band index and

indicates the various solutions of Eq. (II.2) for a given k.

The electron eigenenergy, Enk, as a function of k (dispersion relation)

and the band index n is known as the electronic band structure.

The Bloch functions are eigenstates of the translation operator TR. Since

the latter commutes with the total Hamiltonian H, the Bloch functions satisfying

Eq.(II.2) are eigenfunctions of both TR and the total Hamiltonian. Eigenfunction

of H with eigenvalue E is also any sum
∑′

k,n ck,nΦk,n, where the prime denotes

that the summation must be restricted to all n’s and k’s for which Enk = E.

Because of the relation R` · Gm ≡ 2πq, defining the reciprocal lattice

Gm = m1b1 + m2b2 + m3b3, where q and m1,m2,m3 are an integers, and R` is

any vector of the lattice, the solution Φk,n(r) is identical with Φk+G,n(r). Hence,

it is enough to restrict k within the so-called first Brillouin zone (1BZ), which is

a polyhedron in k-space, with the following property: The distance of any point

of the 1BZ from the origin (k = 0) is less than its distance from any other point

Gm 6= 0 of the reciprocal lattice. In a one-dimensional lattice, the 1BZ is the

region −π/α < k < π/α, where α is the period of the direct lattice.

A. Diamond and Zinc-Blend Basics

The III-V compounds crystalize in zinc-blend structure. The direct lat-

tice consists of two interpenetrating fcc lattices–each with its own type of atoms–
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displaced relatively to one another by a quarter of the body diagonal along the

[111] direction. The reciprocal lattice of an fcc is a body-centered cubic (bcc).

The III-V semiconductors have a direct band gap, i.e., the top of the valence band

occurs at the same k-value as the bottom of the conduction band.

The space group of the zinc-blend structure is denoted by T 2
d . Its point

group has 24 elements and is identical to the elements of the point group of a

tetrahedron. Here we sketch the procedure of using group theory to group the

wavefunctions by their degeneracy. We start from a nearly free electron character-

ized by a plane wave, with k = (2π/a)(1, 1, 1). By applying the C3 symmetry of

zinc-blend, the eight points (2π/a)(±1,±1,±1) are shown to be equivalent, and

by the previous discussion they can all be projected back to the center of the Bril-

louin zone (k = 0 or Γ point), which possesses the maximal possible symmetry,

i.e., its group is isomorphic to the point group of the lattice. The eight plane

waves formed by the wavevectors corresponding to these symmetry points form

an eight-dimensional representation, which is reducible. They can be shown to

reduce to two one-dimensional Γ1 and two three-dimensional Γ4 representations.

From group theoretical considerations we can deduce the selection rules between

these states. Optical transitions are allowed between Γ4 states and states belong-

ing to the Γ1, Γ3, Γ4, Γ5 representations. When the spin is included, the states are

regrouped (the inclusion of the spin leads to the so-called double group). The new

representations are of Γ8 symmetry (four states) and two Γ7 states, and the lowest

conduction band states are now of Γ6 symmetry.

Thus far, we have assumed a nearly free electron. The crystal potential

has been assumed infinitely weak, and has entered through symmetry considera-

tions on the wavefunctions. The extreme opposite approach is to start from the

atomic states comprising the solid and use atomic or atomic-like wavefunctions as a

basis for the electron wavefunctions in the solid, and calculate the electronic struc-

ture usually by numerical diagonalization of the Hamiltonian (LCAO method).

Here, we will just show how basic information about the band structure can be
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found based on this line of thought.

The atomic structure of the III elements of the periodic table has filled

shells plus three valence electrons in the s2p configuration. The V have also filled

shells plus five valence electrons in the s2p3 configuration.1 When two atoms, one

of each species, are brought together there is attraction between them because the

electrons can rearrange and spread their wavefunctions over both atoms and lower

their energy. There is a total of eight basis states, four from each atom.

The four atomic orbitals, one s and three p’s in each atom form sp3 hy-

brids diected either along the (1, 1, 1), (1, 1̄, 1̄), (1̄, 1, 1̄), (1̄, 1̄, 1) or the (1̄, 1̄, 1̄),

(1̄, 1, 1), (1, 1̄, 1), (1, 1, 1̄) directions. Each pair of opposite pointing hybrids belong-

ing to the nearest neighbor atoms form one bonding (lower energy compared with

every sp3 hybridized atomic state) and one antibonding (higher energy compared

with every sp3 hybridized atomic state) molecular orbital. When there is a macro-

scopic number of the constituent atoms, the energy levels broaden into bands.

Around the bonding (antibonding) energy level the valence (conduction) band is

formed. At T = 0K, the valence band (which is actually split into two subbands)

is fully occupied by electrons while the conduction band is completely empty. The

two bands are separated by a gap, the magnitude of which is denoted by Eg. This

is schematically shown in Fig. II.1.

The higher valence band states are p-like, originating from the bonding

states. The lowest conduction band states are s-like. Including the spin, the total

degeneracy of the p-like top valence band states is 6 when spin-orbit coupling is

neglected. However, spin-orbit interaction, represented by a contribution HSO =

λl · s in the Hamiltonian, scales with the atomic number and is thus an important

effect, especially for semiconductors containing heavier elements such as Ga, In and

As. When included, the eigenstates are eigenstates of the total angular momentum

j = l + s and the projection mj along a quantization axis. Addition of angular

momenta gives two possible values of total angular momentum, j = 3/2 and j =

1We remind that s stands for states with angular momentum ` = 0 and p denotes ` = 1.
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E

II.1 Schematic representation of band formation in a III-V semiconductor. Both

the cation (c) and the anion (a) form sp3 atomic hybrids (with energies εh,c and

εh,a, respectively) which combine to give rise to a bonding (εB) and antibonding

(εA) molecular level. Those levels broaden into the valence (VB) and conduction

(CB) bands respectively. The top of the valence band consists of predominantly

p-character states (hence the three-fold degeneracy), while the bottom of the con-

duction band is of s character.
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1/2, which are split by ∆0 = 3λ/2, the spin-orbit splitting. The two degenerate

j = 1/2 states get shifted to lower energy and are also known as split-off holes.

∆0 varies from 10 meV to almost 1eV as the atomic number increases. For the

GaAs and InAs it is about 0.4eV, so that split-off holes may be safely ignored in

the discussion of optical transitions.

B. k · p and Effective Mass Approximation

The k · p method is an approximate method for calculating band struc-

ture by inputting a small number of experimental parameters. We will mostly

follow the treatment in [149] to review the method. Starting with the one-electron

Schrödinger equation, and inserting the Bloch functions we obtained Eq. (II.2).

For k0 = 0, Eq. (II.2) reduces to

(
p2

2m
+ V

)
un0 = En0un0. (II.3)

Once (II.3) is solved, the omitted terms h̄k·p
m

and h̄2k2

2m
can be treated as

perturbations. For example, let us assume that the band structure has a nonde-

generate extremum at En0. Then, to second order in perturbation theory, we find

for the functions unk and the energies Enk

unk = un0 +
h̄

m

∑

n′ 6=n

〈un0|k · p|un′0〉
En0 − En′0

un′0 (II.4)

Enk = En0 +
h̄2k2

2m
+

h̄2

m2

∑

n′ 6=n

|〈un0|k · p|un′0〉|2
En0 − En′0

. (II.5)

Rewriting (II.5) as Enk = En0 + h̄2k2

2m∗ , we define the quantity m∗ as the

effective mass of the band. Its inverse is given by

1

m∗ =
1

m
+

2h̄2

m2k2

∑

n′ 6=n

|〈un0|k · p|un′0〉|2
En0 − En′0

. (II.6)
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Equation (II.6) shows that an electron in the solid has a different mass

than the free electron mass, due to the coupling to other bands. The effective

mass is dictated by the strength of the coupling to other bands and by the energy

separation from those bands.

Thus far we considered a non degenerate band with an extremum in the

energy and with spin-orbit interaction neglected; the effective mass turned out to

be a scalar. This treatment is appropriate for a conduction-band electron. The

valence band, as mentioned above, is degenerate and spin orbit interaction plays

a significant role for heavy compounds, such as GaAs or InAs. One can repeat

the above treatment for the valence band, treating exactly the six Γ4 valence band

states (spin degeneracy included), by first taking spin-orbit interaction into account

by forming eigenstates of the total j. This gives rise to four states with j = 3/2

(The Γ8 states from Section A.) and two j = 1/2 states (the two Γ7 split-off states

from from Section A.). The interaction with the eight lowest conduction band

states can be treated by second order perturbation theory as an extra interaction,

folded back into the 6× 6 Hamiltonian.

We should also note that in principle the k · p term can give rise to

a linear term in k. In diamond-type semiconductors these terms vanish exactly

because of parity selection rule. However, in zinc-blend crystals there is a small but

nonzero linear in k term originating from the inversion asymmetry of the crystal.

The linear k terms do not come alone from the k · p term, but also from omitted

spin-dependent terms, known as Dresselhaus terms [38].

C. Luttinger Hamiltonian

An alternative approach to obtain valence-band dispersion in zinc-blend

semiconductors was given by Luttinger [88]. It treats the Γ8 valence bands by an

effective k · p Hamiltonian derived from group theory arguments. The Luttinger

Hamiltonian has the following form (choosing h̄ = 1)
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HL =
1

2m




(
γ1 +

5

2
γ2

)
k2 − 2γ2k

2
i J

2
i − 2γ3

∑

i6=j

kikj{Ji, Jj}

 , (II.7)

where the repeated indices are summed over and {a, b} ≡ ab+ba
2

. The dimensionless

parameters γ1, γ2, γ3 are the Kohn-Luttinger parameters,2 and J is the angular

momentum operator, with J = 3/2.

To make the symmetry of (II.7) more apparent, it is useful to rearrange

terms. Then we get

HL =
1

2m

[(
γ1 +

5

2
γ2

)
k2 − 2γ3(k · J)2 + 2(γ3 − γ2)k

2
i J

2
i

]
. (II.8)

Clearly, the two first terms of (II.8) are spherically symmetric. The cubic symmetry

is represented by the last terms, so that taking γ2 = γ3 amounts to the spherical

approximation, i.e., the energy depends only on the absolute value of k, through

parabolic dispersion, and not on its direction.

When k points along one of the three high symmetry directions, z for

example, the Hamiltonian HL reduces to

HHH
L =

k2
z

2m
(γ1 − 2γ2) for mj = ±3/2 (II.9)

HLH
L =

k2
z

2m
(γ1 + 2γ2) for mj = ±1/2, (II.10)

so that the effective masses are

mHH = m(γ1 − 2γ2)
−1 for mj = ±3/2 (II.11)

mLH = m(γ1 + 2γ2)
−1 for mj = ±1/2, (II.12)

and thus the terms heavy and light holes for the mj = ±3/2 and mj = ±1/2

respectively.

2for GaAs, γ1 = 6.85, γ2 = 2.1, γ3 = 2.9
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For the general case of k pointing along an arbitrary direction, we need

to diagonalize the Hamiltonian in order to find the dispersion relation. We write

the Luttinger Hamiltonian in matrix form, in the {|3
2

3
2
〉, |3

2
1̄
2
〉, |3

2
1
2
〉, |3

2
3̄
2
〉} basis:

HL =




P + Q R −S 0

R† P −Q 0 S

−S† 0 P −Q R

0 S† R† P + Q




, (II.13)

where

P =
γ1

2m
(k2

z + k2
x + k2

y) (II.14)

Q =
γ2

2m
(−2k2

z + k2
x + k2

y) (II.15)

R = −
√

3

2m
γ̄k2

− +

√
3

2
µk2

+ (II.16)

S =
√

3γ3kzk−, (II.17)

k± = kx ± iky, (II.18)

and

γ̄ =
1

2
(γ2 + γ3) (II.19)

µ =
1

2
(γ3 − γ2). (II.20)

II.2 Constant energy surfaces of the Γ8 valence bands.

Diagonalization of the above Hamiltonian gives the dispersion

E± =
1

2m

(
γ1k

2 ± 2
[
γ2

2k
4 + 3(γ2

3 − γ2
2)(k

2
xk

2
y + c.p.)

]1/2
)

, (II.21)
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where the upper signs refer to the ‘heavy hole’ and the lower to the ‘light hole’.

The constant energy surfaces are no longer parabolic; they are “warped”, as shown

in Fig. II.2.

D. Electronic States of a Quantum Dot

The Luttinger Hamiltonian is a powerful tool in that it allows for ad-

ditional perturbations of known symmetry, so it is attractive for calculations in

quantum dots and wells of given symmetry. The symmetry of the nanostruc-

tures is lowered compared to the bulk due to the confinement potential, so the

assumption of an infinite crystal no longer holds. For quantum wells, there is no

translational symmetry along the confinement direction, and in quantum dots the

translational symmetry is broken along all three directions. Here we will study the

quantum dot.

To account for the dot potential, which has a characteristic length large

compared to the atomic scale, we will assume the so-called envelope function ap-

proximation, which amounts to taking the wavefunction of each (quasi)particle to

be the product of the Bloch function, originating from the underlying semiconduc-

tor structure, and a slowly varying envelope function, which is the solution of the

quantum-dot Hamiltonian. For the electron in the conduction band we have

Ψ(r) = Φ0(r)Fc(r)χ(σ), (II.22)

where Φ0 is a Bloch function with k = 0, Fc is the envelope function and χ carries

the spin information. To find Fc we have to solve the one-particle Schrödinger

equation

Hc(x, y, z)Fc(x, y, z) = EFc(x, y, z) (II.23)

Hc = − ∇2

2mc

+ V1(x) + V2(y) + V3(z), (II.24)

where the confining potential has been assumed separable in the three cartesian

coordinates.



16

For the valence band, the relevant equation is

Hv(x, y, z)Fv(x, y, z) = EFv(x, y, z) (II.25)

Hv = HL + V1(x) + V2(y) + V3(z), (II.26)

where the same dot potential has been assumed for the electrons and the holes,

and HL is the Luttinger Hamiltonian for the four Γ8 valence band states. It can

be written, again in the {|3
2

3
2
〉, |3

2
1̄
2
〉, |3

2
1
2
〉, |3

2
3̄
2
〉} basis, as

HL =




P + Q R −S 0

R† P −Q 0 S

−S† 0 P −Q R

0 S† R† P + Q




, (II.27)

with P, Q, R, S defined by (II.14)-(II.17), but the k’s are now replaced by

operators [20]:

kx = −i
∂

∂x
(II.28)

ky = −i
∂

∂y
(II.29)

kz = −i
∂

∂z
(II.30)

k± = kx ± iky. (II.31)

We will assume that the symmetry of the quantum dot to be such that

the Luttinger Hamiltonian decouples to two, doubly degenerate bands. We will

examine the consistency of this assumption using the solution we will obtain, and

the mixing will be accounted for as a perturbation on those solutions. Under this

approximation, the Hamiltonian for the valence band is the sum of three terms

H±
z = − 1

2m
(γ1 ∓ 2γ2)

∂2

∂z2
+ V3(z) (II.32)

H±
x = − 1

2m
(γ1 ± γ2)

∂2

∂x2
+ V1(x) (II.33)

H±
y = − 1

2m
(γ1 ± γ2)

∂2

∂y2
+ V2(y), (II.34)
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where the upper (lower) signs refer to the heavy (light) hole.

From the above, we can define the anisotropic effective masses

mH
z =

m

(γ1 − 2γ2)
(II.35)

mH
|| =

m

(γ1 + γ2)
(II.36)

mL
z =

m

(γ1 + 2γ2)
(II.37)

mL
|| =

m

(γ1 − γ2)
(II.38)

Note that the terms ‘heavy’ and ‘light’ hole are still used to denote the mj = ±3
2

and mj = ±1
2

respectively, even along the in-plane directions where there is mass

reversal, i.e., the heavy hole has a smaller effective mass than the light hole.

To find an explicit expression for the functions Fv(r), we will model the

potential of the dot by a simple harmonic oscillator in each direction.

V1(x) =
1

2
Kxx

2 (II.39)

V2(y) =
1

2
Kyy

2 (II.40)

V3(z) =
1

2
Kzz

2, (II.41)

where Ki is the spring constant along direction i. We define the following frequen-

cies

ωc,z =
√

Kz/mc (II.42)

ωc,x =
√

Kx/mc (II.43)

ωc,y =
√

Ky/mc (II.44)

ωH,z =
√

Kz/mH
z (II.45)

ωH,x =
√

Kx/mH
‖ (II.46)

ωH,y =
√

Ky/mH
‖ (II.47)

ωL,z =
√

Kz/mL
z (II.48)

ωL,x =
√

Kx/mL
‖ (II.49)

ωL,y =
√

Ky/mH
‖ (II.50)
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The eigenfunctions are

F j
nxnynz

=
∏

i

φj
ni

(xi) (II.51)

φj
ni

(xi) =

[
mjωj,i

22niπh̄(ni!)2

]1/4

Hni

(√
mjωj,i

h̄
xi

)
e−mjωj,ix

2
i /2h̄, (II.52)

and the eigenenergies

Ej
nxnynz

=
∑

i

(ni +
1

2
)h̄ωj,i, (II.53)

where the xi’s are the three cartesian coordinates and j denotes the band index,

i.e., j = c,H, L.

Typically in quantum dots the lateral size is about an order of magnitude

larger than the vertical size. Therefore, the confinement along the growth direction

is a lot stronger, which translates to

ωj,z À ωj,x, ωj,y. (II.54)

Thus, we assume that the electron remains in the lowest state of the confining

potential along z, and ignore it in the rest of the discussion. Also, combining the

fact that mH
z > mL

z , Eqs. (II.35) and (II.37), with Eq. (II.54), we can explain the

experimental result that the lowest heavy-hole states are lower in energy than the

lowest light-hole states. The experimental values for this splitting are in the order

of tens of meV’s.

We also assume cylindrical symmetry of the dot about the z axis, i.e.,

Kx = Ky ≡ K, so that we can simplify the problem to the 2D harmonic oscil-

lator. We also define ωj,‖ = ωj,x = ωj,y. We can add deviations from this as a

perturbation.

Now, we should examine the neglected valence-band mixing terms from

the Luttinger Hamiltonian. First, notice that whenever the potential has inversion

symmetry, and hence the wavefunctions have definite parity, the expectation values

of ∂/∂x and ∂/∂y are zero. Therefore, the mixing induced by the S term and part

of the R vanish. The remaining mixing terms are proportional to the expectation
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value of ∂2/∂x2 − ∂2/∂y2 of R. In the case of cylindrical symmetry these terms

cancel exactly. We can account for deviations from cylindrical symmetry as a

perturbation by taking, for example, Ky = Kx + ∆K. It is clear that deviation

from cylindrical symmetry will cause some mixing between heavy- and light-hole

states. In the largest part of this dissertation we will ignore the valence band

mixing, and return to it in Chapter VII in the design of optical spin rotations.

Since the problem now possesses cylindrical symmetry, it may be solved

in cylindrical coordinates where the axial symmetry is manifested. This is useful

for calculation of exciton states, where Coulomb interactions between electrons

and holes are taken into account. The single-particle eigenstates are

ψj
nm(ρ, φ) = λ

(|m|+1)/2
j

√
n!

π(n + |m|)!ρ
|m|e−λjρ2/2L|m|n

(
λjρ

2
)

e−imφ, (II.55)

where

n = nx + ny (II.56)

m = nx − ny (II.57)

λj = mjωj,‖, (II.58)

and L|m|n are the generalized Laguerre polynomials, ρ, φ are the usual cylindrical

coordinates and λj has units of (length)−2. The energy is

Ej
n = (n + 1)ωj,‖. (II.59)

The two new quantum numbers n,m correspond to the total energy and the angular

momentum about z respectively (m should not be confused with the free electron

mass). States II.55 are called Fock-Darwin states [48, 35]. In the absence of a

magnetic field there is n + 1 degeneracy for every n. Physically, we expect to have

nonzero angular momentum whenever a state with nx 6= ny is excited, so that only

states with even n possess an m = 0 state.

Finally, we should also note that spin-orbit terms originating from inver-

sion asymmetry of the dot [115] have been omitted in our discussion.
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E. Optical excitations

The typical bandgaps of semiconductors are in the 1-2 eV range, i.e., in

the optical range of the energy spectrum. Moreover, for semiconductors with di-

rect bandgaps, like the III-V’s, an electron can be optically excited from the top of

the valence to the bottom of the conduction band, since photons carry very small

momentum. Henceforth, as in the previous section, we will be thinking of a miss-

ing electron from the valence band as a hole, a quasiparticle with positive charge

and opposite k and spin from the missing electron, i.e., it is its time reversal. The

electron in the conduction band is attracted to the hole by Coulomb interaction.

They can form a bound state, which is an excitation below the free-particle ener-

gies, i.e., in the band gap. Excitons in the bulk have been studied for many years.

Below we briefly review the theory of bulk excitons.

1. Bulk excitons

The Hamiltonian of the system of electrons and holes in second quanti-

zation notation is

H = Hfree + HC (II.60)

where

Hfree =
∑

kσ

εcka
†
ckσackσ +

∑

kσ

εvka
†
vkσavkσ (II.61)

and

HC =
1

2

∑
ijkl;σ1σ2

a†ciσ1
a†cjσ2

ackσ2aclσ2 Gcccc(ijkl)

+
1

2

∑
ijkl;σ1σ2

a†viσ1
a†vjσ2

avkσ2avlσ2 Gvvvv(ijkl)

+
∑

ijkl;σ1σ2
a†ciσ1

a†vjσ2
avkσ2aclσ2 Gcvvc(ijkl)

+
∑

ijkl;σ1σ2
a†ciσ1

a†vjσ2
ackσ2avlσ2 Gcvcv(ijkl) (II.62)
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The a’s are annihilation operators and the a†’s creation operators. The operator

a†ck (a†vk) creates an electron in the conduction (valence) band with wavefuction

ψck(r) (ψvk(r)). In Eq. (II.62), G(ijkl) is the Coulomb integral. The Coulomb

integral is given by

G(ijkl) =
∫ ∫

dr1dr2ψ
∗
i (r1)ψ

∗
j (r2)

e2

|r1 − r2|ψk(r2)ψl(r1). (II.63)

To solve for the exciton states, we use the single-particle electron and

hole states and take into account the direct Coulomb interaction (II.62). This

process is the usual two-body problem, where from electron and hole coordinates

we move to relative and center-of-mass motion and M = mh + me. The exciton is

labelled by a wave-vector q, which is the sum of the electron and hole wavevectors.

Noticing that, when exchange interaction between electron and hole is neglected,

the problem can be mapped to the Hydrogen atom problem with different masses

we can readily write down the exciton energy, which is

En(q) = −Ry∗

n2
+

q2

2M
, (II.64)

with Ry∗ the effective Rydberg energy. We point out that the concept of the

exciton goes beyond the independent electron approximation and can be defined

in a fully interacting electronic system. Its effective mass M can be defined in the

many body problem in the limit of small binding energy, small total momentum

q, large spatial extent of the exciton, and slowly varying external potential [124].

2. Biexcitons

Excitons are not the only possible excitations in a semiconductor. If we

view excitons like atoms, then we expect them to interact with each other and

form molecular states. Indeed, excitons interact and form biexcitons.

Biexcitons are, in analogy to molecules, states of lower total energy than

the two non-interacting excitons. The energy difference 2Eexc−Ebiexc is the binding
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energy of the biexciton. In the following sections we discuss the importance of

biexcitons and of other composite bound states in optical quantum computation

schemes in semiconductors. Typical values of biexiton binding energies are of the

order of several meV’s in quantum dots [83].

F. Excitons in the Quantum Dot

The treatment of excitons in the quantum dot is quite similar to that in

the bulk semiconductor.

In the envelope function approximation, the optical selection rules are

found by requiring

〈Ψc(r)|r|Ψv(r)〉 6= 0. (II.65)

The envelope part of the wavefunction–as slowly varying–can be pulled out of the

integral, so that the selection rules are the usual optical selection rules from the

bulk, with the additional restriction on the envelope functions

〈Fc(r)|Fv(r)〉 6= 0. (II.66)

The above relation predominantly allows for transitions between envelope states

with the same quantum numbers (n,m). For the cylindrically symmetric dot, we

can readily see that ∆m = 0 should strictly hold, since for ∆m 6= 0 the integral

vanishes due to the radial part ei∆mφ.

The direct Coulomb integrals are now given by

Gd(ijkl) =
∫ ∫

dr1dr2F
∗
i (r1)F

∗
j (r2)

e2

|r1 − r2|Fk(r2)Fl(r1), (II.67)

and the creation and annihilation operators in Eq. (II.62) acquire an extra index,

which carries the envelope function information. The replacements of the envelope

function in the Coulomb integral is because the Coulomb interaction becomes
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much stronger with confinement, due to stronger overlap of the electron and hole

wavefunctions. This is also why the optical dipole matrix elements in quantum

dots are much larger than those of atoms.

Using the Fock-Darwin states from Section D., analytical expressions for

the Coulomb integrals can be found. We list them here. The derivation can

be found in ref. [116] for electrons, and straightforwardly modified to include

interactions between electrons and holes.

V eeee
n1m1,n2m2,n3m3,n4m4

=
e2

4πεεr

√
λe δm1+m2,m3+m4

[
4∏

i=1

ni!

(ni + |mi|)!

]1/2

×
n∑

(4)j=0

(−1)j1+j2+j3+j4

j1!j2!j3!j4!

4∏

`=1


 n` + |m`|

n` − j`




×2−K/2−1/2
κ∑

(4)`=0

δ`1+`2,`3+`4

4∏

t=1


 κt

`t


 (−1)κ2+κ3−`2−`3

×Γ(Λ/2 + 1)Γ([K − Λ + 1]/2)

V hhhh
n1m1,n2m2,n3m3,n4m4

=
e2

4πεεr

√
λh δm1+m2,m3+m4

[
4∏

i=1

ni!

(ni + |mi|)!

]1/2

×
n∑

(4)j=0

(−1)j1+j2+j3+j4

j1!j2!j3!j4!

4∏

`=1


 n` + |m`|

n` − j`


 (II.68)

×2−K/2−1/2
κ∑

(4)`=0

δ`1+`2,`3+`4

4∏

t=1


 κt

`t


 (−1)κ2+κ3−`2−`3

×Γ(Λ/2 + 1)Γ([K − Λ + 1]/2)

V ehhe
n1m1,n2m2,n3m3,n4m4

=
e2

4πεεr

λ(|m1|+|m4|+1)/2
e λ

(|m2|+|m3|+1)/2
h√

λe + λh
[

4∏

i=1

ni!

(ni + |mi|)!

]1/2 n∑

(4)j=0

(−1)j1+j2+j3+j4

j1!j2!j3!j4!

4∏

`=1


 n` + |m`|

n` − j`




λ(j1+j4)
e λ

(j2+j3)
h

κ∑

(4)`=0

δ`1+`2,`3+`4(−1)κ2+κ3−`2−`3

λ(κ3+κ2−`3−`2)
e λ

(κ1+κ4−`1−`4)
h (λe + λh)

−K/2(λeλh)
(Λ−K)/2

×
4∏

t=1


 κt

`t


 Γ(Λ/2 + 1)Γ([K − Λ + 1]/2)
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V eheh
n1m1,n2m2,n3m3,n4m4

= β
e2

4πεεr

2λ(|m1|+|m3|+2)/2
e λ

(|m2|+|m4|+2)/2
h (λe + λh)

−3/2

[
4∏

i=1

ni!

(ni + |mi|)!

]1/2 n∑

(4)j=0

(−1)j1+j2+j3+j4

j1!j2!j3!j4!

4∏

`=1


 n` + |m`|

n` − j`




λ(j1+j3)
e λ

(j2+j4)
h (λe + λh)

−K/2
κ∑

(4)`=0

δ`1+`2,`3+`4(−1)κ2+κ3−`2−`3

×
4∏

t=1


 κt

`t


 Γ(Λ/2 + 1)Γ([K − Λ + 1]/2), (II.69)

where

κ1 = j1 + j4 + (|m1|+ m1)/2 + (|m4| −m4)/2, (II.70)

κ2 = j2 + j3 + (|m2|+ m2)/2 + (|m3| −m3)/2, (II.71)

κ3 = j2 + j3 + (|m2| −m2)/2 + (|m3|+ m3)/2, (II.72)

κ4 = j1 + j4 + (|m1| −m1)/2 + (|m4|+ m4)/2, (II.73)

and Λ = `1 + `2 + `3 + `4, K = κ1 + κ2 + κ3 + κ4, and β comes from the Bloch

function overlap.

Taking only heavy holes into account, there are four possible excitonic

states, corresponding to the four combinations of the spin up and spin down elec-

tron with the two mj = ±3/2 holes. The four excitons differ in their total angular

momentum and its projection. The four possible states are degenerate in the ab-

sence of a magnetic field and when electron-hole exchange interaction is neglected.

They are listed below, in the |JMJ〉 basis:

• |22〉

• |22̄〉

• |11〉

• |11̄〉
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From these, only the two last ones can be excited optically. This is due to selection

rules; the photon carries angular momentum ` = 1, whereas the vacuum of the

quantum dot is not polarized. Therefore, the final state should have ` = 1 and a

projection of ±1, depending on the polarization of the exciting laser.

Fine structure of excitons has been observed in experiments [7, 130], and

it is due to exchange interaction between electron and hole.

1. The Exciton Qubit

Excitons in quantum dots have been studied as possible implementations

of qubits for quantum computing [12, 131, 24]. The two qubit states are the ab-

sence (≡ |0〉) and the presence (≡ |1〉) of an exciton in the dot. By use of energy

selectivity and Pauli’s exclusion principle, a laser tuned at the first excitonic transi-

tion will create a single exciton. Rabi oscillations of excitons, which constitute the

single-qubit rotations, have been demonstrated [129]. Another attractive aspect

is that initialization of this qubit is trivial, since one of the states is the semicon-

ductor vacuum (no excitons present), which is robust up to high temperatures.

Two-qubit controlled operations have also been demonstrated experimentally, by

clever use of the biexciton states [83]. We briefly review the idea.

As already mentioned, the presence of an exciton in the dot changes the

resonant energy of a second exciton by the biexciton binding energy. Therefore,

after creating–by use of a Πx linearly polarized laser–the superposition state |0〉+|1〉
(unnormalized), a second, Πy linearly polarized π-pulse, tuned at the biexciton

transition and with bandwidth small enough compared to the biexciton binding

energy, will create the entangled state |00〉+|11〉, from the initial factorizable |00〉+
|10〉 state. The truth table of this gate has been shown to be a c-rot with fidelity

almost 80%. Clearly, the gate is limited by the short recombination times of the

excitons. Moreover, this is not a scalable scheme for a quantum computer. Thus,

the spin of an excess electron in a quantum dot is now pursued in semiconductor

quantum computing research, in order to take advantage of the long dephasing
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times of the spin. In the following section we introduce the charged exciton–also

called a trion–which is the key auxiliary state for optically controlled spins in

quantum dots for quantum computation and quantum information processing.

G. Trions

Excitons and biexcitons are not the only composite particle aggregates

in semiconductor nanostructures. A whole hierarchy of composite particles was

already predicted in the late ’50’s [76]. Among those, a positively or negatively

charged exciton was also predicted, but only demonstrated experimentally in the

90’s in semiconductor quantum wells [66]. The charged exciton, also known as

a trion, is a bound state of two electrons and a hole (X−) or two holes and one

electron (X+). The lowest energy trion in a dot is realized when two electrons

occupy the same dot (orbital) state, and thus form a singlet spin state, in the

presence of a hole in the lowest (heavy) hole dot state. Higher excited trion states

have also been observed in self-assembled dots [140]. For concreteness we will focus

on the lowest X− trion. The two electrons occupy the same dot state and are thus

in a spin singlet state. Therefore their exchange interaction with the hole cancels,

and unlike the exciton there is no fine structure for the trion [130].

1. Trion spectra

Within the simple harmonic oscillator model assumed for the single-

particle Hamiltonian, the Coulomb integrals can be calculated analytically. Due

to the definite parity of the Coulomb interaction, most matrix elements cancel by

symmetry considerations, so that the problem amounts to diagonalizing at most

4× 4 matrices.
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H. Quantum Computing with Spin Qubits Manipulated

via Intermediate Trion States

Spins in semiconductor quantum dots offer the possibility of an attrac-

tive qubit. They can be trapped in the dot, which is grown on a semiconductor

substrate, and are thus integrable with existing semiconductor technology. They

have a long spin lifetime T1, of the order of 1 ms at low temperatures, and an

anticipated long coherence time T2, which has a lower bound of 10 ns, as measured

from ensemble experiments [41].

Bx

x

-z k

s+

II.3 Cartoon picture of the quantum dots and laser.

However, the single-qubit rotations are a challenging issue. To avoid

direct control between the two spin states via a pulsed magnetic field, which would

be slow and more importantly hard to focus on a single spin, optical control of

the spins was suggested [61] through intermediate trion states. The three relevant

states in this scheme are the two spin states of the extra electron, split by a static

in-plane magnetic field and the trion state. The optical axis of the laser coincides

with the growth direction, z, as shown in Fig. II.3. When circularly polarized laser

is used and focused on the heavy hole trion only one of the two heavy-hole trion

states is excited, depending on the sense of the polarization. The relevant system
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can be thought of as a three-level Λ system, in the language of atomic physics. Of

course, contrary to the atom, the excited state in the dot is a multi-particle state.

Note that we use the convention of using z to denote the growth axis, and x is the

single-electron spin quantization axis.

A peculiarity of the semiconductor Λ system is that the trion state, al-

though polarized along the z direction, i.e., perpendicularly to the magnetic field,

it does not precess about it for fields up to about 5 T [130]. This is due to the

energy separation of the light-hole from the heavy-hole states, as explained above:

for the mj = 3/2 to flip to the mj = −3/2 it has to pass through the mj = ±1/2

light-hole states. If we fold those states back into the heavy-hole Hamiltonian,

the term coupling the two heavy-hole states is proportional to B3/∆2
H,L, where

∆H,L is the heavy-hole light-hole splitting due to the confinement. Therefore, the

precession is suppressed for low fields.

In Fig. II.4 we show the energy levels, in the single-particle picture (left

panel) and in the energy level configuration, II.5, on the right. In the remaining

chapters we will focus on this three-level system, and study both the optical decay,

in Chapter V, and the optical single-qubit rotations, in Chapter VII, where we also

review other schemes for single optical spin rotations.
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II.4 Valence and conduction

band in a single-particle depic-

tion of the optical excitation.

The laser excites an electron-

hole pair. The composite three-

particle state is the trion.

σσσσ-σσσσ+ σσσσ+σσσσ-

II.5 Two independent three-

level Λ systems, depending on the

sense of circular polarization of

the exciting laser. The lower lev-

els are the electron spin states

along x and the excited states are

the two heavy-hole trions.



III.

Elements of Semiclassical and

Quantum Optics

As artificial atoms, quantum dots feature many of the phenomena of

quantum optics of atoms. Examples of such effects that have been observed in

dots are photon anti-bunching [94], Rabi oscillations [129], and AC Stark shift

[133]. In this Chapter we provide an introduction to concepts of semiclassical and

quantum optics that are also relevant in quantum dots. The term semiclassical

optics implies that the system (atom, quantum dot, molecule) is treated quantum

mechanically, but the light is treated classically. For example, in the excitation

process, the incoming laser beam contains a large number of photons that it allows

for a semiclassical treatment. On the other hand, to derive spontaneous emission,

quantum mechanical treatment of radiation is needed, as the vacuum fluctuations

play an important role.

A. Light-Matter Interaction Basics

The coupling Hamiltonian between an atom and a laser is given by d̂ ·E,

where d̂ is the dipole operator and E is the electric field. In a full quantum

30
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mechanical formulation, the electric field is also an operator, given by

E(r, t) = i
∑

j

√
h̄ωj

2V ε0

[
ε̂jaje

ikj ·r−iωjt − ε̂∗ja
†
je
−ikj ·r+iωjt

]
, (III.1)

where ωj is the frequency, εj is the polarization and a†j (aj) is the creation (anni-

hilation) operator of a photon in mode j. The exponent multiplying the creation

and annihilation operator may be expanded in a Taylor series eik·r = 1+ ik ·r+ . . ..

Given that the wave vector of light is at least two orders of magnitude larger than

a typical size of an atom, usually linear and higher terms in k · r are neglected.

This is the so-called dipole approximation.

The coupling between the field and the system can also be written

(dσ† + d∗σ)i
∑

j

√
h̄ωj

2V ε0

[
ε̂jaje

ikj ·r−iωjt − ε̂∗ja
†
je
−ikj ·r+iωjt

]
, (III.2)

where σ† (σ) is the raising (lowering) operator and d is the dipole matrix element

for a given transition in the atom. In Eq. (III.2) there are four terms. Two of these

are energy conserving and physically correspond to the excitation (de-excitation)

of an atom –or other quantum system– by the absorption (emission) of a photon.

The other two terms are not energy conserving, and they express the ex-

citation (de-excitation) of the system by emission (absorption) of a photon. These

terms are usually dropped. This is the so-called rotating-wave approximation

(RWA). However, as with any approximation, care should be exercised in some

cases (see ref. [70] for an example where RWA is not valid).

A photon is characterized by its frequency, by its propagation direction,

and by its polarization. It has spin-1 and hence is a vector field. Not all photons

can be absorbed by a given transition. It is well known that the resonance condition

is required, i.e., the energy of the single absorbed photon should match a transition

frequency of the atom (or molecule, or dot). There are more such selection rules

related to the polarization degree of freedom. A photon can excite (or de-excite)

a |∆L| = 1 transition only, due to its vector character. A list of dipole selection

rules follows.
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• ∆n = ±1

• ∆L = ±1

• ∆S = 0

• ∆J = 0,±1, except 0 ←→ 0

• ∆MJ = 0,±1,

where n, L, S, J,MJ are the principal (energy) quantum number, the orbital an-

gular momentum, the spin, the total angular momentum and the projection of

the latter along the quantization axis. When hyperfine coupling is included (i.e.,

coupling between the electron and nuclear spin) there is the extra selection rule

∆F = 0,±1, and MJ is replaced by MF .

B. Two-Level Systems

Two-level systems have been studied widely in quantum mechanics, as

they constitute the simplest non-trivial quantum systems. The electron spin is a

natural two-level system. As we show in this Section, any two-level system can

be mapped onto a spin-1/2 [49], and is sometimes called a pseudospin. Recently,

two-level systems have attracted a lot of attention due to their fundamental impor-

tance in Quantum Computing and Quantum Information Processing. The term

qubit (unit of quantum information, physically implemented by two-level quantum

systems) is sometimes used in the quantum information community to refer to a

generic two-level system.

1. Rabi Oscillations

A well-known example of interaction of matter with radiation is the Rabi

problem. It comprises an example of reversible transitions of a two-level system

due to its coupling with radiation. We follow in large ref. [126]. Consider a

two-level system (spin in a static magnetic field, atom, etc) of energy splitting ωo
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interacting with a time-dependent field (r.f. magnetic field, laser, etc) of frequency

ω. We define the following quantities

∆ = ωo − ω (III.3)

ΩR = 2d · E. (III.4)

The latter is called the Rabi frequency, and it constitutes a measure of the strength

of the driving field. The Hamiltonian in the dipole and RWA is

H =
1

2




−ωo ΩReiωt

ΩRe−iωt ωo


 . (III.5)

In a rotating frame, defined by the transformation W = diag(eiωt/2, e−iωt/2), the

Schrödinger’s equation becomes

i
d

dt




c1

c2


 =

1

2



−∆ ΩR

ΩR ∆







c1

c2


 . (III.6)

The resulting equation III.6 has the form of the time-independent Schrödinger

equation with a constant potential. Defining

Ω =
√

Ω2
R + ∆2, (III.7)

which is sometimes called the grand or effective Rabi frequency, and also

cos θ = ∆/Ω, (III.8)

the eigenstates are

ψ+ =




sin θ
2

cos θ
2


 (III.9)

ψ− =




cos θ
2

− sin θ
2


 , (III.10)

with corresponding eigenvalues ±Ω/2. Taking the initial condition to be that the

system is in the lower state, we find for the time evolved state in the interaction
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picture

Ψ(t) =




−i sin θ sin(Ωt/2) e−i∆t/2

cos(Ωt/2)− i cos θ sin(Ωt/2) ei∆t/2


 . (III.11)

After the application of the time-dependent field, the probability of finding the

system in the excited state at time t is given by

P (t) =
1

2
sin2 θ [1− cos(Ωt)] . (III.12)

There are two important facts to remember from equation III.12; one is that it

oscillates with the effective Rabi frequency, and the other is that the maximum is

1 only in the case of resonance (∆=0). In general, for random t the system is in a

superposition of the two states.

In the above treatment, we have assumed that ΩR is time independent.

Actually, we may generalize the above results for a time-dependent, slowly varying

envelope. In that case, the area of the pulse is defined as

A = 2
∫

dtΩR(t), (III.13)

and for a resonant pulse it expresses the angle by which the Bloch vector, defined

in the next subsection, has been rotated by the pulse. For an atom initially in the

ground state, a resonant π-pulse transfers all the population to the excited state.

2. Bloch Vector

The spin 1/2 is a well-known representation of SU(2). It has some unusual

characteristics compared to the familiar three-vectors; after a 2π rotation it does

not return to the initial state, but acquires a minus sign. An arbitrary pure spin

state is characterized by two real numbers, since the state is normalized and an

overall phase is immaterial. Thus, as was first shown by Bloch, it can be mapped

onto a vector on a unit sphere (called the ‘Bloch sphere’), expressed in terms of

the two angles, the polar ϑ and the azimuthal ϕ. It is called Bloch vector or spin

vector (SV). For a general state, which can be partially or fully mixed, the spin
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vector has length smaller than one. A completely mixed state corresponds to a SV

of length zero (no spin polarization). Given a density matrix ρ, the SV is

−→
S = Tr(Ŝρ), (III.14)

where Ŝ =
∑

i îσi, the σi’s are the Pauli matrices, the î’s are the cartesian unit

vectors.

C. Decay and Decoherence

It is well known that closed quantum systems obey the Schrödinger equa-

tion and are thus governed by unitary evolution. On the other hand, open quantum

systems are usually characterized by non-unitary evolution. A familiar example

is an atom in an excited state, which spontaneously decays via the emission of a

photon. To take into account non-unitary dynamics, a density matrix replaces the

usual wavefunction formalism. Then using a master equation approach, rate equa-

tions can be found for the density matrix. In place of the Schrödinger equation, a

Liouville-von Neumann (L-VN) equation expresses the time evolution of the den-

sity matrix, and the non-unitary dynamics are described by the so-called Lindblad

operators Lj, which form a semigroup (meaning that there are no inverse elements

in the group). The L-VN equation is governed by unitary dynamics. Including

dissipative terms, the general form of the evolution (Lindblad equation) is

ρ̇ = i[ρ,H]− 1

2

∑

j

(
{L†jLj, ρ} − 2LjρL†j

)
. (III.15)

To find the operators Lj a master equation is solved. The general process

is that the density matrix of the whole system (atom + reservoir) is considered, and

the L-VN equation is iterated, so that the coupling between system and reservoir

is taken up to second order in perturbation theory. A partial trace of the reservoir

is taken, leading to the relevant rate equations for the system, which express decay

and decoherence. By decay we refer to the leak of population out of a state or set of

states and by decoherence the loss of phase coherence, but the term decoherence
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is sometimes used to refer to both population and coherence loss. A detailed

derivation of spontaneous emission equations via a master equation is given in

Chapter V.

D. Unitary Versus Non-Unitary Dynamics

The dominant view of spontaneous emission and in general non-unitary

dynamics is that they cause decoherence and/or decay. However, this view does

not always hold. In general the following is true for unitary (U) and non-unitary

(Λ) evolution:

• pure state
U−→ pure state

• mixed state
U−→ mixed state

• pure state
Λ−→ mixed/pure state

• mixed state
Λ−→ pure/mixed state

The first two are easily seen by using the definition of the purity of a state, P =

Tr(ρ2). Then for the time-evolved density matrix we have

P ′ = Tr(ρ′2) = Tr
([

U †ρU
]2

)
= Tr

(
U †ρUU †ρU

)
= Tr

(
U †ρ2U

)
= Tr(ρ2) = P .

In the last but one step we have used the cyclic property of the trace. We have hence

shown that a unitary operation cannot change the purity of a density matrix. For

the remaining two cases in the list we shall use examples. A pure state becoming

mixed when subjected to non-unitary evolution is a common situation. A pure

state remaining pure under non-unitary evolution will be investigated in great

detail in Chapters V and VI. A familiar example is a two-level system, initially in

the excited state. After a long time compared to the decay time, the final state is

the ground state, i.e., a pure state. An example of a mixed state becoming pure

under non-unitary evolution is again a two-level system initially in a complete

mixture of the two states. Again, after long enough time so that the decay will

have taken place, the final state is the ground state, a pure state.
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1. Optical Pumping

It is clear from the above discussion that in order to initialize a system

(that is, steer it from a mixed into a pure state), unitary evolution is not sufficient.

Non-unitary dynamics are necessary, in order for entropy to be removed from the

system. A common way of initializing a system in atomic physics is through so-

called optical pumping. The basic idea is to use a laser, which populates an excited,

unstable state. This state will decay, thus increasing the purity of the system. For

example, consider a three-level system with two lower levels and a single excited

state. Initially, the system is in a mixture of the two lower levels. If a π pulse,

focused only at the one transition, is used then all the population from that level

will be transferred to the excited state. Assuming equal decay to the two lower

levels, the population of the one state, after the decay, will have increased by 0.25,

while the other’s will have decreased by the same amount. Repeating this process

several times can asymptotically transfer all the population to the one of the two

lower levels and thus initialize the system. We will also discuss optical pumping

in the context of a quantum dot in Chapters V and especially VII.

E. Strong field effects

When the laser is strong, sometimes a more intuitive understanding of the

physics is achieved by considering the eigenstates of the total atomic Hamiltonian,

including the dipole coupling. The states of the atom are then called dressed states,

since they can be viewed as the bare atomic states ‘dressed’ by the radiation.

Strong field effects known from atomic physics that have been recently

studied in semiconductors include coherent population trapping [50] in bound

donors in the bulk and electromagnetically induced transparency (EIT) [59, 106]

in quantum wells. EIT in its simplest version requires a three-level system and

two strong optical fields. The basic idea is that when the one transition is strongly

driven by the one field, then the system becomes transparent to a field of given
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strength resonant with the other transition. This means that the absorption is

cancelled, owing to destructive quantum interference of two pathways, and the

speed of the light in the medium becomes very small or zero. This has significant

implications in quantum technologies in general, as it allows for slow or stopped

light, which would form a basis of a quantum memory. EIT has also been pro-

posed as a mechanism to generate a Kerr effect, i.e., effective (nonlinear) coupling

of photons [120].

F. Interaction of Laser with Ensembles

An ensemble of systems, for example an ensemble of atoms or quantum

dots is quite different than a single such system. In atomic physics, there are

effects such as collisions between atoms, which have to be taken into account in

the study of the dynamics. In quantum dots, there is the issue that all the dots are

not identical, and therefore when an ensemble quantity is calculated, an average

has to be taken of this quantity over the ensemble. Moreover, in the quantum

dots, the trapped electron interacts with a large number of nuclear spins, about

105−106, via hyperfine coupling. Each spin is subject to a different local magnetic

field created by the nuclear spins. This is an extra inhomogeneous contribution,

and typically gives rise to dephasing mechanisms, not related to population decay,

called pure dephasing. The dephasing time of an ensemble is called T ∗
2 , taken

from NMR literature, and includes both dephasing originating from population

relaxation and pure dephasing.

In some cases, the radiation propagates inside the ensemble, i.e., the emit-

ted radiation from one part of an ensemble is reabsorbed by another. Then in the

theoretical treatment, the spatial degree of freedom is kept, and the Schrödinger-

Maxwell equations are solved. An example of an ensemble effect of matter-radiation

coupling is the so-called Self Induced Transparency (SIT) of McCall and Hahn [91].

In this phenomenon, resonant 2π sech pulses are used, which have the special prop-
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erty that they do not lose their shape or get attenuated as they propagate in the

medium (solitons). SIT has also been theoretically investigated in an ensemble of

quantum dots [104].

G. Types of Pulses

Light coming out of a laser may be pulsed or continuous. In the former

case, the pulse shape is an important feature of the laser and may play an important

role on the coupling with matter. A comparative study of various commonly used

pulse shapes is given in [11]. On the other hand, when the laser is not pulsed but

comes out continuously1 it is called continuous wave (CW).

Pulsed lasers are amplitude modulated by definition. A laser can also

have phase modulation, which means that the central frequency is not a constant,

but varies with time. Frequency modulation is also called ‘chirping’.

A laser is not completely monochromatic. From the time-frequency un-

certainty relation, it is clear that a monochromatic laser field would correspond to

infinitely long pulses. Pulsed lasers are characterized by their bandwidth, which

expresses the size of the frequency range about the central frequency of the laser.

When a pulse has the minimum time length allowed by its spectrum it is called

transform limited, or Fourier-transform limited.

H. Three-Level Systems

Three-level systems involve two dipole transitions. There are three types

of three-level systems, all taking their names from Greek and Latin letters: Λ

systems, which have two lower levels coupled to an excited one, Ξ (or cascade)

systems, which have an excited state coupled to a lower state, coupled to a ground

state, and V systems, which have one ground state coupled to two excited states, as

1clearly, there is a rising and falling time, and the pulse itself has a finite duration, but it is still long
enough to be thought of as continuous.
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III.1 Three-level systems in the Λ, Ξ and V configurations respectively.

shown in Fig. III.1. Λ systems appear in quantum computing schemes [61, 32, 19],

as it is sometimes preferable to couple the two qubit states via a Raman transition

to an auxiliary excited state. They are also important in coherent population

trapping, lasing without inversion and EIT. In this dissertation Λ systems will be

extensively studied. V systems also appear in quantum computing schemes with

excitons [12, 131, 24].

I. Quantum Optics

In the previous Sections of this Chapter we focused on semiclassical optics.

In the context of quantum dots, quantum optics appear in master equations for

the derivation of spontaneous emission, which we present in Chapter V.

Quantum optics also appear in schemes involving cavities, where a sin-

gle mode or a finite number of electromagnetic modes are allowed. Cavities are

relevant in many quantum information processing schemes besides quantum com-

puting, such as quantum networks [98, 147] and quantum memory architectures

[89]. The original proposed scheme of quantum information processing with op-

tically controlled spins in quantum dots made use of a cavity in order to achieve

two-qubit operations [61]. In atomic physics, cavities are usually implemented by

mirrors and they are called optical cavities. In semiconductors, they are are called

microcavities, due to their size which is in the micron range. They can be mi-

cropillar structures, microdiscs, or defects in photonic crystals. An advantage of
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the quantum-dot–microcavity system as compared to the atom in an optical cavity

is that the quantum dot, unlike the atom, does not require to be trapped inside

the microcavity since its position is fixed by its growth and thus, unlike the atom,

does not exhibit motional thermal fluctuations.

1. Quantum Optics with Quantum Dots

In the recent years there has been considerable interest in quantum op-

tics with quantum dots. In particular, quantum dots are being researched for

their potential use as single-photon sources on demand [119, 95, 153, 150] from

the lowest excitonic transition. Single-photon sources are of importance in quan-

tum information tasks, such as quantum cryptography (for a review, see [54]) and

linear optics quantum computing [80]. Compared to other quantum single-photon

sources, such as single atoms, ions, molecules, and defects (e.g. nitrogen vacancies

in diamond) the advantages of the QDs are their radiative efficiency, their tailored

emission properties, their compatibility with semiconductor technology and their

integrability in cavities, so that spontaneous emission may be controlled. The main

challenges are the required low temperatures and the problem of photon extraction

out of the solid.

Another application of quantum optics in quantum dots is entangled pho-

ton generation [47, 2]. The states used in this case are the biexciton cascade (Ξ)

transition. The two emitted photons have opposite linear polarizations as we have

discussed in Chapter II, so for some emission directions they are polarization-

entangled. However, they are distinguishable in frequency, and therefore spectral

filtering has been used to erase the which-path information and produce an en-

tangled state [2]. Alternatively, a quantum eraser could be employed to the same

end. Again, the advantage of using quantum dots for entangled photon genera-

tion is the fast spontaneous emission rate in the dots and the integrability with

semiconductor technology.



IV.

Mathematical Description of the

Optical Processes in Coherent

Nonlinear Pump-Probe

Experiments

Nonlinear pump-probe experiments have been used to measure the spin

state of an electron in a dot [41], and the excitonic state in a dot [129], and can be

used both for a single dot measurement and for an ensemble measurement. In the

single dot case, near-field techniques are used, such as coated fiber tips and masks

with apertures. The latter method involves an aluminum mask with submicron

apertures, opened with electron beam lithography. The small size of the apertures

results in the scattering of the passing beams, and thus a lens is used to collect

the scattered light.

The pump is used to create spin polarization and the probe to measure

it. In the experiments, what is measured is differential transmission of the probe,

which is the transmission of the probe beam in the presence of the pump minus

the transmission of the probe in the absence of the pump (hence differential), as a

function of the time delay between pump and probe. In the following section we

42
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will provide some further details on how this is achieved experimentally.

A. Homodyne-detected Nonlinear Response and Differen-

tial Transmission Signal

To understand how this works, first we will expand the density matrix ρ

of the system in the presence of the electric field of the laser beam in a sum

ρ =
∞∑

n=0

ρ(n),

where ρ(n) expresses the contribution to nth order in the applied electric field, then

clearly the odd terms are optical coherences (or polarizations) and the even terms

are populations, and the sum of the terms of a given order in the sum is not

necessarily a density matrix itself. The optical polarization is

P(n) = Tr(ρ(n)d),

where d is the optical dipole operator. For weak fields, the lowest nonlinear polar-

ization is of third order. It can be expressed as

P (3)(ω) = χ(3)(ω = ω` − ωm + ωn)Ẽ`Ẽ
∗
mẼn,

where χ(3) is the third order nonlinear susceptibility. In the case of two fields,

the pump and the probe, the two first fields come from the pump and the third

from the probe. To experimentally isolate the third order response from the much

stronger transmitted field and from the linear response, the intensities of the the

two fields are amplitude modulated at different frequencies, by use of acousto-

optical modulators. The two signals are homodyne-detected at the difference of

the two frequencies. Using the index α for the pump and β for the probe, we will

sketch why this is the case. For more details, see ref. [28]. The total photocurrent

is proportional to the intensity
∣∣∣∣∣∣

∑

k=α,β

(Ek + E
(1)
k ) + E(3)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
∑

k=α,β

(Ek + E
(1)
k )

∣∣∣∣∣∣

2

+
∣∣∣E(3)

∣∣∣
2
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+2
∑

k=α,β

<(E(3) · (E(1)
k )∗) + 2

∑

k=α,β

<(E(3) · E∗
k). (IV.1)

Let us examine now the various terms of Eq. (IV.1). The first term is clearly not

modulated at the difference frequency, since it is the intensity that gets modulated

and not the electric field. The second term has the right modulation frequency, but

it will be negligible in the weak field regime. The third term is also weak and will

be dropped. Therefore, the strongest term that oscillates at the right frequency

and is therefore detected is the last term of Eq. (IV.1).

Now we shall show why this term is equivalent to the differential trans-

mission signal (DTS). In the absence of the pump, the signal is

Toff =
∣∣∣Eβ + E

(1)
β + E

(3)
β

∣∣∣
2
, (IV.2)

where E
(3)
β is the nonlinear signal originating from the probe only. In the presence

of the pump, the signal instead is

Ton =
∣∣∣Eβ + E

(1)
β + E

(3)
β + Eα + E(1)

α + E(3)
α + E

(3)
αβ

∣∣∣
2
. (IV.3)

We assume that the pump and probe propagate along different directions.

Taking the difference between Eqs. (IV.3) and (IV.2), again neglecting higher order

terms, and retaining only terms that propagate along the probe field direction we

find

Ton − Toff ∝ 2<(E∗
α · E(3)

αββ). (IV.4)

B. Density Matrix Control and Measurement

Now we shall focus on the three-level system, consisting of the two spin

states of the excess electron in the dot and the trion state. The magnetic field is in

the so-called Voigt geometry, which means that the external static magnetic field

is in the plane. The following analysis will include, besides the pump and probe

pulses, a control pulse as well. This is necessary if we want to talk about optical

control of the spin. The pump pulse is used to initialize the spin, the control
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pulse ideally rotates it or more generally controls it, and the probe measures it.

To ensure that the spin vector measured is the one initialized by the pump and

controlled by the control pulse, the pump and probe should be acousto-optically

modulated as explained above, and the control will remain unmodulated, so its

effect is measured to all orders. In what follows, we will not include the probe

explicitly, but we will keep in mind the above analysis and keep only the relevant

terms that the probe will detect.

We take the initial state of the system to be a mixture of the two spin

states. The density matrix is

ρ(0) =




1/2 0 0

0 1/2 0

0 0 0




, (IV.5)

where the superscripts denote the order in the applied electric field. No superscript

indicates that all orders are kept.

Assume that the pump, acting at t = 0, is circularly polarized σ− pulse of area

∆θ ≡ 2
∫

E(t)dt. For simplicity, we also take the pulses to be instantaneous. The

bandwidth of the pulses is thus large enough to cover both transitions. Then, right

after the action of the pulse, the system in the {|z〉, |z̄〉, |T̄ 〉} basis is described by

ρ =




1/2 0 0

0 1/2− Pα 0

0 0 Pα




, (IV.6)

where Pα is the population transferred to the trion. We also ignore spontaneously

generated coherence (explained in the following Chapter), which means that the

trion equally decays to the two spin basis states and this decay can be taken to be

instantaneous. Then the density matrix is

ρ =




1/2 + Pα/2 0 0

0 1/2− Pα/2 0

0 0 0




, (IV.7)
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In the experiment, acousto-optical modulation of the pump and probe, as explained

above, ensures that only the part Pα is measured. We can separate ρ in the

following way

∞∑

n=1

ρ(n) = ρ− ρ(0) =




1/2 + Pα/2 0 0

0 1/2− Pα/2 0

0 0 0



−




1/2 0 0

0 1/2 0

0 0 0




=




Pα/2 0 0

0 −Pα/2 0

0 0 0



≡ ρ̃α. (IV.8)

The latter is the part of the density matrix that is measured; note that it is not

a density matrix itself. We will proceed the analysis keeping only this part of the

density matrix, ρ̃α, the tilde reminding us that we are not looking at a density

matrix, but at a part of one. The effect of the control pulse on the mixed part of

the density matrix will be similar to the pump pulse to create some polarization.

This will not be modulated at the pump frequency, and so it will not be detected.

For completeness we write it here:

ρ− ρ̃αβ =




1/2 + Pβ/2 0 0

0 1/2− Pβ/2 0

0 0 0




. (IV.9)

It is common in experiments to use a probe of the same circular polariza-

tion (SCP) as the pump, and then repeat the experiment with a probe of opposite

circular polarization (OCP) and subtract the signals. This way irrelevant terms

are subtracted off, reducing the noise and amplifying the measurement of the spin

vector.

DTS ∼ DTS(σ−)−DTS(σ+) = ρT̄ T̄ + (ρzz − ρz̄z̄) = ρT̄ T̄− < Sz > . (IV.10)

From Eq. (IV.10) it is clear that when both probe polarizations are used and the

signals are subtracted after the decay of the trion what it is measured is the z

component of the spin vector.



47

C. Derivation of expression for the spin vector

The Hamiltonian in the z basis is

Ho =




0 ωB 0

ωB 0 0

0 0 εT




, (IV.11)

and the unitary operation representing the precession about the B-field is given by

Upr(t) =




cos(ωBt) −i sin(ωBt) 0

−i sin(ωBt) cos(ωBt) 0

0 0 e−iεT t




. (IV.12)

Then at time t the
∑∞

n=1 ρ(n) part of the density matrix is given by

ρ̃α(t) = Upr(t)ρ̃αU †
pr(t) =

Pα

2




cos(2ωBt) i sin(2ωBt) 0

−i sin(2ωBt) − cos(2ωBt) 0

0 0 0




(IV.13)

Now, let us consider a control pulse, acting at time t = tc, i.e., when

ρ̃α(tc) =
Pα

2




cos(2ωBtc) i sin(2ωBtc) 0

−i sin(2ωBtc) − cos(2ωBtc) 0

0 0 0




, (IV.14)

which is described by the Hamiltonian

Hc(t) =




0 0 0

0 0 Ω(t− tc)

0 Ω∗(t− tc) 0




, (IV.15)

The control is also taken to be instantaneous (no spin precession during its action)

and of area ∆θ. Then the unitary transformation induced by the control is
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Uc =




1 0 0

0 cos(∆θ
2

) −i sin(∆θ
2

)

0 −i sin(∆θ
2

) cos(∆θ
2

)




. (IV.16)

And right after the action of the control we have

ρ̃αβ = Ucρ̃α(tc)U
†
c

=
Pα

2




cos(2ωBtc) i sin(2ωBtc) cos(∆θ
2

) − sin(2ωBtc) sin(∆θ
2

)

−i sin(2ωBtc) cos(∆θ
2

) − cos(2ωBtc) cos2 ∆θ
2

− i
2
cos(2ωBtc) sin(∆θ)

− sin(2ωBtc) sin(∆θ
2

) i
2
cos(2ωBtc) sin(∆θ) − cos(2ωBtc) sin2 ∆θ

2




.

(IV.17)

Then, right after the control pulse, the DTS is given by

DTS(∆θ, tc) = −Pα

2
cos(2ωBtc) sin2

(
∆θ

2

)
+

Pα

2
cos(2ωBtc)

(
1 + cos2

(
∆θ

2

))
,

(IV.18)

and the difference DTS(∆θ, tc)-DTS(∆θ = 0, tc), which might be easier to compare

with experiment, equals

DTS(∆θ, tc)−DTS(∆θ = 0, tc) =

−Pα

2
cos(2ωBtc) sin2

(
∆θ

2

)
+

Pα

2
cos(2ωBtc)

(
1 + cos2

(
∆θ

2

))
− Pα cos(2ωBtc),

(IV.19)

which becomes

DTS(∆θ, tc)−DTS(∆θ = 0, tc) = −Pα

2
(1− cos(∆θ)) cos(2ωBtc). (IV.20)

After the trion decay, we have:

ρ̃′αβ =
Pα

2
×
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cos(2ωBtc)− 1
2
cos(2ωBtc) sin2 ∆θ

2
i sin(2ωBtc) cos(∆θ

2
) 0

−i sin(2ωBtc) cos(∆θ
2

) − cos(2ωBtc) cos2 ∆θ
2
− 1

2
cos(2ωBtc) sin2 ∆θ

2
0

0 0 0




.

And at a later time, after precession, it is given by

ρ̃αβ(t) = Upr(t− tc)ρ̃
′
αβU †

pr(t− tc) (IV.21)

The matrix elements of ρ̃αβ(t) ≡ R are

R11 =
Pα

8

[
(3 + cos ∆θ) cos (2ωB(t− tc)) cos(2ωBtc)

− 4 cos
∆θ

2
sin (2ωB(t− tc)) sin(2ωBtc)

]
(IV.22)

R12 =
iPα

4

[1

2
(3 + cos ∆θ) sin (2ωB(t− tc)) cos(2ωBtc)

+ 2 cos
∆θ

2
cos (2ωB(t− tc)) sin(2ωBtc)

]
(IV.23)

R22 = −Pα

8

[
(3 + cos ∆θ) cos (2ωB(t− tc)) cos(2ωBtc)

− 4 cos
∆θ

2
sin (2ωB(t− tc)) sin(2ωBtc)

]
= −R11 (IV.24)

R21 = R∗
12. (IV.25)

The z projection of the associated spin vector is given by

< Sαβ
z (t) > = R11 −R22

=
Pα

4

[
(3 + cos ∆θ) cos (2ωB(t− tc)) cos(2ωBtc)

−4 cos
∆θ

2
sin (2ωB(t− tc)) sin(2ωBtc)

]
(IV.26)

To summarize, the measured spin vector (SV) affected by the action of a

resonant σ− control pulse of area ∆θ at time tc is given by

< Sα
z > = Pα cos (2ωBt) for t < tc, and (IV.27)

< Sαβ
z (t) > =

Pα

4

[
(3 + cos ∆θ) cos (2ωB(t− tc)) cos(2ωBtc)

−4 cos
∆θ

2
sin (2ωB(t− tc)) sin(2ωBtc)

]
for t > tc. (IV.28)
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From Eq. (IV.28) we see that for any pulse area other that ∆θ = 2π there will be

population transfer to the trion, with subsequent reduction of the size of the spin

vector through the trion decay.

Let us take a look at the case ∆θ = π. Then the SV for t > tc is given by:

< Sαβ
z (t; ∆θ = π) >=

Pα

4
[cos(2ωBt) + cos (2ωB(t− 2tc))] . (IV.29)

From Eq. (IV.29), we can see what happens to the SV depending on the incidence

time of the control pulse, tc. For tc = nπ/2ωB, with n integer, which is when the

SV is pointing along ±z, the SV after the control pulse keeps precessing with the

same phase but with the amplitude reduced to half. On the other hand, when

tc = (2n+1)
4

π/ωB, i.e., SV pointing along y, the SV vanishes after the control pulse.

These conclusions are in agreement with the numerical simulations, shown in Figs.

IV.1 and IV.2.
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IV.1 Difference in DTS signals

between a control pulse with area

π and no control for varying tc,

based on the simple analytical

model.
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IV.2 Numerical simulation of

the difference in DTS signals be-

tween a control pulse with area π

and no control for varying tc.

D. Spin Rotation

When ∆θ = 2π and the control pulse is resonant, we have a π rotation

of the spin about the growth direction. This is rather obvious if we realize that
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the |z̄〉 state and the trion |T̄ 〉 form an SU(2). A 2π rotation of the pseudospin

results in a sign change, which is relative to the |z〉 state, and hence a π rotation

of the spin. Other angles of rotation can be achieved, and expressed analytically

as functions of the pulse parameters. The analysis is given in Chapter VII.

For pulses of area other than 2π, clearly population is transferred to the

trion and therefore there is leakage out of the computational spin subspace of the

total Hilbert space. Hence, care has to be exercised in experiments where the

objective is optical spin rotation. An unambiguous demonstration of spin rotation

requires proof that there is no leakage out of the relevant Hilbert subspace.



V.

Spontaneously Generated

Coherence in Quantum Dots

In this Chapter we introduce the concept of Spontaneously Generated

Coherence (SGC), which –as the name suggests– is coherence generated by sponta-

neous emission. Starting from a master equation, we give a microscopic derivation

of the spontaneously generated coherence term.

We review SGC in the context of atomic physics, where it was initially

predicted [64] and we discuss the obstacles of experimental confirmation of SGC

in an atomic system. SGC is introduced for a semiconductor quantum dot and an

intuitive picture of SGC in terms of the spin vector is given. Finally, we present

results from the experiment we interpret as the effects that demonstrated SGC

in an ensemble of quantum dots. This was the first demonstration ever of the

SGC phenomenon. We explained why it occurred in a solid state system despite

numerous suggestions of experiments for SGC in atoms.

A. Spontaneously Generated Coherence

The common view of spontaneous emission is that it destroys coherence.

This is usually the case, and it is therefore not possible in general to describe

an open system with the wavefunction formalism. Therefore, in order to account

52
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g

2d

d2 d1

V.1 A three-level system in the Λ configuration. The relevant quantity for SGC

is the excited state linewidth γ compared to the lower-level separation 2δ.

for spontaneous emission, a density function formalism is needed. However, cases

where spontaneous emission may actually lead to coherence have been investigated

both in textbooks [33] and in research papers [22]. An example is a Λ system which

meets the following conditions [64]

• the dipole matrix elements of the two transitions are non-orthogonal, i.e.,

d1 · d2 6= 0

• the splitting between the lower levels is smaller than or comparable to the

excited state linewidth, i.e., 2δ ≤ γ

B. Derivation of SGC from a Master Equation

In quantum mechanics, decay and decoherence arise when part of a com-

posite system is ignored. Then, the dynamics of the remaining part, which we

usually call ‘system’ are non-unitary. To describe the effect of the ‘ignored’ part,

usually termed the bath or the reservoir, master equations are employed [33]. The

basic assumption is that the coupling is weak, so that the interaction between the

system and the reservoir may be treated by perturbation theory. Then, the idea

is to start from the total density matrix of the composite system and iterate the
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formal solution once. Then the square of the coupling appears in the equations.

By taking partial trace with respect to the reservoir, rate equations are derived

for the density matrix of the system, and in general they are non-unitary. This

treatment amounts to a second order perturbation theory in the coupling.

We start with the master equation for the total system, which is the

three-level system (S) plus the vacuum of the electromagnetic field, which acts

as a reservoir (R). We will assume that the dipole matrix elements of the two

transitions from the trion state are equal, d1 = d2, but no assumptions are made

on the size of the splitting 2δ yet. The two lower levels will be denoted by |1〉 and

|2〉. The temperature is taken to be zero. In the calculation, the following symbols

are used:

• P is the density matrix for the whole system S+R in the interaction picture

• ρ is the density matrix for the three level system in the interaction picture

• V is the interaction between R and S in the interaction picture

• Vs is the interaction in the Schrödinger picture,

and h̄ is set to unity.

The Liouville-Von Neumann equation for the whole system is

Ṗ = i[P, V ]. (V.1)

Formally integrating and iterating, we have

Ṗ (t) = −
∫ t

−∞
dt′[[P (t′), V (t′)], V (t)] (V.2)

We will solve this equation using the adiabatic ‘switching on’, rather than coarse

graining.

Ṗ (t) = lim
η→0+

∫ t

−∞
dt′[[P (t′), V (t′)], V (t)]eηt′ (V.3)

In the Rotating Wave Approximation, the interaction has the form

Vs =
∞∑

j=0

∑

k

′
(gjkbjkσ

+ + g∗jkb
†
jkσ) (V.4)
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where gjk is the frequency dependent coupling strength, bjk (b†jk) is the annihilation

(creation) operator for a photon of frequency Ωj, the index k ≡ (k̂, ε) carries

the propagation direction and polarization information. Note that the sum on k

is restricted to the allowed propagation directions and polarizations, as dictated

by selection rules. We have already made use of the assumption that the two

transitions have parallel dipoles, by restricting the geometrical features of the

emitted photon in the same way for the two transitions.

σ+ (σ) is the raising (lowering) operator for the three-level system, given

by:

σ+ = |T 〉〈1|+ |T 〉〈2|, (V.5)

where |T 〉 is the excited state (later on, in the quantum dot case, to be the trion

state).

Vs =
∞∑

j=0

∑

k

′
(gjkbjk|T 〉〈1|+ gjkbjk|T 〉〈2|+ h.c.), (V.6)

which in interaction picture is given by

V (t) ≡ eiHotVse
−iHot, (V.7)

where

Ho = HS + HR, (V.8)

HS =
∑

λ=1,2,T
Eλ|λ〉〈λ|, (V.9)

HR =
∞∑

j=0

∑

k

Ωjb
†
jkbjk. (V.10)

Also, we define

ωλ ≡ (ET − Eλ), λ = 1, 2. (V.11)
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Then

V (t) =
∑

λ=1,2

∞∑

j=0

∑

k

′
(gjkbjk|T 〉〈λ|eiωλte−iΩjt + h.c.). (V.12)

Substituting, and also taking into account 〈b†jkbj′k′〉 = 0, 〈bjkb
†
j′k′〉 = δjj′δkk′ , and

tracing out the reservoir, the equation for ρ becomes

ρ̇(t) = − ∑

k

′ ∞∑

j=0

lim
η→0+

∫ 0

−∞
dτ |gjk|2eητ (|T 〉〈T |ρ(t′)eiΩjτe−iωλτ + ρ(t′)|T 〉〈T |e−iΩjτeiωλτ

− ∑

λ=1,2

(|λ〉ρT T (t′)〈λ|e−iΩjτeiωλτ − |λ〉ρT T (t′)〈λ|eiΩjτe−iωλτ )

− |1〉ρT T (t′)〈2|e−iΩjτei(ω2t′−ω1t) − |2〉ρT T (t′)〈1|e−iΩjτei(ω1t′−ω2t)

− |2〉ρT T (t′)〈1|eiΩjτe−i(ω2t′−ω1t) − |1〉ρT T (t′)〈2|eiΩjτe−i(ω1t′−ω2t)), (V.13)

where τ ≡ t′ − t. Notice that the four last terms in the sum have survived, due

to the fact that the sum on k was the same for the two transitions, and therefore

tracing out the photon operators gave an identical contribution for the last four

terms.

At this point we perform the markovian approximation, which amounts

to setting ρ(t′) = ρ(t) and hence pulling it out of the integral. Then, by replacing

the sum on the photon modes by an integral and the photon density of states, i.e.,

∑

j

−→
∫ ∞

0
dΩ D(Ω), (V.14)

where D(ω) = V
2π2c3

ω2, the expression multiplying the projection operator |T 〉〈T |
in the first term of V.13,

lim
η→0+

∞∑

j=0

∫ 0

−∞
dτ |gj|2eiΩjτe−iωλτeητ , (V.15)

becomes

lim
η→0+

∫ ∞

0
dΩ D(Ω)

∫ 0

−∞
dτ |g(Ω)|2eiΩτe−iωλτeητ . (V.16)
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Performing the integral on τ , Eq.(V.16) becomes

lim
η→0+

∫ ∞

0
dΩ D(Ω)

|g(Ω)|2
−i(ωλ − Ω) + η

(V.17)

= lim
η→0+

η
∫ ∞

0
dΩ D(Ω)

|g(Ω)|2
(Ω− ωλ)2 + η2

− i lim
η→0+

∫ ∞

0
dΩ D(Ω)

|g(Ω)|2 (ωλ − Ω)

(Ω− ωλ)2 + η2
.

(V.18)

Also, to account for the restricted sum on the direction of k, we use the

spatial distribution of the emitted radiation, and have

∑

k

′ −→ 2
∫

dΩ G+(θ), (V.19)

where G+ is the distribution on the propagation direction of the emitted radiation

for a ∆m = 1 transition. The factor of 2 is to include the two polarization states.

The explicit form is G+(θ) = 1+cos2 θ [34, 90], and for completeness we also include

the distribution for a linearly polarized transition, ∆m = 0, G0(θ) = sin θ. Clearly,

a photon spontaneously emitted from a ∆m = 1 transition may propagate along

any direction, whereas a photon spontaneously emitted from a ∆m = 0 transition

cannot propagate along z. Also, as expected from the azimuthal symmetry of the

problem, neither distribution depends on the angle φ.

Similarly we obtain the remaining integrals of (V.13). In the above ex-

pression, Eq. (V.18), the first term is related to the broadening (linewidth) of the

excited state, and the second term is a small shift in the energy of the excited

state, analogous to the well-known Lamb shift. In order to keep it regulated we

would have to introduce a frequency cutoff for the photons, but we will ignore it or

assume it has been absorbed into the transition frequencies. We use the relation

lim
η→0

η

(x− xo)2 + η2
= πδ(x− xo), (V.20)

and find

γλ =
32π2

3
D(ωλ) |g(ωλ)|2. (V.21)
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From Eq. (V.21) we see that there is a linear in ω contribution from the coupling

squared (see Chapter III) and an ω2 from the DOS, hence the well-known cubic

dependence of the spontaneous emission rate on the frequency. The equations for

ρ become

ρ̇(t) = − γ1 + γ2

2
|T 〉〈T |ρ(t)− γ1 + γ2

2
ρ(t)|T 〉〈T |+ γ1|1〉ρT T (t)〈1|+ γ2|2〉ρT T (t)〈2|

+ e−2iδt γ1 + γ2

2
|2〉ρT T (t)〈1|+ e2iδt γ1 + γ2

2
|1〉ρT T (t)〈2|, (V.22)

where 2δ ≡ ω2 − ω1 = E1 − E2 is the splitting between the lower levels. The

functions appearing in (V.21) are slowly varying, so we are setting γ1 = γ2 = γ,

and the equations of motion become:

ρ̇T T = −2γρT T (V.23)

ρ̇11 = γρT T (V.24)

ρ̇22 = γρT T (V.25)

ρ̇1T = −γρ1T (V.26)

ρ̇2T = −γρ2T (V.27)

ρ̇12 = γe2iδtρT T (V.28)

In converting to the Schrödinger picture, the only equation to change from the

above is Eq. (V.28). This is easily seen by inspection, since the terms ρjj are the

same in the two pictures. On the other hand, for Eqs. (V.26) and (V.27), the

same exponentials appear on the right and left handside and cancel. Eq. (V.28)

becomes in the Schrödinger picture

(ρ̇s
12)sp = γρT T (V.29)

This term shows that the coherence ρ12 is affected by the population of the excited

state. In the usual decay equations of the Λ-system, the coherence ρ12 does not
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have a contribution from spontaneous emission. Hence, Eq. (V.29) is known as

a spontaneously generated coherence term. It expresses the fact that the excited

state does not incoherently decay to the two lower ones, but rather decays to a

certain superposition of the two states. To understand this result first notice that

in the absence of SGC terms the decay equations from the excited state to the two

lower states, (V.24) and (V.25), can be written in any basis, i.e., we may rotate

in any linear superposition of |1〉 and |2〉 and get equations of the same form. In

the presence of the SGC term though, there is a single preferred state where the

excited state decays, namely the superposition |1〉+|2〉
2

. Taking this into account,

we may notice that the raising operator from Eq. (V.5) may be rewritten in this

new basis, and will only possess one nonzero matrix element. Then the derivation

would lead to the familiar decay equations for a two-level system, which is a much

simpler way to derive our result.

Note also that if we had chosen d1 and d2 to be antiparallel, then Eq.

(V.29) would have a minus sign on the RHS. This would still be an SGC term,

only that the final state would be |1〉−|2〉
2

. The fact that there is a single final

state also implies the existence of an orthogonal dark state, i.e., a state which is

not connected to the excited via dipole coupling. In the case of the quantum dot

when the trion state polarized along +z (the quantum dot growth direction) is the

excited state, the final state is of course |z〉, and the dark state is |z̄〉, which is a

∆mj = 2 transition from |T 〉.
The above derivation shows the necessity of the condition that the two

polarizations be non-orthogonal, but it does not restrict the splitting. Indeed,

whenever the two transitions have parallel (or antiparallel) polarization, the SGC

term is formally there. However, it will have a negligible effect as their energy

separation increases. The way to understand physically why the energy require-

ment enters is by realizing that the superposition state |1〉+|2〉
2

has a finite linewidth,

associated to the fact that it is not an energy eigenstate. Therefore, for the spon-

taneously emitted photon to cover this linewidth it has to itself have a comparable
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energy spread. Clearly, the spread in the energy of the spontaneously emitted pho-

ton originates from the linewidth of the excited state. This point will be further

studied and put in mathematical terms partly in this, but mainly in the following

Chapter.

C. SGC in Atoms

The prediction of spontaneously generated coherence for atomic systems

[64] generated considerable interest, mostly because of the implications it would

have in various experiments [92, 145]; however, atomic or molecular systems where

it would occur and be detectable experimentally have not been found.

The difficulty with meeting the stringent conditions of SGC in atoms lies

in the fact that it is not easy to find a Λ-system such that the two lower levels are

closely spaced, so that the linewidth of the excited state can cover both transitions.

For example, the fine structure splitting is of the order of 1 meV, and the atomic

state linewidths in atoms are a lot smaller, in the order of 1 µeV.

The hyperfine splittings are smaller than the spin-orbit split states. They

are still larger than the linewidths, but clearly comparable, so there is a chance of

SGC being detectable in hyperfine levels. Even then, there would be a problem of

isolating a three-level system: in general there will be more states with orthogonal

polarizations, degenerate to the ones of interest. For example, there would be SGC

between states |F, MF = 1〉 and |F + 1,MF = 1〉. But relaxation to states with

MF 6= 1 would be incoherent with respect to the two previous states.

Another issue with atoms is that they are free to move and therefore,

unlike the quantum dots, they do not share a common quantization axis. Using

the spin states and splitting them by an external magnetic field, similarly to the

quantum dot, would also not provide the SGC conditions: the excited state–unlike

the trion–would also mix, and the level configuration would no longer be Λ-type;

at least an extra level would enter in the dynamics. Actually, this would lead to
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the Hanle effect, [33, 121], in which an ensemble of atoms in a magnetic field is

illuminated with an x-polarized pulse and the reradiated light may be polarized

along y. This effect is another example where coherence plays an important role; it

has recently been observed in doped GaAs quantum wells, in the heavy-hole trion

system with confinement in one dimension [40].

To our knowledge, despite the ongoing research, SGC has not yet been

demonstrated for atomic or molecular systems. In the next Chapter, we revisit the

possibility of SGC detection in atomic systems and demonstrate that SGC can be

detected probabilistically in single trapped ions.

D. SGC in a Quantum Dot

In the quantum dot the polarization selection rules are satisfied, since

the two ground states, | ± x〉, are coupled to the trion by parallel dipole matrix

elements, and the Zeeman splitting is tunable by means of the external magnetic

field, so it can be made arbitrarily small, and thus be in the SGC regime. Another

important feature of the quantum dot is that application of an in-plane magnetic

field does not cause the trion, which is polarized along z, to precess about the

field. This is valid for fields up to about 5T [130]. Physically, it is a consequence of

the combined underlying semiconductor and the quantum dot confining potential.

Due to the semiconductor symmetry, heavy holes (mj = ±3/2) and light holes

(mj = ±1/2) have different effective masses. Since the energy levels of a particle

in a potential depend on its mass, the light hole and heavy hole states will be

shifted by different amounts. The splitting between them is of the order of tens

of meV’s. Now, for a j = 3/2 particle to flip from the highest mj = 3/2 value to

the lowest mj = −3/2, it has to pass through the intermediate mj = ±1/2 states.

Since these are higher in energy, it takes a third order process in the magnetic

field, and it will thus be suppressed for low fields.

The most straightforward experiment to demonstrate SGC would be to
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transfer all the population in the excited state, and make a measurement in the

| ± z〉 basis when a spontaneously generated photon is emitted. SGC is present

if the final state is always |z〉. This might be a relatively simple experiment in

atoms, for example it can be carried out in single trapped ion in the setting of ref.

[13], which we will examine in the next Chapter. In the case of the quantum dot

it is quite hard to deterministically initialize the dot in the trion state, and the

spontaneously emitted photon may be reabsorbed by other degrees of freedom in

the solid.

Instead, a pump-probe nonlinear experiment is sufficient for SGC detec-

tion in an ensemble of quantum dots, even when the initial state is completely

mixed (unpolarized spin ensemble). As we shall show in the next section, the SGC

term induces a magnetic-field dependent nonlinear response of the dots. The am-

plitude and the phase of the spin beats become magnetic-field dependent, whereas

in the absence of SGC the beats are magnetic-field independent. In the following

we will derive the expression for the differential transmission signal (DTS), which

is the quantity measured in a pump-probe homodyned experiment. We will solve

the Liouville-von Neumann equations order by order. The DTS signal measures

the third order nonlinear response for low excitation powers. For higher powers,

higher orders are measured as well.

E. Derivation of DTS in the presence of SGC

The optical field of the pump and probe pulses can be written as

E(t) = (e+E1+ + e−E1−) E1(t)e
−iω1t + (e+E2+ + e−E2−) E2(t− td)e

−iω2(t−td),

where the subscripts 1 and 2 denote the pump and probe pulses, respectively, and

e± = x̂± iŷ are the unit vectors of the σ±-polarizations, and td is the time interval

between the center of the pump and probe pulses. In the experiment, td is varied

and the nonlinear signal is measured as a function of td. The dipole operator is

d̂ = d
(
e+|T̄ 〉〈∓| ± e−|T 〉〈±|

)
+ h.c.,
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where |±〉 are the electron spin states along x, | ± x〉.
Thus, in the rotating wave approximation, the Hamiltonian in the basis

{|−〉, |+〉, |T 〉, |T̄ 〉} can be written in matrix form as

H =




−ωL 0 +d∗E∗
+(t) −d∗E∗

−(t)

0 ωL −d∗E∗
+(t) −d∗E∗

−(t)

+dE+(t) −dE+(t) εT 0

−dE−(t) −dE−(t) 0 εT




, (V.30)

where εT is the energy of the trion states. In what follows γ2, 2Γ denote the spin

depolarizing rate and the trion decay rate, respectively. The explicit equations for

each element of the density matrix are

ρ̇T ,+ = i[ρ,H]T ,+ − ΓρT ,+, (V.31)

ρ̇T ,− = i[ρ,H]T ,− − ΓρT ,−, (V.32)

ρ̇+,+ = i[ρ,H]+,+ + Γ
(
ρT T + ρT̄ ,T̄

)
, (V.33)

ρ̇−,− = i[ρ,H]−,− + Γ (ρT T + ρT̄ T̄ ) , (V.34)

ρ̇+,− = i[ρ,H]+,− − γ2ρ+,− − Γc

(
ρT T − ρT̄ ,T̄

)
, (V.35)

ρ̇T T = i[ρ,H]T T − 2ΓρT T , (V.36)

ρ̇T̄ ,T = i[ρ,H]T̄ ,t − 2ΓρT̄ ,t, (V.37)

ρ̇T̄ T̄ = i[ρ,H]T̄ T̄ − 2ΓρT̄ T̄ . (V.38)

The above equations have been derived from a master equation, similarly to the

derivation in Section B.. As before, the Markov-Born approximation for the

system-photon has been employed. The term representing the spontaneously gen-

erated spin coherence due to the trion recombination is indicated by the suffix c;

Γc in Eq. (V.35) should be equal to Γ. However, we singled out the SGC term

so that Γc can be artificially set to zero for a theoretical comparison between the

results with and without the SGC effect.

The density matrix can be calculated straightforwardly order by order

with respect to the pulse. We take a general initial state of the system to be
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ρ(0) = ρ
(0)
+ |+〉〈+|+ρ

(0)
− |−〉〈−|, so that ρ

(0)
+ = ρ

(0)
− = 1/2 corresponds to a completely

mixed state. The density matrix may be written as

ρ =
∞∑

n=0

ρ(n), (V.39)

where n denotes the order to the electric field. Note that ρ(n) is not necessar-

ily a density matrix itself, so it does not have to satisfy the conditions of unit

trace and positive semi-definiteness. It should however be hermitian, to guarantee

hermiticity of ρ.

The order-by-order calculation may be carried in Fourier space. Here we

only show explicitly the calculation of ρT ,+.

ρ̇T ,+ = i[ρ, H]T ,+ − ΓρT ,+ (V.40)

ρ̇
(1)
T ,+ = −iωT ,+ρ

(1)
T ,+ − iHT ,+ρ

(0)
+,+ − Γρ

(1)
T ,+ (V.41)

−iωρ̃
(1)
T ,+(ω) = −iωT ,+ρ̃

(1)
T ,+(ω)− iρ

(0)
++dẼ1(ω)− Γρ̃

(1)
T ,+(ω), (V.42)

where ρ̃ij(ω) is the Fourier transform of ρij(t).

By transforming back to time domain, we find

ρ
(1)
T ,+(t) = ρ

(0)
++ d

∫ dω

2π

Ẽ1(ω)e−iωt

ω − ωT ,+ + iΓ
. (V.43)

In the pump-probe experiment, the DTS corresponds to the third-order in

the electric field optical response, for low pump and probe powers. The absorption

of the probe pulse is proportional to the work W done by the probe pulse, and the

DTS is [15]

∆T (td) ∝ −W (3) = −2<
∫

Ṗ(3)(t) · E∗
2(t− td)

≈ −2ω2=
∫

P̃(3)(ω + ω2) · Ẽ∗
2(ω + ω2)

dω

2π
. (V.44)
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The third-order optical polarization of the system can be calculated directly by

expanding the density matrix according to the order of the optical perturbation

P(3) = e+d
[
ρ

(3)
T ,− + ρ

(3)
T ,+

]
+ e−d

[
ρ

(3)

T̄ ,− − ρ
(3)

T̄ ,+

]
, (V.45)

Thus, given the σ+-polarized pump pulse, the third-order optical polarization in

the case of the pump and the probe having the same circular polarization (SCP)

and opposite circular polarizations (OCP) can be respectively calculated as [15]

P
(3)
SCP(t) = e+d

[
ρ

(3)
T ,−(t) + ρ

(3)
T ,+(t)

]
, (V.46)

P
(3)
OCP(t) = e−d

[
ρ

(3)

T̄ ,−(t)− ρ
(3)

T̄ ,+
(t)

]
. (V.47)

We have carried out the calculation for the more general case where the

pump and probe have a random polarization. Carrying out the calculation in

Fourier space, as explained above, the result for the second-order spin coherence

due to the pump pulse E1(t) is:

ρ̃
(2)
+−(ω) = +X1

ρ
(0)
−

ω − 2ωL + iγ2

∫ +∞

−∞
E∗1 (ω′ − ω)E1(ω

′)
ω′ −∆1 − ωL + iΓ

dω′

2π

−X1
ρ

(0)
+

ω − 2ωL + iγ2

∫ +∞

−∞
E1(ω

′ + ω)E∗1 (ω′)
ω′ −∆1 + ωL − iΓ

dω′

2π

+ X1
iΓcρ

(0)
±

(ω − 2ωL + iγ2)(ω + i2Γ)

∫ +∞

−∞
E1(ω

′ + ω)E∗1 (ω′)
ω′ −∆1 ± ωL − iΓ

dω′

2π

−X1
iΓcρ

(0)
±

(ω − 2ωL + iγ2)(ω + i2Γ)

∫ +∞

−∞
E∗1 (ω′ − ω)E1(ω

′)
ω′ −∆1 ± ωL + iΓ

dω′

2π
,

(V.48)

where ∆1 ≡ εT − ω1 is the detuning of the pump, and X1 ≡ |dE1+|2 − |dE1−|2

is the circular degree of the pulse polarization. In the equation above, the first

two terms correspond to the Raman coherence generated by the pump excitation

[77], and the last two terms represent the spontaneously generated coherence.

The two phenomena are of course very closely related: the role of the laser in

Raman coherence is played by the radiation in SGC. Obviously, for a linearly

polarized pump, X1 = 0, no spin coherence is generated either by excitation or by

recombination, so there will be no spin beats in DTS.
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In the short-pulse limit, the spin coherence after the pump and recombi-

nation can be approximately expressed as

ρ
(2)
+,−(t) ≈ X1 |E1(∆1)|2

(
Γc

2Γ− γ2 − 2iωL

− 1

2

)
e−i(2ωL−iγ2)(t−t1). (V.49)

The physical meaning of the two terms in Eq. (V.49) is transparent: the first term

is SGC, whose amplitude and phase shift depend on the ratio of the recombination

rate to the Zeeman splitting, and the second term is just the optically pumped

Raman coherence which in the short pulse limit is independent of the Zeeman

splitting.

Having obtained the second-order results, we can readily derive the third-

order density matrix and, in turn, the DTS can be calculated by use of Eq. (V.44).

In general, the DTS can be expressed as

∆T ∝ A cos(2ωLtd − φ)e−γ2td + Be−2Γtd , (V.50)

and the spin coherence amplitude A and phase shift φ, the Pauli blocking amplitude

B can all be numerically calculated and, in the short-pulse limit, can also be

analytically derived as

A ≈ |E1 (∆1)|2 |E2 (∆2)|2 X1X2

√√√√ γ2
2 + 4ω2

L

(2Γc − γ2)2 + 4ω2
L

, (V.51)

φ ≈ − arctan
(

2Γc − γ2

2ωL

)
− arctan

(
γ2

2ωL

)
, (V.52)

B ≈ |E1 (∆1)|2 |E2 (∆2)|2
[
I1I2 + 2I1+I2+

+2I1−I2− + X1X2
2Γc(2Γ− γ2)

(2Γ− γ2)2 + 4ω2
L

]
, (V.53)

where ∆2 ≡ εT − ω2 is the detuning of the probe, Ij± ≡ |dEj±|2, Ij ≡ Ij+ + Ij−,

and Xj ≡ Ij+ − Ij− (j = 1 or 2).

Several conclusions can be immediately drawn from the short-pulse ap-

proximation: (1) the SCP and OCP signals reveal beats with the same amplitude

and opposite signs; (2) no spin beat can be observed when either of the pulses is

linearly polarized (X1 = 0 or X2 = 0); (3) due to the SGC effect, the beat ampli-

tude increases with increasing Zeeman splitting until it saturates at the value it
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V.2 (a) The amplitude and (b) the phase shift of the spin beat (shown in the

insert) as functions of the Zeeman splitting in units of the trion state width, Γ. The

fulled-circle and solid lines include the SGC effect, calculated with and without

the short-pulse approximation, respectively. The diamond and dotted lines are

the results without the SGC effect, calculated with and without the short-pulse

approximation, respectively.
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would have in the absence of the SGC effect; the phase shift increases from −π/2,

saturating at 0. The SGC effect is negligible when the Zeeman splitting is large

compared to the trion decay rate Γ because the rapid oscillation averages the effect

to zero.

F. Intuitive Picture of SGC Experiment

An intuitive picture of the pump-probe experiment in a mixed ensemble

of quantum dots can be drawn. Here we attempt to explain our results of section

E. based on a simple picture of the spin-vector representation of the spin.

Initially, all the dots are in thermal equilibrium and hence there is no

spin polarization, or equivalently the spin vector is zero. When a (fast) circularly

polarized σ+ pulse is shone on the dots, population from the |z〉 state is transferred

to the trion state |T 〉, leaving behind net spin polarization (nonzero spin vector)

pointing along −z. This will precess under the perpendicular magnetic field. In

the absence of SGC, which means incoherent decay of the trion to both states,

spontaneous emission does not affect this spin-vector. However, SGC means, as

explained above, that the excited state (the trion in this case) decays to a single

state, in this case the |z〉 state. Thus, after some precession of the spin vector, a

contribution along +z will add to it coherently, causing the spin vector to shrink

by a small amount and change phase. The new spin vector will continue to precess

when a second contribution along +z will add to it, with the same effect. After all

the population has decayed from the trion, the final spin vector will clearly have

a smaller length and a phase difference compared to the no-SGC case. These are

the amplitude and phase derived above, which were shown to be functions of the

magnetic field due to the presence of SGC. In our intuitive picture, one can see that

for large Zeeman splittings, i.e. fast precession, the spin vector would be pointing

at random directions in the yz plane when each SGC contribution added to it, so

that altogether they would average out. This is how one intuitively understands
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that dependence on the magnetic field of the amplitude and phase of the beats is

expected.

f

-z

⊙ B

V.3 Initially the spin vector points along −z. In the absence of SGC the final

spin vector after the decay of the trion would be the dashed line. In the presence

of SGC, which opposes to initialization by optical pumping, the final spin vector

is of smaller amplitude and has a phase φ compared to the dashed vector.

It is clear that in the case of initialization by optical pumping, which is

what we are discussing here, the spontaneous contribution to the coherence will be

opposite to the stimulated one. This is expected, since optical pumping is based on

spontaneous emission in its usual incoherent sense. Therefore, the coherent nature

of SGC will oppose to generation of coherence through optical pumping.

On the other hand, for single-qubit operations, SGC is either a neutral

or positive contribution, since there the unitarity is desirable. This point will be

re-examined in Chapter VI, where we will focus on optical single-spin rotations.

G. SGC Experiment

The experiment which measured SGC in quantum dots–and to our knowl-

edge constitutes the first detection of SGC–also demonstrated optical generation
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of spin coherence via optical pumping, as discussed above [41]. In this section, we

briefly review the experiment from a more technical point of view, and we show

the experimental results and compare to the theory.

The sample consisted of interface fluctuation GaAs QDs, formed by growth

interrupts at the interface of a narrow (4.2 nm) GaAs quantum well, which were re-

motely doped with electrons. Magneto-photoluminescence measurements on single

charged QDs showed a small electron g factor and a maximum splitting of 80 µeV

at the highest fields reached in the experiment. The etched sample was mounted

in a superconducting magnetic cryostat held at 4.8 K. The pump and probe pulses

were obtained from a mode-locked Ti:Sapphire laser, with a shaped pulse band-

width (FWHM 0.84 meV), about an order of magnitude larger than the Zeeman

splitting between the electron spin states, so that the two states were coherently

excited (Raman coherence).

The pump-probe experiment was performed on an ensemble of QDs, with

a gaussian distribution of g-factors of about ∆g/g ∼ 8%. Due to the ensemble

nature of the experiment, T ∗
2 , the inhomogeneously broadened spin dephasing time

was measured, i.e., an average of the spin dephasing, both spatial and temporal.

The measured T ∗
2 was about 10 ns, which provides a lower bound to the spin

coherence time T2. The trion recombination time (2Γ)−1 was measured to be

about 80 ps.

The text of this Chapter is in part a reprint of the material as it appears

in Sophia E. Economou, Ren-Bao Liu, L. J. Sham, and D. G. Steel, “Unified

theory of consequences of spontaneous emission in a Lambda system,” Phys. Rev.

B 71, 195327 (2005).“Copyright (2005) by the American Physical Society.” The

dissertation author was the primary researcher and author and the co-authors listed

in this publication directed and supervised the research which forms the basis for

this chapter. The text of this Chapter is also in part a reprint of the material

as it appears in M. V. Gurudev Dutt, Jun Cheng, Bo Li, Xiaodong Xu, Xiaoqin

Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, Sophia E. Economou,
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V.4 (a)Amplitude and (b) phase of the quantum beats as functions of the mag-

netic field. Solid (dashed) lines denote theoretical predictions for these parameters

with (without) the effects of SGC, and are plotted along with the experimental

points. The agreement between theory and experiment is excellent in the case

of the amplitude. Both amplitude and phase strongly deviate from the constant,

which demonstrates the presence of SGC. This constitutes the first experimental

demonstration of SGC based on the theory developed in Section E.
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Ren-Bao Liu, and L. J. Sham, “Stimulated and Spontaneous Optical Generation

of Electron Spin Coherence in Charged GaAs Quantum Dots,” Phys. Rev. Lett.

94, 227403 (2005). “Copyright (2005) by the American Physical Society.” The

dissertation author was a coauthor listed in this publication.



VI.

Unified Theory of Consequences

of Spontaneous Emission in a Λ

system

The electromagnetic vacuum is commonly treated as a reservoir which

causes decoherence and decay of a quantum mechanical system coupled to it. An

alternative view holds that the two subparts (‘quantum system’ and ‘bath’) are

constituents of a single closed quantum mechanical whole, which is governed by

unitary evolution until a projection (measurement) is performed. Different pro-

jections may give rise to a variety of phenomena which on the surface appear

unrelated. In this Chapter, we treat spontaneous emission as unitary evolution, in

order to study these effects from a unifying perspective.

A. Spontaneous Emission as Unitary Evolution

Consider a single Λ system in a photon bath with modes |k〉, where k =

(k, σ), k being the wave vector and σ the state with the polarization vector εσ. In

the dipole and rotating-wave approximation, the Hamiltonian for the whole system

73
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is given by

H =
∑

k

ωkb
†
kbk +

3∑

i=1

εi|i〉〈i|+
∑

k;i=1,2

gikb
†
k|i〉〈3|

+
∑

k;i=1,2

g∗ikbk|3〉〈i|, (VI.1)

where bk destroys a photon of energy or frequency ωk (h̄ = 1) and |i〉 is the

electronic state with energy or frequency εi. The coupling between the photon and

the electron is gik ∝ εσ ·di, where di is the dipole matrix element for the transition

3 ↔ i. The Λ system is taken to be at t = 0 in the excited level |3〉 (which can be

prepared by a short pulse), and the photon bath is in the vacuum state, i.e., the

whole system is in a product state. For t > 0, the composite wavepacket can be

written as

|ψ(t)〉 ≡ c3(t)|3〉|vac〉+
∑

k

c1k(t)|1〉|k〉+
∑

k

c2k(t)|2〉|k〉, (VI.2)

where |vac〉 is the photon vacuum state. Evolution of this state is governed by the

Schrödinger equation.

By the Weisskopf-Wigner theory [141] of spontaneous emission [121], the

coefficient c3 is obtained by one iteration of the other coefficients:

∂tc3 = −iε3c3 −
∑

k

|g1k|2
∫ t

0
e−i(ε1+ωk)(t−t′)c3(t

′)dt′

−∑

k

|g2k|2
∫ t

0
e−i(ε2+ωk)(t−t′)c3(t

′)dt′. (VI.3)

Since the electron–photon coupling is much weaker than the transition energy in

the Λ system, the integrals in the equation above can be evaluated in the Markovian

approximation, resulting in:

∂tc3 ≈ −iε3c3 − Γ31

2
c3 − Γ32

2
c3, (VI.4)

where

Γ3i = 2
∑

k

|g2k|2
∫ t

0
e−i(εi+ωk)(t−t′)dt′. (VI.5)
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Thus, the solution is

c3 ≈ e−(iε3+Γ/2)t, (VI.6)

where Γ ≡ Γ31 + Γ32 is the radiative linewidth of the excited state. Furthermore,

c1k and c2k are given by

c1k ≈ − g1k

ε3 − ε1 − ωk − iΓ
2

[
e−i(ε1+ωk)t − e−iε3t−Γ

2
t
]
,

c2k ≈ − g2k

ε3 − ε2 − ωk − iΓ
2

[
e−i(ε2+ωk)t − e−iε3t−Γ

2
t
]
.

In order to study the system in the 2 × 2 subspace of the lower states, we take

the limit t À Γ−1. After the spontaneous emission process, the final state is a

electron–photon wavepacket
∑

k;i=1,2 cik|i〉|k〉, with the coefficients

c1k ≈ − g1k

ε3 − ε1 − ωk − iΓ
2

e−i(ε1+ωk)t, (VI.7)

c2k ≈ − g2k

ε3 − ε2 − ωk − iΓ
2

e−i(ε2+ωk)t. (VI.8)

The state of a photon is specified by its propagation direction n, polarization σ

(εσ ⊥ n), and frequency ω. So we can formulate the total wavepacket as

∑
n,σ

[
g1σe

−iε1t|1〉|n, σ, f1(t)〉+ g2σe
−iε2t|2〉|n, σ, f2(t)〉

]
, (VI.9)

where we have taken the coupling constants to be frequency-independent. In

Eq. (VI.9) fj(t) is the pulse shape of the photon. From Eq. (VI.7) and (VI.8),

we see that the photon wavepacket has a finite bandwidth; this point, which was

first studied by Weisskopf and Wigner in their classic treatment of spontaneous

emission [141], is reflected in the structure of fj(t). These functions have a cen-

tral frequency equal to ε3 − εj and a bandwidth equal to Γ. As a consequence of

the finite bandwidth, for a given propagation direction and polarization, the basis

states {|n, σ, fj〉} are not orthogonal, the overlap between them being

〈n, σ, fl|n, σ, fj〉 =
iΓ

iΓ + εlj

, (VI.10)

where εlj = εl − εj.
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We should emphasize that the wavepacket formed in Eq. (VI.9) does not

rely on the Markovian approximation. In a full quantum kinetic description of the

photon emission process, the wavepacket of the whole system would still have the

same form, the central frequency and bandwidth of the pulses would be close to

those found using the Markovian approximation, but the specific profile of fj(t)

would be different from those given by Eq. (VI.7) and (VI.8).

The various phenomena (electron and photon polarization entanglement,

SGC, and two-pathway decay) can all be derived from the wavepacket of Eq. (VI.9).

If the spontaneously emitted photon is not detected at all, we have to

average over the ensemble of photons of all possible propagation directions to

obtain the electronic state. This is the usual textbook treatment of spontaneous

emission. However, if detection of an emitted photon leads to a knowledge that its

direction of propagation is n0, then the (unnormalized) electron-photon wavepacket

should be projected along that direction:

∑
σ

[
g1σe

−iε1t|1〉|n0, σ, f1(t)〉+ g2σe
−iε2t|2〉|n0, σ, f2(t)〉

]
. (VI.11)

When the two transitions are very close in frequency, i.e., η ≡ |ε1− ε2|/Γ ¿ 1, the

overlap of the two photon wavepackets deviates from unity by O(η). After tracing

out the envelopes of the photon by use of any complete basis (e.g. monochromatic

states), the state of the electron and photon polarization is, with the propagation

direction n0 understood,

|Υ〉 =
√

N
∑
σ

[g1σ|1〉|σ〉+ g2σ|2〉|σ〉] +O(η), (VI.12)

where N is a normalization constant, given by

N−1 =
∑

j=1,2

∑

σ=α,β

|gjσ|2. (VI.13)

The order η error recorded here, in Eq. (VI.12), is meant to indicate the magnitude

of the mixed-state error which, if neglected, results in a pure state. From this

pure state, we can find explicitly the necessary conditions for entanglement or

SGC. However, the approximation of neglecting η is unnecessary for computing a

measure of entanglement of the resultant mixed state [8].
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1. Entanglement

A measure of entanglement of the bipartite state |Υ〉 in Eq. (VI.12) is

given by the von Neumann entropy of the reduced density matrix of the state [143]

for either the subsystem E of the two low-lying electronic states or the subsystem

P of the photon polarization states. Taking the partial trace of the polarization

states of the density matrix |Υ〉〈Υ| of the pure state leads to the 2 × 2 reduced

density matrix for the electronic states,

ρE = N
∑

ij

|i〉
[∑

σ

giσg
∗
jσ

]
〈j|. (VI.14)

Diagonalization of this partial density matrix leads to two eigenvalues,

p± =
1

2
±

√
1

4
−D2, (VI.15)

where D2 is the determinant of the reduce density matrix ρE, or

D = N |g1αg2β − g1βg2α|, (VI.16)

for the two electronic state and two polarizations, α, β, normal to the propagation

direction n0. The entropy of entanglement is given by

S = −p+ log2 p+ − p− log2 p− (VI.17)

As D ranges from 0 to 1/2, the entropy ranges from 0 to 1 giving a continuous

measure of entanglement as the state |Υ〉 goes from no entanglement to maximum

entanglement. To find the axis n0 along which the entanglement is maximum, we

have to maximize D as a function of the orientation. For a particular system, this

axis can be found in terms of the dipole matrix elements of the two transitions.

However, not all systems can have maximally entangled states. We will apply this

to specific examples in the following section.

2. SGC

From the reduced density matrix, we can also find the conditions for

SGC. Maximum SGC occurs when the reduced density matrix is a pure state.
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In terms of the electron-photon coupling constants the condition is the vanishing

of the discriminant D in Eq. (VI.16). This means that when the SGC effect

is maximized, there exists a particular transformation which takes the basis of

the electronic states {|1〉, |2〉} to a basis {|B〉, |D〉} which has the property that

|B〉 is always the final state of the Λ-system immediately after the spontaneous

emission process, and |D〉 is a state disconnected from the excited state by dipolar

coupling, i.e. a dark state. This point will be further explored in section B..

The extreme values of D = 0 and 1/2 make it clear that maximum SGC means

no entanglement and conversely that maximal entanglement leads to no SGC.

However, partial entanglement can coexist with the potentiality of some SGC for

values of D between the two extremes.

Our theory can be easily extended to systems with more than two ground

states. For example, in a system whose ground states are the four states from two

electron spins, the SGC may lead to the coherence and entanglement between

the two spins, which is the mechanism of a series of proposals of using vacuum

fluctuation to establish entanglement between qubits [109].

3. Two-pathway decay

So far we have investigated the consequences when the two transitions are

close in frequency (η ¿ 1). When this is not the case, tracing-out the wavepacket

of the photon will generally produce a mixed state in electron spins and photon

polarizations. In the limit of large η, i.e., |ε2 − ε1| À Γ, the overlap between the

two photon wave functions, 〈f1(t)|f2(t)〉 ' 0, and the reduced density matrix for

the spin and photon polarization would be mixed. In this case there is neither

spin-polarization entanglement nor SGC, but instead the time development can

be described as a two-pathway decay process: the excited state can relax to two

different states by the emission of photons with distinct frequencies. However, for

η between these two limits, the state in Eq. (VI.11) is still frequency-entangled:

there is entanglement between the pulse shapes of the photon and the two lower
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electronic levels. Furthermore, from the entangled state in Eq. (VI.11), SGC or

polarization entanglement may still be recovered (provided of course that the nec-

essary conditions on the g’s are satisfied) if the quantum information carried by

the frequency of the photon is erased [69]. This can be done by chopping part of

the photon pulse, and thus subjecting its frequency to (more) uncertainty. In a

time-selective measurement, only photons emitted at a specific time period, say

from to to to + dt, are selected. So the projection operator associated with this

measurement is Po = |δ(t−to)〉〈δ(t−to)|, which represents a δ photon pulse passing

the detector at t = to. The projected state after this measurement

∑
σ

[
g1σe

−iε1tof1(to)|1〉+ g2σe
−iε2tof2(to)|2〉

]
|n0σ〉 (VI.18)

is a pure state of the electron and photon-polarization, so that entanglement or

SGC is restored. By writing the projector in the frequency domain

P̃o =
∫

dω
∫

dω′ ei(ω−ω′)to |ω′〉〈ω|, (VI.19)

we see that it can be understood as a broadband detector with definite phase for

each frequency channel; thus it can erase the frequency (which-path) information

while retaining the phase correlation. We note that a usual broadband detector

without phase correlation is not sufficient to restore the pureness of the state. It

is also interesting that SGC and entanglement can be controlled by choosing a

different detection time to, as seen from Eq. (VI.18).

B. Symmetry Considerations for SGC

In this section we investigate the symmetry relations between the different

parts of the Hamiltonian necessary for SGC terms to appear. Our treatment is

not restricted to Λ systems, but can be extended to a system with more than two

lower levels.

Consider a quantum mechanical system with one higher energy level |e〉
and a set of lower-lying states, described by a Hamiltonian Ho. Taking into account
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only dipole-type interactions, denote by Jz the polarization operator used in the

selection rules. The z axis is defined by the excited state via

Jz|e〉 = Me|e〉

Note that Jz can be either Jz, where J = L + S is the total angular momentum

operator and S is the spin, or Lz, as determined by the condition

[Jz, H
o] = 0.

That is to say there is an axial symmetry in the system associated with Jz. Among

the lower lying states, the ones of interest are the ones appearing in the final entan-

gled state |Υ〉 of the whole system. We will refer to these states as ‘bright’, because

they are orthogonal to the familiar dark states from quantum optics. There are at

most three such states, {Bj}, within a given degenerate manifold, corresponding

to the three different possible projections of the dipole matrix elements along the

z axis, so j = 1, 0, 1̄. In general, not all systems will have all three bright states.

This concept that the final state involves only a small number of states (three in

our case), gives a physical understanding of the electron-photon entangled state

[25].

In order to have SGC, i.e., one or more terms of the type ρ̇jk = Γρee, with

j 6= k and j, k 6= e, there has to be a perturbation HB that breaks the symmetry

associated with Jz; in particular, the following conditions have to be satisfied:

(i) [HB,Jz] 6= 0;

(ii) HB|e〉 ∝ |e〉;

(iii) |ε12| < Γ.

In general, we expect SGC between two eigenstates of the Hamiltonian H = Ho +

HB which have nonzero overlap with the same bright state. The role of the first

condition is to make SGC non-trivial; without this condition, it would always be

possible to rotate to a different basis and formally acquire an SGC-like term in the
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equations (e.g. by rotating to the x basis in the zero magnetic field case in the

heavy-hole trion system). The second condition ensures that the excited state will

not mix under the action of HB; relaxing this condition gives rise to the Hanle

effect, in which, as explained in the previous Chapter, an ensemble of atoms in

a magnetic field is illuminated with an x-polarized pulse and the reradiated light

may be polarized along y.

The third condition provides the valid regime for the occurrence of SGC.

As shown before, when the radiative line-width of the excited state is smaller than

the energy differences of the lower states the SGC effect will be averaged out.

The perturbation HB can be realized by a static electric or magnetic

field, by the spin-orbit coupling, by hyperfine coupling, etc. Note the different

origins of HB in different systems and that it may or may not be possible to

control HB. Examples of various systems follow, exhibiting the above conditions

and demonstrating the different origins of HB.

C. SGC in atoms

Consider an atom with Hamiltonian Ho; excluding relativistic corrections,

it can be diagonalized in the |N,L, S, ML,MS〉 basis. Consider as the system of

interest the subspace of Ho formed by |N, 1, 1, 1, 1〉 = |e〉 and the lower-energy

states |N−1, L, S, ML,MS〉. The various quantum numbers are of course restricted

by selection rules, and Jz = Lz . Here we will list only the three bright states:

|B1〉 = |N − 1, 2, 1, 2, 1〉

|B0〉 = |N − 1, 2, 1, 1, 1〉

|B1̄〉 = a|N − 1, 2, 1, 0, 1〉+ b|N − 1, 0, 1, 0, 1〉

where the coefficients a and b can be determined in the following way: in the orig-

inal |NJMJLS〉 basis, the matrix elements for the transitions |N − 1, 2, 1, 0, 1〉 ↔
|N, 1, 1, 1, 1〉 and |N − 1, 0, 1, 0, 1〉 ↔ |N, 1, 1, 1, 1〉 are given by the Wigner-Eckart
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theorem. By rotating to the {|B〉, |D〉} basis, and requiring the transition |D〉 ↔
|N, 1, 1, 1, 1〉 to be forbidden, we find a and b. Inclusion of the spin-orbit inter-

action, which plays the role of HB, i.e. HB = αL · S, condition (i) is obviously

satisfied. The state |e〉 ≡ |N,L = 1, S = 1,ML = 1,MS = 1〉 = |N, J = 2,MJ =

2, L = 1, S = 1〉 is an eigenstate of L · S = (J2 − L2 − S2)/2; hence, condition

(ii) is also satisfied (a state of maximum ML and MS, does not mix under the

spin-orbit coupling). In the new basis, SGC is expected to occur between states

with the same value of MJ , which can also be verified by direct calculation. In this

example the line-width of |e〉 is much smaller than the spin-orbit coupling strength

α. Typical values in atoms are Γe ∼ 1µ eV and α ∼ 1 meV, which means that

SGC will not be observed in such a system.

Repeating the above line of thought, but with the role of the unperturbed

states being |NJMJLS〉, and the role of HB played by the hyperfine coupling, the

condition on the size of the splitting relatively to the linewidths is met, so there

should be SGC between states |NJFMF 〉 and |NJF ′MF 〉. There will be, however,

incoherent decay to other states with the same F and F ′, but M ′
F 6= MF , so the

purity of the final state will be very small.

1. Entanglement and SGC of atomic hyperfine states

In this example, the Λ system is formed by the hyperfine states of a single

trapped Cd ion in the presence of a magnetic field along the z axis. In the |FMF 〉
basis, the excited state is |21〉 and the two lower levels are |11〉 and |10〉. The

two lower levels have the same principal quantum number N . The entanglement

between the polarization of the photon and the atom has been demonstrated ex-

perimentally [13]. To illustrate the methods developed in Section A., we will make

use of the fact that the two lower levels are states of definite angular momentum

and its projection to the z axis. Then, by the Wigner-Eckart theorem we know

that the dipole moment of the transition |21〉 → |10〉 has a nonzero component

only along e+ = x + iy whereas that of |21〉 → |11〉 has only a component along
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z. The wavepacket of the system is then given by

|Υ〉 =
−√2 sin ϑ|ϑ〉|11〉+ e−iϕ cos ϑ|ϑ〉|10〉 − ie−iϕ|ϕ〉|10〉√

2 + sin2 ϑ
(VI.20)

where ϑ and ϕ are the spherical coordinates measured from z and x axis, respec-

tively, and |ϑ〉 and |ϕ〉 are the polarization basis states, which are linearly polarized

parallel and normal to the plane formed by the z axis and the propagation direc-

tion, respectively. Then from Eq. (VI.20), we read off the g’s:

g1ϑ ∝ −
√

2 sin ϑ (VI.21)

g1ϕ = 0 (VI.22)

g2ϑ ∝ e−iϕ cos ϑ (VI.23)

g2ϕ ∝ ie−iϕ, (VI.24)

where |11〉 ≡ |1〉 and |10〉 ≡ |2〉. The measure of entanglement by D is

D =

√
2 sin ϑ

2 + sin2 ϑ
. (VI.25)

The maximum possible entanglement occurs at ϑ = π/2, i.e., whenever the photon

propagates perpendicularly to z. The maximum value of 0.47 is close to being

maximally entangled. D does not depend on ϕ, as expected since there is azimuthal

symmetry about z.

In terms of SGC and symmetry, it is interesting to notice that the role

of the (external or internal) perturbation, HB, introduced in section B. can be

played by the different projections (measurements) because the state before the

measurement is an eigenstate of the operator Jz (total angular momentum along

z) but not after the measurement in general. The magnetic field along the z-

axis is included in the Hamiltonian Ho. If the spontaneously emitted photons are

measured along the quantization axis, only the ones emitted from the transition

|21〉 → |10〉 will be detected, since only their polarization allows propagation along

z. On the other hand, a photon detector placed at a finite angle from z can play the

role of HB. Suppose a photon is spontaneously emitted along an axis n = (ϑ, ϕ).
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The density matrix of the state given by Eq. (VI.20) is |Υ〉〈Υ|. If we are only

interested in the dynamics of the ion, and the polarization of the photon is not

measured, then the photon polarization has to be traced out. Then the reduced

density matrix of the system, in the atomic states is

ρE =
1

2 + sin2 ϑ




cos2 ϑ + 1
√

2e−iϕ cos ϑ sin ϑ
√

2e+iϕ cos ϑ sin ϑ 2 sin2 ϑ


 . (VI.26)

The off-diagonal elements express coherence between the hyperfine states with

dependence on the photon propagation direction. We can check that for ϑ = 0 the

probability of the atom being in the |11〉 state is zero and there are no off-diagonal

elements, and for ϑ = π/2 the off-diagonal elements are also zero, which means

there is no SGC, but the state has the maximum possible entanglement. For all

the intermediate values of ϑ the hyperfine states and the photon polarization are

entangled, and there is also some SGC when the photon is traced out. Maximum

SGC occurs when D is minimized; from Eq. (VI.25) we see that it is zero for ϑ = 0.

This is expected anytime the one of the two transitions involves a linearly polarized

photon, since the latter cannot propagate along the quantization axis. So, for this

orientation the final state can only be |10〉. For intermediate angles, for instance

ϑ = π/4, there is both entanglement and SGC involving both lower states, when

the photon is traced out. Since SGC only does not always occur for most photon

propagation directions we could view it as ‘probabilistic’ SGC.

D. SGC in Quantum Dots Revisited

To demonstrate the theory of Section B. in the system where we have

shown SGC to occur, i.e., the QD we will examine how the conditions of Section

B. are satisfied. We take Ho to be the Hamiltonian of the Q.D., with |e〉 = |T 〉,
the trion state described above, excited by σ+ light; Jz = Jz, since the spin-

orbit interaction is included in Ho. The magnetic field is taken now to point at a

random direction forming an angle ψ with the growth axis z, and any component
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of the B field along z can also be included in Ho. HB is the contribution to

the Hamiltonian due to the magnetic field along x. Condition (i) is fulfilled since

gx ' 0, and condition (ii) is obviously satisfied. The only bright state is the

electron spin sz eigenstate, |z〉 ≡ | ↑〉. For later use, we also define |z̄〉 ≡ | ↓〉 and

|ψ+〉 = cos
ψ

2
| ↑〉+ sin

ψ

2
| ↓〉 (VI.27)

|ψ−〉 = sin
ψ

2
| ↑〉 − cos

ψ

2
| ↓〉. (VI.28)

Therefore we expect SGC between states |ψ+〉 and |ψ−〉 for any angle ψ 6= 0, and

since the linewidth of the trion is large enough compared to the Zeeman splitting,

SGC should moreover have a detectable effect.

The current discussion is focused on single Λ systems, but the experiment

was carried out for an ensemble [41]. In general, for an ensemble of equivalent non-

interacting atoms, an average over the different z axes would have to be performed.

However, in this quantum-dot solid state system, there is a common z axis for all

the dots, since they are grown on the same plane (xy), and they have a relatively

large in-plane cross-section as compared to their height. This is a clear advantage

of the quantum dot ensemble over an ensemble of atoms.

We can also analyze this system using the methods in Section A.. To

find the g’s, we need the dipole matrix elements between |ψ+〉, |ψ−〉 and the trion.

Again, we will make use of the fact that | ↑〉 and |T 〉 are angular momentum

eigenstates along the z axis, with the familiar selection rules. Only state | ↑〉 has

nonzero dipole matrix element with |T 〉, d+e+, so that the transitions |ψ+〉 → |T 〉
and |ψ−〉 → |T 〉 have dipole matrix elements equal to d+ cos ψ

2
e+ and d+ sin ψ

2
e+

respectively. Then, for a photon emitted along n0 = (ϑ, ϕ), we find the couplings:

g1ϑ = d+eiϕ cos ϑ cos
ψ

2
(VI.29)

g1ϕ = d+ieiϕ cos
ψ

2
(VI.30)

g2ϑ = d+eiϕ cos ϑ sin
ψ

2
(VI.31)

g2ϕ = d+ieiϕ sin
ψ

2
, (VI.32)
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so that the determinant is always zero, independently of n0. This means that the

system in this configuration will never be entangled with the polarization of the

photon, which, as we have seen, implies maximum SGC. The final state of the Λ

system is always | ↑〉, unentangled.

E. Proposed Experiment for Quantum Dot Spin-Photon

Polarization Entanglement

The spin-photon entanglement can be also realized in a quantum dot

system by employing the light-hole trion state. The heavy and light hole excitons

are split by the breaking of the tetrahedral symmetry of the bulk III-V compound.

It might also be possible to make the light hole states in quantum dots lower in

energy than the heavy holes. The magnetic field is pointing along the x direction,

so that the lower levels are the two Sx eigenstates, |+〉 and |−〉. The optical pulses

used are such that the light hole trion polarized along the +x direction is excited.

The excited state is a trion of a singlet pair of electrons and a light hole which

is in the mj = ±1/2 component of the j = 3/2 state. The trion can thus be

characterized by the state |JMJ〉 = |3
2
,±1

2
〉. We choose the MJ = 1

2
state as the

excited state of the Λ system and denote it by |T`〉.
The transitions |T`〉 → |+〉 and |T`〉 → |−〉 involve a photon linearly

polarized along x (|X〉 ≡ |πx〉) and one with elliptical polarization (−i|Y 〉+2|Z〉 ≡
|Eyz〉), respectively. In particular, after |T`〉 has decayed, the state of the system

is from Eq. (VI.12),

|Υ〉 = − 1√
6
[|X〉|−〉+ (2|Z〉 − i|Y 〉)|+〉], (VI.33)

We assume a measurement which determines the propagation direction of the pho-

ton n0 = (ϑ, ϕ). Then the state becomes:

|Υ〉 =
−1√

2 + 3 sin2 ϑ
[ cos ϑ cos ϕ|ϑ〉|−〉
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−(2 sin ϑ + i sin ϕ cos ϑ)|ϑ〉|+〉
− sin ϕ|ϕ〉|−〉 − i cos ϕ|ϕ〉|+〉]. (VI.34)

Following the same procedure as in the trapped ion example, we find that the

condition for maximum entanglement is ϑ = 0; the value of D is then 0.5, maximal

entnaglement. SGC will only occur when D in Eq. (VI.16) is less than 0.5 and

it will be maximum for propagation along x, which means that the electron will

be in the state |+〉. For all other values of ϑ there will be both entanglement

and SGC between the two energy eigenstates when the photon is traced out. The

phenomena following the spontaneous radiative decay of this system are indeed

very similar to the trapped ion case. In the solid state system there is no need to

isolate a single dot in order to observe SGC since all dots are oriented in the same

direction.

For quantum information processing, entanglement between photon po-

larization and spin has to be established in a quantum dot. So isolating and

addressing a single dot is required. Experimentally, this requirement is arguably

feasible [17]. The system should be initialized at state |+〉 (or |−〉) and subse-

quently excited by y-(or x-) polarized light, so that only state |T`〉 gets excited.

Other trion states, involving electrons in the triplet state and/or heavy holes,

have an energy separation from |T`〉 large enough compared to the pulse band-

width and so they can be safely ignored. Above we found that the state will be

maximally entangled when the spontaneously emitted photon propagates along z.

When the optical axis is along z, the spontaneously emitted photon may be distin-

guished from the laser photons by optical gating. As an alternative to the optical

gating, to minimize scattered light the detector may be placed along y, i.e., at

(ϑ, ϕ) = (π/2, π/2). The value of D is then 0.2, so that the entanglement will be

significantly less than that along the optical axis, but should be measurable. The

observation of the emitted photon and the measurement of its polarization can be

made as in Ref. [13]. By use of the pump-probe technique, the state of the spin

will also be measured to show the correlation with the polarization of the photon.
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VI.1 The energy levels of the Λ system consisting of the two electron spin states

(lower levels) and the light hole trion polarized along the +x direction. The solid

line represents the laser pulse, which propagates along z and is linearly polarized

in the y direction. The wavy lines denote the spontaneously emitted photons from

the transitions |T`〉 → |+〉 and |T`〉 → |−〉, which are elliptically polarized in the

yz plane and linearly polarized along x, respectively.

To overcome the probabilistic nature of the entanglement (as projection is

needed) and to improve the quantum efficiency degraded by the scattering problem,

cavities and waveguides may be employed to enhance and select desired photon

emission processes [78].

The text of this Chapter is in part a reprint of the material as it appears

in Sophia E. Economou, Ren-Bao Liu, L. J. Sham, and D. G. Steel, “Unified

theory of consequences of spontaneous emission in a Lambda system,” Phys. Rev.

B 71, 195327 (2005). “Copyright (2005) by the American Physical Society.” The

dissertation author was the primary researcher and author and the co-authors

listed in this publication, directed and supervised the research which forms the

basis for this chapter.



VII.

Optical spin rotation

In this Chapter, we present a proposal to optically implement rotations

of the electron spin in a quantum dot about the growth axis. In particular, we

make use of the analytic properties of hyperbolic secant (sech) pulses in two-level

systems to realize spin rotations about the growth direction by an arbitrary angle,

for which we give an analytical expression.

We propose to use this scheme for experimental demonstration of the

spin rotation. Using realistic system and pulse parameters we find the fidelity of

the rotation to be more than 96% for pulses in the picosecond regime, and robust

against small errors in pulse parameters. We design an adaptive feedback loop

to correct for errors originating from unintended dynamics. The rotation is still

evident –albeit with a large fidelity loss– in the ensemble case, providing thus the

possibility of demonstration of the optical spin rotation in an ensemble of quantum

dots.

A. Review of Existing Proposals

A proposal for arbitrary optical spin rotations in a quantum dot which

does not explicitly require selectivity between the two transitions is available [23],

but as will now be explained it implicitly requires long pulses when the Zeeman

splitting is small. Specifically, in ref. [23] two pulses with a definite phase relation

89
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are used. Both pulses act on both transitions. To remove fast oscillating terms,

the condition

ωB >> Ωj(t) (VII.1)

is imposed, where 2ωB is the Zeeman splitting and Ωj is the Rabi frequency of

pulse j. The axis of rotation depends on the ratio of the two Rabi frequencies

and the phase between the two pulses. The angle of rotation is given by the time

integral of

λ2 =
∆

2
−

√
Ω2
↑ + Ω2

↓ +
(

∆

2

)2

, (VII.2)

where ∆, the detuning, is the difference between the central frequency of the laser

and the trion energy. From the last relation, it is evident that in order to achieve

large rotation angles, long pulses are needed, since the Rabi frequency is bounded

from Eq. (VII.1).

Another proposal [100] suggested to use a π-pulse to populate the trion

state for some time, during which the precession of the spin is used so that the

|z̄〉 state acquires a phase and subsequently a second π-pulse recovers the |z〉 state

population by stimulated emission. This method of rotating requires populating

the trion state for a significant amount of time, so that trion decay will significantly

affect the fidelity. The operation will moreover be slowed down when the Zeeman

splitting is small.

B. Proposal of rotations about the growth axis

In the current proposal, contrary to the use of any kind of selectivity

between the two transitions, we choose a pulse with sufficient bandwidth to act on

both transitions. The Hamiltonian in the {|z̄〉, |z〉, |T 〉} basis has the form

H =




0 ωB 0

ωB 0 Ω(t) eiωot

0 Ω(t) e−iωot εT




. (VII.3)
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It is evident from the above form of the Hamiltonian, that the pulse only

couples the |z〉 state to the excited trion state. The |z̄〉 state is indirectly coupled

through the B field. Therefore, for small Zeeman splitting and for a pulse much

shorter than the spin precessing period we can view in our qualitative discussion

the three-level system as two systems of dimensions 2 and 1, consisting of {|z〉, |T 〉}
and {|z̄〉} respectively.

It is well known that for a two-level system the sech pulse shape of Rosen

and Zener (RZ) [117] yields an exactly solvable evolution, for arbitrary detuning.

As was more recently shown, the RZ pulse belongs to a class of exactly solvable

pulse shapes [5]. Here, we will make use of the properties of the RZ pulses to

obtain an analytical expression for the angle of rotation.

C. Review of the Rosen-Zener solution

Consider a two-state system, initially in the ground state, |g〉, with the

two levels coupled by a time dependent Hamiltonian with a sech envelope and

central frequency ωo:

Ω sech(σ t) eiωot ≡ f(t) eiωot, (VII.4)

where Ω is the Rabi frequency, σ is the bandwidth of the pulse. Moving to the

interaction picture, the problem reduces to solving two coupled first order equations

or, equivalently, one second order equation of the form:

c̈e + (i∆− ḟ/f)ċe + f 2ce = 0, (VII.5)

where cg (ce) is the coefficient of the ground (excited) state, and ∆, the detuning,

is the difference between the laser frequency ωo and the energy splitting of the two

levels; the initial condition is ce(−∞) = 0. By the change of variable

ζ =
1

2
(tanh(σt) + 1) , (VII.6)
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RZ bring the equation into the form of the Hypergeometric Equation, where

a =
Ω

σ
, (VII.7)

c =
1

2

(
1 + i

∆

σ

)
. (VII.8)

After imposing the initial conditions, the coefficients of the ground (|g〉) and excited

(|e〉) states are:

cg = F (a,−a, c∗, ζ) (VII.9)

ce = −i
a

c∗
ζ1−c F (a + 1− c, 1− a− c, 2− c, ζ). (VII.10)

We see from Eq. (VII.10) and by use of the properties of the Hypergeometric

function that when

σ = Ω (VII.11)

there is no population transfer to the excited state for t →∞, i.e., ce(∞) = 0, and

instead the pseudospin vector undergoes a full cycle from |g〉 to |e〉 and back to

|g〉 with a ground state having acquired a phase factor

cg(∞) = −σ + i∆

σ − i∆
≡ e−iφ, (VII.12)

tan φ =
2σ∆

∆2 − σ2
. (VII.13)

For σ fixed, the path will be determined from the detuning, as shown in Fig. VII.1

.

D. Use of RZ pulses for Raman qubit rotation

For an arbitrary sech pulse, the evolution operator of the whole three-

level system, under the approximation of slow precession, is found by combining the

solution of the Rosen-Zener problem for arbitrary initial conditions and including

the decoupled (to a first approximation) |z̄〉 level. In the {|z̄〉, |z〉, |T 〉} basis we

obtain
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VII.1 Bloch vector representation of the pseudospin; The pulse bandwidth is

fixed σ = 1 and the detuning varies: ∆ = 0 (red curve), ∆ = 1 (blue curve) and

∆ = 0.5 (green curve). The plot is in the rotating frame of the laser, not that of

the unperturbed system.

U '




1 0 0

0 F (a,−a, c∗, ζ) − ia
c
ζc F (a + c,−a + c, 1 + c, ζ)

0 − ia
c∗ ζ

c∗F (a + c∗,−a + c∗, 1 + c∗, ζ) F (a,−a, c, ζ)




.

(VII.14)

To have a unitary operation, it is necessary that Eq. (VII.11) is satisfied,

i.e., the trion state gets only virtually excited. We will refer to such pulses as

‘transitionless’. Mathematically, this translates to a = 1. We are also interested

only in the form of U after the passage of the pulse, when ζ = 1. Then U becomes

U '




1 0 0

0 1− 1/c∗ 0

0 0 1− 1/c



≡




1 0 0

0 e−iφ 0

0 0 eiφ




. (VII.15)

The truncated evolution operator, in the 2× 2 spin space is described by
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the unitary matrix:

Uspin '



1 0

0 e−iφ


 = e−iφ/2




eiφ/2 0

0 e−iφ/2


 . (VII.16)

A phase between the | ± z〉 states translates to a rotation about the z axis by an

angle φ. So, while for a true two-level system the induced phase of a transitionless

pulse is trivial when all the population is initially in the |z〉 state, for the three-

level system it yields a non-trivial rotation about the z axis, since the phase now is

relative to the |z̄〉 state. The expression for the angle of rotation may be simplified:

tan
φ

2
=

sin φ

1 + cos φ
=

σ

∆
.

φ = 2 arctan
σ

∆
. (VII.17)

E. Numerical simulation and Experimental proposal

Equations (VII.16) and (VII.17) are our main theoretical results. To

check to what extent this theory can be implemented in an actual three level system

with its inherent decoherence and unintended dynamics included, we studied by

analytical work and detailed simulations the spin beats of an optical experiment

in the dots.

The proposed experimental process involves three pulses.

1. An initializing pulse, which we call pump, for which Ω = σ/2.

2. A rotating pulse, which we call control pulse, for which Ω = σ.

3. A weak probe pulse.

The optical experiments on quantum dots are usually performed at 4K,

which is well above the Zeeman splitting for GaAs [41]. We are thus starting with a

completely mixed state of the qubit and initialize it with optical pumping [41]. We

propose to use an RZ pulse which will probabilistically initialize the spin with −1/2
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polarization as follows. A σ+ polarized pulse acts only on |z〉, exciting it to the

trion state and leaving net population to the |z̄〉 state, thus creating a spin vector

(SV) initially pointing along −z and precessing about the static B field. From the

solution of the Rosen-Zener problem, we see that by setting Ω = σ/2 and ∆ = 0

all the population of the |z〉 state is transferred to the trion, which subsequently

decays incoherently to the two lower states, provided that the trion state linewidth

is small compared to the Zeeman splitting, so that the Spontaneously Generated

Coherence (SGC) [42, 41] may be ignored. In Section F. we will investigate the

effect of SGC along with the other deteriorating mechanisms. However, we stress

that SGC has been taken into account in all our numerical simulations.

Since the designed operation is a rotation about the z axis, the SV should

not be affected when the incident control pulse finds it at a dip or peak, i.e. at

|z̄〉 or |+ z〉 respectively. On the other hand, the most prominent effect should be

when the SV intersects the time axis, i.e., when it is pointing along the y direction,

which is the case in our simulations.

To experimentally achieve a transitionless pulse, the Rabi frequency of the

initializing pulse could be doubled or preferably a separate pump-probe experiment

with the control pulse in place of the pump may be performed. The transitionless

pulse induces a large initial spike and then the spin beats essentially vanish, as

shown in Fig. VII.2. The physics is simple: the transitionless pulse only virtually

excites the trion, ideally transferring no population, so that it may not be used for

initialization via optical pumping. Once the pulse duration and Rabi frequency of

the control pulse are fixed, the detuning will be varied from ∆ = 0 which renders

a π rotation, to ∆ = σ/ tan(π/8), which yields a π/4 rotation.

In our simulations, the pulse duration is about 6 ps for GaAs, close to the

ones used in ref.[41], which translates to about σ = 0.4 meV. We take the Zeeman

splitting to be 40 µeV, which corresponds to a B field of about 6.5 T [41]. For

InAs dots, we take σ = 0.8 meV and the Zeeman splitting to be 0.1 meV, which

corresponds to B∼ 2.3 T [72]. The trion decay rate for GaAs is also taken from
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VII.2 Effect of transitionless pulse on mixed state, as calculated in the DTS

versus t relation. Virtually no beats are generated when Ω = σ. Here, σ = 0.4meV

and ∆ = 0.

ref. [41], equal to 0.01 meV. For InAs dots it is about 0.6 µeV [140].

To demonstrate the unitarity of the control pulse, a second pulse is used

to rotate the SV back to the yz plane and thus recover the initial beat amplitude,

as shown in Fig. VII.3 GaAs and in Fig. VII.6 for InAs. We note that the beats

are not recovered completely, due to errors originating from the trion decay and

the (small but finite) precession of the spin during the operation. For π rotations,

Figs. VII.4 and VII.5, the unitarity is evident, since the SV remains entirely in

the yz plane. We will ignore spin dephasing in the following discussion on fidelity.

The spin will be measured via a weak probe. Given that a σ+ polarized

probe measures the z component of the SV, the actual angle of rotation in the

experiment will be given by

φexp = arccos
A1

Ao

, (VII.18)

where Ao and A1 are the beat amplitudes before and after the control pulse re-

spectively, as in ref. [57].
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VII.3 Differential transmission

signal (DTS) representing spin

rotation in a GaAs dot by π/2

with pulse of σ = 0.4meV and

∆ = σ.
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VII.4 Differential transmission

signal (DTS) representing rota-

tion of the spin in a GaAs dot by

π with a resonant pulse of σ =

0.4meV.
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VII.5 DTS representing rota-

tion of the spin in a InAs dot

by π. The pulse is resonant with

σ = 0.8meV.
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VII.6 DTS showing the rota-

tion of the spin in a InAs dot by

π/2. The pulse parameters are

σ = ∆ = 0.8meV
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F. Fidelity

1. Initialization

The initialization process described above ideally yields a 50% fidelity.

However, the mechanism that undermines the fidelity of the initialization is the

SGC, as mentioned above [42]. SGC is suppressed by making the Zeeman splitting

larger [42, 41]. Our numerical simulations show that the fidelity of initialization

is about 40% for GaAs, even for relatively large Zeeman splittings. Since the

initialization is far from perfect anyway, we will not worry about SGC effects.

A more important issue is a possible uncertainty in the Rabi frequency,

stemming from limited knowledge of the dipole matrix element between |z〉 and

|T 〉. Deviation of the Rabi frequency from σ/2 will limit the generated polarization.

In Section G. we discuss how to maximize the polarization by use of (adaptive)

feedback loops.

Finally, valence band mixing will affect the spin polarization, by altering

the selection rules. Again, a feedback loop that scans through the polarization

of the laser may be employed, so that a true Λ-configuration is recovered. This,

discussed in Section G., will also allow for correction due to valence band mixing

in the subsequent control of the spin.

2. Rotation

The fidelity is given by [108, 110]

F = |〈Ψ|Ũ †Uid|Ψ〉|2, (VII.19)

where Ψ is the initial state, Ũ and Uid are the actual and ideal operations respec-

tively and the average is to be taken over the whole Hilbert space. Clearly, for

U = Uid, the fidelity obtains its largest value, 1, which means that the operation

is perfect. If we define

I = Ũ †Uid, (VII.20)
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then the fidelity becomes (see Appendix A)

F =
1

3

∑

i

|Iii|2 +
1

6

∑

i 6=j

|Iij|2. (VII.21)

The purity of the operation is given by [110]

P = Tr(ρ2
out) =

1

3

∑

i

TrR2
ii +

1

6

∑

i 6=j

Tr (RiiRjj + RijRji) , (VII.22)

where Rij = ŨρijŨ
†. This is a good measure for purity, since for a pure state

ρ2 = ρ, which is easily seen by writing ρ = |Ψ〉〈Ψ|.
The fidelity of the operation deteriorates due to the following mechanisms:

the decay of the trion state during the gate operation, the spin precession during

the pulse action, and the spin dephasing. The dominant mechanism is the former;

it is irreversible and will degrade the unitarity of the operation, with the effect

being stronger for longer pulses and pulses closer to resonance. Obviously, the

shorter the pulse the higher the fidelity; but there is a lower bound to how short

a pulse may be, as there is an upper bound on pulse strength the system can

accommodate. Fig. VII.8 shows the fidelity as a function of the pulse bandwidth.

Smaller detunings correspond to larger rotation angles, Eq. (VII.17), so that the

fidelity is lower for large rotation angles, and is close to perfect for small angles,

as shown in Figs. VII.7 and VII.9 for GaAs and InAs dots respectively.

On the other hand, the precession of the spin vector during the action

of the control pulse is a reversible evolution, and will not affect the purity of the

operation. It will however cause a tilt to the axis of rotation, affecting the fidelity.

In principle, this can be taken into account by choosing this alternate axis of

rotation instead of insisting on rotations about z. In our case however, it does

play a small role in the loss of fidelity, more so for longer pulses.

As in the initialization case, uncertainty in the Rabi frequency and valence band

mixing will affect the fidelity of the rotation. In the next section we discuss how

to overcome these effects using feedback loops. Once this process is carried out for

initialization, the appropriate pulses will automatically be known for the rotation

as well.
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VII.7 Fidelity of the operation as a function of the angle of rotation for GaAs

dots. Large angles correspond to pulses closer to resonance, yielding loss of fidelity

due to (real) trion excitation. Here the bandwidth has been taken equal to 0.3

meV and the uncertainty in the laser electric field is 15%.
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VII.8 Fidelity of the operation as a function of the pulse bandwidth for GaAs

dots. Large bandwidth corresponds to fast pulses, and therefore smaller time

intervals of trion excitation. Here the angle of rotation equals π. The uncertainty

in the laser electric field is 15%.
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VII.9 Fidelity of the operation as a function of the angle of rotation for InAs

dots. Large angles correspond to pulses closer to resonance, yielding loss of fidelity

due to (real) trion excitation. Here the bandwidth has been taken equal to 0.8

meV. The uncertainty in the laser electric field is 15%.

G. Overcoming errors with feedback loops

1. Uncertainty in laser parameters

Experimentally, the Rabi frequency may not be exactly known if the

polarization matrix element between |z〉 and |T 〉 has not been measured; one

way to find the optimal value of the Rabi frequency is fixing the pulse duration

and scanning the intensity until the response (spin polarization) is maximized.

Actually, the theory can do better: even if the pulse duration is not precisely

known, we can devise a feedback loop, which combined with the analyticity of our

solution will yield the maximum polarization, i.e., will pick the pulse with Ω = σ/2.

By use of the evolution operator of Eq. (VII.14), we can find the trion population

after the passage of the pulse. The truncated evolution operator for time t after

the pulse and for resonant pulses takes the form in the {|z̄〉, |z〉} subspace

Λ(∆ = 0) '



1 0

0 cos(∆θ
2

)


 , (VII.23)
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where ∆θ = 2πΩ
σ

is the pulse area. Action of Λ on a mixed density matrix yields

ρ =




1/2 0

0 (1/2) cos2(∆θ
2

)


 . (VII.24)
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VII.10 Initialization using a sech pulse with σ = 0.4meV and Ω = σ/2.
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VII.11 Initialization with a

pulse with σ = 0.4meV and Ω =

1.5 σ/2.
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VII.12 Initialization with a

pulse with σ = 0.4meV and Ω =

0.5 σ/2.

The feedback loop we propose consists of the laser, which is connected to

the computer, which also records the measurements from each run, and a pulse-

shaper. The pulse bandwidth is fixed but not precisely known. The initial value

of the Rabi frequency (laser power) is also unknown, call it Ω1. After the trion

decays, the signal is proportional to the spin polarization. The maximum of the

beats then is given by

P1 =
A

2
sin2(

Ω1

σ
π), (VII.25)
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where A is some unknown constant related to the measurement process. The value

P1 is recorded and in the next run the Rabi frequency is doubled, Ω2 = 2Ω1. The

next run will thus yield

P2 =
A

2
sin2(

2Ω1

σ
π). (VII.26)

The ratio is

P1/P2 =
sin2(Ω1

σ
π)

sin2(2Ω1

σ
π)
⇒

√
P2

P1

= 2 cos
(

Ω2π

2σ

)
⇒ Ω2 =

σ

2π
arccos

(
1

2

√
P2

P1

)
.(VII.27)

Therefore, in the third run the Rabi frequency should be chosen to be

Ω3 =
πΩ2

arccos
(

1
2

√
P2

P1

) , (VII.28)

which is the target value, σ/2, according to Eq. VII.27. An advantage of this

scheme is that knowledge of neither the pulse duration nor the Rabi frequency

are required. It is also an indirect way of determining the dipole matrix element

between |z〉 and |T 〉.

2. Finite valence band mixing

In the presence of valence band mixing, the Hilbert space is no longer

3 × 3. We account here for mixing between the |3
2
〉 (| 3̄

2
〉) and the | 1̄

2
〉 (|1

2
〉) trions.

Since in all cases the electrons are in the same orbital and in a spin singlet state,

we list only the hole states:

|HH+〉 = − 1√
2
|(X + iY ) ↑〉 (VII.29)

|LH−〉 =
1√
6
|(X − iY ) ↑〉+

√
2

3
|Z ↓〉 (VII.30)

|LH+〉 = − 1√
6
|(X + iY ) ↓〉+

√
2

3
|Z ↑〉 (VII.31)

|HH−〉 =
1√
2
|(X − iY ) ↓〉, (VII.32)

where |X ± iY 〉 and |Z〉 are the ` = 1 spherical harmonics with m = ±1 and

m = 0 respectively. The corresponding trion states will be denoted by |H〉 (=

|T 〉), |L̄〉, |L〉, |H̄〉.
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When valence band mixing is included, the valence Hamiltonian in the

{|H〉, |L̄〉, |H〉, |L〉} basis is

H =




εH v 0 0

v∗ εL 0 0

0 0 εH v

0 0 v∗ εL




, (VII.33)

where v is the coupling between heavy and light hole. The dot potential has been

assumed such that the mixing between |H〉 (|H̄〉) and |L〉 (|L̄〉) is zero. An expres-

sion for v is given in Appendix B for a simple harmonic oscillator dot potential. To

solve the eigenvalue equation, it helps to redefine the zero of energy by subtracting

ε̄/2 ≡ εL+εH

2
; then we get

H =




−a v 0 0

v∗ a 0 0

0 0 −a v

0 0 v∗ a




, (VII.34)

where a = εL−εH

2
.

By diagonalizing within the blocks, the solution (known from the two-

level system) is given by the following eigenvalues and eigenstates:

λ± = ±
√

a2 + v2 (VII.35)

C1,− =




cos φ
2

− sin φ
2

0

0




≡ |Hl̄〉 (VII.36)

C1,+ =




sin φ
2

cos φ
2

0

0




≡ |L̄h〉 (VII.37)
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C2,− =




0

0

cos φ
2

− sin φ
2




≡ |Hl̄〉 (VII.38)

C2,+ =




0

0

sin φ
2

cos φ
2




≡ |L̄h〉. (VII.39)

The angle φ is defined through

cos φ =
a√

a2 + v2
(VII.40)

Restoring the zero of energy, we can write the Hamiltonian in the new

basis, {|Hl̄〉, |L̄h〉, |H̄l〉, |Lh̄〉}, as

H =




ε̄
2
− λ 0 0 0

0 ε̄
2

+ λ 0 0

0 0 ε̄
2
− λ 0

0 0 0 ε̄
2

+ λ




. (VII.41)

If σ+ light is used, propagating along z and centered at the HH trions

(with energy ε̄
2
− λ) the trion states of higher energy can be ignored by frequency

selectivity. In the presence of the mixing we will have a 4 × 4 Hamiltonian in-

stead of the 3 × 3 from the previous sections, where mixing was ignored. In the

{|z〉, |z̄〉, |Hl̄〉, |H̄l〉} basis, where state |Hl̄〉 (|H̄l〉) represents a state with largest

contribution from the |H〉 (|H̄〉) the total Hamiltonian, including the dipole inter-

action, is

H4 =




0 ωB Ω cos φ
2

0

ωB 0 0 1√
3
Ω sin φ

2

Ω∗ cos φ
2

0 ε̄
2
− λ 0

0 1√
3
Ω∗ sin φ

2
0 ε̄

2
− λ




. (VII.42)
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From Eq. (VII.42) it is clear that when a σ+ 2π sech pulse is used,

there is actually some error in the rotation scheme of the previous sections, due

to an incomplete Rabi cycle involving the new state |Hl̄〉, and also due to some

population transfer to the |H̄l〉 state. Although this is going to be a very small

effect (compared, for example, to the decay of the trion state during the pulse

action), we can compensate for it by changing the polarization of the applied field

and recover a 3 × 3 Λ-system, which will allow us to use our rotation scheme,

as proposed in Section D. To find the target polarization, we assume elliptical

polarization

cxx̂ + icyŷ (VII.43)

and require

〈H̄`| (cxx̂ + icyŷ) |z̄〉 = 0. (VII.44)

Solving (VII.44) for the c’s along with the normalization condition c2
x + c2

y = 1, we

find

co
x =

1√
2
cos φ

2
− 1√

6
sin φ

2(
cos2 φ

2
+ 1

3
sin2 φ

2

)1/2
(VII.45)

co
y =

1√
2
cos φ

2
+ 1√

6
sin φ

2(
cos2 φ

2
+ 1

3
sin2 φ

2

)1/2
. (VII.46)

Then a three-level system is recovered, consisting of the states |z〉, |z̄〉 and |H ¯̀〉,
and our rotation scheme may be carried out.

To determine the desired polarization, knowledge of φ, and thus co
x, c

o
y,

is not necessary. Instead, a feedback loop can be devised, in the spirit of the one

described in Subsection 1.

The Hamiltonian for arbitrary elliptical laser polarization, cxx̂ + icyŷ is
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given by

H =




0 ωB Ω+ 0

ωB 0 0 Ω−

Ω∗
+ 0 ε̄

2
− λ 0

0 Ω∗
− 0 ε̄

2
− λ




, (VII.47)

where

Ω+ = −Ω
(cx + cy)√

2
cos

φ

2
− Ω

(cx − cy)√
6

sin
φ

2
(VII.48)

Ω− = Ω
(cx − cy)√

2
cos

φ

2
+ Ω

(cx + cy)√
6

sin
φ

2
. (VII.49)

Initially the density matrix is taken to be in a spin ensemble ρ = diag(1/2, 1/2, 0, 0).

After the pulse we have ρ = diag(1
2
cos2 θ+

2
, 1

2
cos2 θ−

2
, 1

2
sin2 θ+

2
, 1

2
sin2 θ−

2
), where

θ± = 2πΩ±
σ

. The signal then, ignoring SGC, will be

P =
A

2

(
cos2 θ+

2
− cos2 θ−

2

)

=
A

4
(cos θ+ − cos θ−)

= −A

2
sin

θ+ + θ−
2

sin
θ+ − θ−

2
.

Inserting the expressions for the angles θ±, we get

P =
A

2
sin

(
2πΩ

σ
cy

[
1√
6

sin
φ

2
− 1√

2
cos

φ

2

])
sin

(
2πΩ

σ
cx

[
1√
6

sin
φ

2
+

1√
2

cos
φ

2

])

≡ A

2
sin (α1πc) sin

(
α2π

√
1− c2

)
. (VII.50)

The feedback loop is designed as follows: First, we pick c = cx = 1/
√

5 and the

signal is

P1 =
A

2
sin

(
α1π√

5

)
sin

(
2α2π√

5

)
. (VII.51)

For the second run, we choose c → 2c we get

P2

P1

=
cos

(
α1π/

√
5
)

cos
(
α2π/

√
5
) , (VII.52)
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which after some algebra becomes

P2

P1

=
cos

(
α1π/

√
5
)

cos
(

α1π
2
√

5
+

√
2π2Ω2

5σ2 − 3α2
1π2

20

) , (VII.53)

where

α1 =
2Ω

σ

(
1√
6

sin
φ

2
+

1√
2

cos
φ

2

)
. (VII.54)

Equations (VII.53) and (VII.54) can be solved numerically and thus determine φ,

from which the target polarization will be found from Eqs. (VII.45) and (VII.46),

so that in the third run the ideal polarization will have been reached.

For small angle φ, i.e., small mixing the small-angle approximation may

be employed to obtain an analytical solution for the polarization of the third run

in terms of the signals from the first two runs. In this limit, we have for α1

α1 ≈ 2Ω

σ

(
φ

2
√

6
+

1√
2

)
, (VII.55)

and φ is then

φ =

√
30σ

πΩ
cot

(
2πΩ√
10σ

)
P1 − P2

P1 + P2

. (VII.56)

H. Errors due to Incomplete Rabi Flop of Excitons

A crucial feature in our scheme is the complete Rabi flop of the trion with

a 2π pulse. Rabi oscillations for excitons in quantum dots have been demonstrated

experimentally [129], but they do exhibit distinct features compared to atoms. In

Ref. [129] exciton population was measured as a function of the pulse area. For

areas larger than π, the Rabi oscillations were shown to degrade considerably and

the exciton was not flopped all the way back to the vacuum by a 2π pulse. This

effect was seen by several groups [139, 152], and it was attributed to itinerant

excitons, phonons, and coupling to wetting layer states [138]. Rabi oscillations

between spins and trion states were recently demonstrated [56], and exhibit the

same damping behavior. Our scheme should still work as a design for a proof-
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of-principle experiment, but for a practical rotation this mechanism should be

incorporated in the design, e.g. with pulse shaping techniques.

I. Rotations about other axes

A full set of rotations about one more axes would allow for an arbitrary

rotation when combined with the rotations about z. Using the heavy-hole trion

state, we can obtain rotations about x using again RZ pulses, albeit a lot slower

ones, by frequency selectivity. If, e.g., a pulse is slow enough to excite only one

of the two spin states along x, then a 2π RZ pulse, otherwise exactly the same as

above, will cause a rotation about x. Clearly, we would have to pay the price of

slow pulses, which is exactly what we set off to avoid. Possibly use of higher trion

states (e.g., light hole trions) and/or tilting the optical axis away from z may allow

for more efficient rotations about axes other than z.



VIII.

Conclusions

In this chapter we summarize the main results presented in this disserta-

tion and we give an outlook of future work.

A. Summary

Chapters II-IV contain background material needed to understand the

chapters that follow.

Chapter II contains elements of basic semiconductor theory, of approxi-

mate bandstructure calculations, effective mass approximation and envelope func-

tion approximation for QDs. It introduces also the concepts of exciton, biexciton,

and trion and briefly reviews quantum computation schemes with excitons and

electron spins in dots. In III we give an elementary introduction of semiclassical

and quantum optics, as needed for the development of the remaining chapters. In

chapter IV, the nonlinear pump-probe experiment that measures the spin is ex-

plained and put in mathematical terms. We introduce the differential transmission

signal (DTS) and explain its relation to the spin.

In Chapter V we present one of the main results of this dissertation,

the full study of optical decoherence in the optically manipulated spin qubit in

the quantum dot. An intriguing effect that arises is Spontaneously Generated

Coherence (SGC). Understanding the decoherence mechanisms including SGC is

110
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important in quantum information, both in the optical manipulation and initial-

ization of the qubits. We present the theory of SGC, its effects on a pump-probe

experiment, and the results of this experiment (performed by Prof. Steel’s group

in collaboration with us), which are in good agreement with our theoretical pre-

dictions.

In the same Chapter we introduce first the concept of Spontaneously

Generated Coherence for a generic Λ system. Starting from a master equation, the

derivation of the decay and decoherence equations is given step-by-step, and the

SGC term is found to occur when the two transitions have parallel or antiparallel

dipole matrix elements. We examine SGC first in the context of atomic physics,

where it was initially predicted, and explain why its detection is challenging in

atoms. It is subsequently explained how the conditions for SGC are met in the

quantum dot. An intuitive explanation is given for the role of SGC in a pump-

probe experiment, and finally the experiment itself is discussed. The experiment

showed, in excellent qualitative agreement with the theory, that the presence of

SGC induces a magnetic field-dependence to the amplitude and phase of the spin

beats. This experiment, carried out by Duncan Steel’s group in the University of

Michigan in collaboration with our theory, constituted the first detection of SGC.

In Chapter VI we develop a general theoretical approach which unifies

SGC, polarization entanglement, and two-pathway decay.

More specifically, SGC is reexamined in connection to other possible con-

sequences of spontaneous emission in a Λ system, namely polarization entangle-

ment, and two-pathway decay. We focus on a single system instead of an ensemble.

Taking the viewpoint that spontaneous decay is governed by unitary quantum evo-

lution when all subparts of the system are considered, we derive an expression for

the state of the total system, including the photon wavepacket and the electron

state. Depending on the couplings, which are functions of the emission direction

and polarization, we found constraints for the various phenomena to occur. SGC

is shown to be an effect complimentary to polarization entanglement, and using
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this connection we established a continuous measure of SGC, in analogy to entan-

glement measures in quantum information theory. We also discuss the use of a

quantum eraser to recover SGC from a two-pathway decay process, which opens

up the possibility of SGC detection in atoms. We also propose detection of prob-

abilistic SGC in a trapped ion. Finally, we examine SGC from a symmetry point

of view and we explain the role of the common z axis of the quantum dots that

constituted the ensemble in the SGC experiment.

A third major part of this thesis is presented in Chapter VII. In this part,

we develop and propose a method for optical spin rotations about the growth axis

in quantum dots by use of ultrafast circularly polarized Rosen-Zener ‘sech’ pulses.

In particular, use of ultrafast pulses allows for decoupling of the three-

level system to 2+1 levels during the fast action of the pulse. Then, by using

analytically solvable pulses for a two-level system, like the ‘sech’ pulses, the angle

of rotation is obtained analytically as a function of the pulse parameters. We

studied the fidelity of the operation by simulations to include the trion decay

and unintended dynamics (such as spin precession). Besides decay mechanisms,

unintended dynamics originating from valence band mixing and uncertainty in

laser parameters also cause the operations to deteriorate. We take into account

these undesirable processes and we devise adaptive feedback loops (containing a

measurement device, a computer and a pulse shaper) in order to correct for these.

We only assume knowledge of the pulse shape, not the laser parameters, and taking

into account the analyticity of the solution, we show that the ideal pulse can be

found after three runs of the feedback loop.

B. Future Directions

Quantum dots are still to be explored, especially in the context of optical

transitions, coherent control, and possible applications in quantum technologies.

As a qubit, the spin in the quantum dot is very promising, but most of
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the key DiVincenzo requirements [37] are yet to be shown. Initialization based on

hole spin flip has been demonstrated with high fidelity [4], but it was too slow for

practical uses. An ultrafast initializing scheme of high fidelity for the spin has not

yet been demonstrated. One possible direction is using fast phonon relaxations,

in resonance with transitions in the dots. Another possibility for initialization is

looking into using the so-called anti-Zeno effect [73], in which decay is sped up by

measurement.

Single-qubit rotations comprise a primary element of quantum computa-

tion. For universal quantum computation the full set of single-qubit rotations is

necessary.1 Extension of the ultrafast rotations proposed in this thesis to other axes

should be addressed, possibly by use of energetically higher trion states and/or dif-

ferent optical axis. The problem of incomplete exciton Rabi flops is also open. The

mechanism causing the Rabi oscillations to degrade should be taken into account

in the design of the rotations, and pulse shaping methods may be investigated for

its restriction.

The two-qubit controlled operations are also of great importance. The-

oretical work has been done [107, 114] to that end, but a design closely related

to an experimental demonstration will be a key step towards the implementations

of controlled operations. Different geometries for coupled quantum dots, such as

stacked or coplanar dots may be examined. In this context, there is a lot of work to

be done regarding decoherence of the two qubits interacting with a common bath.

As a concrete direction, the SGC effect for coupled quantum dots is a question of

practical interest and a natural continuation of the work in this thesis.

Another interesting direction is design of quantum network architectures,

addressing issues of transfer of quantum information, which is intimately related

with optically controlled quantum dots, where the photons would serve as the flying

qubits. In a similar spirit, hybrid systems for quantum information processing are

also promising. Coupling of different quantum systems opens up the possibility

1Assuming we want to avoid using two-qubit operations to implement single-qubit rotations.
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of exploiting the desirable features of each of them from a practical point of view

for quantum information processing, and it encompasses the study of intriguing

physics.



Appendix A.

Derivation of Expression for

Fidelity for two-Dimensional

Hilbert Spaces

The fidelity of an operation Ũ is defined as

fΨ = |〈Ψ|Ũ †UI |Ψ〉|2 (A.1)

for a given initial state |Ψ〉, where UI is the ideal operation. To find the actual

fidelity, which is state-independent, we need to take an average over the whole

Hilbert space:

f = |〈Ψ|Ũ †UI |Ψ〉|2. (A.2)

Let us first define

I ≡ Ũ †UI . (A.3)

Also, the arbitrary initial state can be written as a superposition of the basis states:

Ψ =
∑

j

cj|j〉, (A.4)
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so that

fΨ =
∑

ijkl

IijI
∗
lkc

∗
i cjc

∗
kcl. (A.5)

In the case of a 2 × 2 Hilbert space each of the c’s can assume one of two values,

c+ and c−.

It is useful to group the terms in five categories:

1.
∑

i |Iii|2|ci|4

2.
∑

i6=j IiiI
∗
jj|ci|2|cj|2

3.
∑

i6=j IijI
∗
ij|ci|2|cj|2

4.
∑

i6=j cicj|cj|2 ×
(
IijI

∗
jj + IijI

∗
ii + IiiI

∗
ij + IiiI

∗
ji

)

5.
∑

i6=j(c
∗
i )

2(cj)
2IijI

∗
ji

Now we want to average the above terms; we parameterize in the following way:

c+ = cos θ/2 (A.6)

c− = sin θ/2 eiφ, (A.7)

where θ and φ are the polar and azimuthal angles respectively. The surface element

is sin θdθdφ, which integrated gives 4π. We also note that

|c±|2 =
1± cos θ

2

Then we have for category (1), using the relation above:

|c±|4 =
1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

(1± cos θ)2

4

=
1

8

∫ π

0
dθ sin θ

(
1 + cos2 θ ± 2 cos θ

)

=
1

8

∫ 1

−1
dx

(
1 + x2 ± 2x

)

=
1

4

(
1 +

1

3

)

=
1

3
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For the terms in (2) and (3):

|c+|2|c−|2 =
1

2

∫ π

0
dθ sin θ

(1 + cos θ) (1− cos θ)

4

=
1

2

∫ π

0
dθ sin θ

(1− cos2 θ)

4

=
1

8

∫ 1

−1
dx

(
1− x2

)

=
1

4

(
1− 1

3

)

=
1

6

The terms in (4) and (5) will vanish when averaged, due to the factors eiφ, which

average to zero.

We thus have for the average fidelity:

f =
1

3

∑

i

|Iii|2 +
1

6

∑

i 6=j

(IiiI
∗
jj + IijI

∗
ij). (A.8)

As a check, when the operation is perfect, I is the identity matrix in two dimen-

sions. The diagonal elements should then be equal to 1, which gives a perfect

fidelity.

Now, it is useful to map the matrix elements of I to quantities that we simulate.

|Iii|2 = |〈i|Ũ †UI |i〉|2 = 〈i|Ũ †UI |i〉〈i|U †
I Ũ |i〉 (A.9)

= Tr
(
〈i|Ũ †UI |i〉〈i|U †

I Ũ |i〉
)

= Tr
(
Ũ |i〉〈i|Ũ †UI |i〉〈i|U †

I

)

= Tr
(
ŨρiŨ

†UIρiU
†
I

)

|Iij|2 = |〈i|Ũ †UI |j〉|2 = 〈i|Ũ †UI |j〉〈j|U †
I Ũ |i〉 (A.10)
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= Tr
(
Ũ |i〉〈i|Ũ †UI |j〉〈j|U †

I

)

= Tr
(
ŨρiŨ

†UIρjU
†
I

)
,

with i 6= j.

IiiI
∗
jj = 〈i|Ũ †UI |i〉〈j|U †

I Ũ |j〉 (A.11)

= Tr
(
〈i|Ũ †UI |i〉〈j|U †

I Ũ |j〉
)

= Tr
(
Ũ |j〉〈i|Ũ †UI |i〉〈j|U †

I

)

For concreteness, let us look at I−−I∗++. We rewrite the operators |+〉〈−| and

|−〉〈+| as:

|±〉〈∓| = ρx ± iρy − 1

2
(1± i)ρz − 1

2
(1± i)ρz̄ (A.12)

∑

i 6=j

IiiI
∗
jj = 2<

(
Tr

(
Ũ |+〉〈−|Ũ †UI |−〉〈+|U †

I

))

It is useful to define

R̃j = ŨρjŨ
† (A.13)

RI
j = UIρjU

†
I

Then

∑

i6=j

IiiI
∗
jj = 2Tr(R̃xR

I
x + R̃yR

I
y

+
1

2
R̃zR

I
z +

1

2
R̃z̄R

I
z̄ +

1

2
R̃zR

I
z̄ +

1

2
R̃z̄R

I
z +
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−1

2
R̃xR

I
z −

1

2
R̃xR

I
z̄ −

1

2
R̃yR

I
z −

1

2
R̃yR

I
z̄

−1

2
R̃zR

I
x −

1

2
R̃zR

I
y −

1

2
R̃z̄R

I
x −

1

2
R̃z̄R

I
y)

Putting together all the above, we have

f =
1

2
Tr

(
R̃zR

I
z + R̃z̄R

I
z̄

)
(A.14)

+
1

3
Tr

(
R̃xR

I
x + R̃yR

I
y + R̃zR

I
z̄ + R̃z̄R

I
z

)

−1

6
Tr

(
R̃xR

I
z + R̃xR

I
z̄ + R̃yR

I
z + R̃yR

I
z̄

)

−1

6
Tr

(
R̃zR

I
x + R̃z̄R

I
x + R̃zR

I
y + R̃z̄R

I
y

)



Appendix B.

Derivation of Valence Band

Mixing

The Luttinger Hamiltonian in the {|3
2

3
2
〉, |3

2
1̄
2
〉, |3

2
1
2
〉, |3

2
3̄
2
〉} basis is

HL




P + Q R −S 0

R† P −Q 0 S

−S† 0 P −Q R

0 S† R† P + Q




, (B.1)

where

P =
γ1

2
(k2

z + k2
x + k2

y) (B.2)

Q =
γ2

2
(−2k2

z + k2
x + k2

y) (B.3)

R = −
√

3

2
γ̄k2

− +

√
3

2
µk2

+ (B.4)

S =
√

3γ3kzk−, (B.5)

γ̄ =
1

2
(γ2 + γ3) (B.6)

µ =
1

2
(γ3 − γ2) (B.7)
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and

kx = −i
∂

∂x
(B.8)

ky = −i
∂

∂y
(B.9)

kz = −i
∂

∂z
(B.10)

k± = kx ± iky. (B.11)

Combining the above, we find for R:

R = −
√

3

2
γ2(k

2
x − k2

y) + i
√

3γ3kxky (B.12)

S = −
√

3γ3kz(kx − iky). (B.13)

The Hamiltonian for the dot is given by

H = HL + V (z) + V1(x) + V2(y), (B.14)

where the sum of the V ’s comprises the confinement potential of the dot.

First we will ignore the mixing, i.e., we’ll take R = S = 0. Then we have for the

heavy and the light hole respectively:

HH = HH
x + HH

y + HH
z (B.15)

HL = HL
x + HL

y + HL
z , (B.16)

the Hamiltonian being separable in the three coordinates. The total en-

ergy is the sum of the three energies and the wavefunction is a product of the three

wavefunctions. The x,y, and z parts of the Hamiltonian for the heavy hole are

HH
z = −1

2
(γ1 − 2γ2)

∂2

∂z2
+ V (z) (B.17)
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HH
x = −1

2
(γ1 + γ2)

∂2

∂x2
+ V1(x) (B.18)

HH
y = −1

2
(γ1 + γ2)

∂2

∂y2
+ V2(y), (B.19)

while for the light hole we have

HL
z = −1

2
(γ1 + 2γ2)

∂2

∂z2
+ V (z) (B.20)

HL
x = −1

2
(γ1 − γ2)

∂2

∂x2
+ V1(x) (B.21)

HL
y = −1

2
(γ1 − γ2)

∂2

∂y2
+ V2(y). (B.22)

We define the in-plane HH and LH masses and those along the z direction:

mH
z =

1

(γ1 − 2γ2)
(B.23)

mH
p =

1

(γ1 + γ2)
(B.24)

mL
z =

1

(γ1 + 2γ2)
(B.25)

mL
p =

1

(γ1 − γ2)
(B.26)

We will assume the dot potential to be a harmonic oscillator with a dif-

ferent strength along each direction; we can therefore write down the energies and

wavefunctions for the HH and LH.

ΥH(x, y, z) = ΨH(x)ΨH(y)ΨH(z) (B.27)

ΨH(x) =

(
mH

p ωx

πh̄

)1/4

e−mH
p ωxx2/2h̄ ≡ CH

x e−AH
x x2

(B.28)

ΨH(y) =

(
mH

p ωy

πh̄

)1/4

e−mH
p ωyy2/2h̄ ≡ CH

y e−AH
y y2

(B.29)

ΨH(z) =

(
mH

z ωz

πh̄

)1/4

e−mH
z ωzz2/2h̄ ≡ CH

z e−AH
z z2

(B.30)
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ΥL(x, y, z) = ΨL(x)ΨL(y)ΨL(z) (B.31)

ΨL(x) =

(
mL

p ωx

πh̄

)1/4

e−mL
p ωxx2/2h̄ ≡ CL

x e−AL
x x2

(B.32)

ΨL(y) =

(
mL

p ωy

πh̄

)1/4

e−mL
p ωyy2/2h̄ ≡ CL

y e−AL
y y2

(B.33)

ΨL(z) =

(
mL

z ωz

πh̄

)1/4

e−mL
z ωzz2/2h̄ ≡ CL

z e−AL
z z2

(B.34)

A. Heavy Hole-Light Hole Mixing

To find the mixing between the heavy and light hole bands we have to

find the matrix elements of R between ΥL(x, y, z) and ΥH(x, y, z). Note that the

matrix elements of S and the part of R linear in the k’s will vanish because of the

parity of the wavefunctions. Then, we only need to find the matrix elements of:

R = −
√

3

2
γ2(k

2
x − k2

y) (B.35)

We define

Ii = 〈ΨL
i |ΨH

i 〉 (B.36)

Rx = 〈ΨL
x |

∂2

∂x2
|ΨH

x 〉 (B.37)

Ry = 〈ΨL
y |

∂2

∂y2
|ΨH

y 〉 (B.38)

Then we have for 〈LH|R|HH〉:

〈LH|R|HH〉 =

√
3

2
γ2Iz (IyRx − IxRy) (B.39)

The integrals are really simple and we just quote the answer:
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Ii = CL
i CH

i

√
π

AH
i + AL

i

(B.40)

Ri = −2
√

π
AH

i AL
i

(AH
i + AL

i )3/2
CH

i CL
i (B.41)

Substituting the expression for the A’s and using the relation mH
i ωH

i =

mL
i ωL

i we find for Ii

Ii =
√

2
(
√

mH
i mL

i )1/4

√√
mH

i +
√

mL
i

. (B.42)

For Ri we have

Ri = −
√

2
(mH

i ωH
i mL

i ωL
i )5/4

(mH
i ωH

i + mL
i ωL

i )3/2
. (B.43)

R = −
√

6γ2h̄

(√
mH

z mL
z

)1/4 (√
mH

p mL
p

)1/4

√√
mH

z +
√

mL
z

√√
mH

p +
√

mL
p

(mH
p mL

p )5/4 × (B.44)




(
ωH

x ωL
x

)5/4

(
mH

p ωH
x + mL

p ωL
x

)3/2
−

(
ωH

y ωL
y

)5/4

(
mH

p ωH
y + mL

p ωL
y

)3/2


 .

We now use that ωL
i =

√
mH

i

mL
i

ωH
i , which follows from the fact that heavy

and light hole are subject to the same confining potential, and we also define a

through ωH
y = aωH

x and R becomes

R = −
√

6γ2

(√
mH

z mL
z mH

p mL
p

)1/4

√√
mH

z +
√

mL
z

√√
mH

p +
√

mL
p

(mH
p mL

p )5/4 × (B.45)

(√
mH

p

mL
p

)5/4

(
mH

p + mL
p

√
mH

p

mL
p

)3/2
(1− a)h̄ωH

x
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R = −
√

6γ2

(√
mH

z mL
z mH

p mL
p

)1/4

√√
mH

z +
√

mL
z

√√
mH

p +
√

mL
p

(
mH

p mL
p

√
mH

p

mL
p

)5/4

(
mH

p + mL
p

√
mH

p

mL
p

)3/2
(1− a)h̄ωH

x(B.46)

R = −
√

6γ2

(
mH

z mL
z mH

p mL
p

)1/8

√√
mH

z +
√

mL
z

√√
mH

p +
√

mL
p

(
mH

p

√
mH

p mL
p

)5/4

(
mH

p +
√

mH
p mL

p

)3/2
(1− a)h̄ωH

x(B.47)

We use the following values for the Luttinger parameters for GaAs:

• γ1 = 6.85

• γ2 = 2.1

• γ1 = 2.9

and we get

RGaAs = −0.1125(1− a)h̄ωH
x (B.48)



Bibliography

[1] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature (London) 425, 944
(2003).

[2] N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Ger-
shoni, B. D. Gerardot, and P. M. Petroff, Phys. Rev. Lett. 96, 130501 (2006).

[3] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature
(London) 421, 925 (2003).
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E. Hu, and A. Imamoğlu, Science 290, 2282 (2000).

[96] G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).

[97] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland,
Phys. Rev. Lett. 75, 4714 (1995).

[98] C. Monroe, Nature 416, 238 (2002).

[99] N. F. Mott and H. S. Massey, The Theory of Atomic Collisions (Oxford
University Press, London, 1965).

[100] A. Nazir, B. W. Lovett, S. D. Barett, T. P. Spiller, and G. A. D. Briggs,
Phys. Rev. Lett. 93, 150502 (2004).

[101] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum infor-
mation (Cambridge University Press, Cambridge, 2000).

[102] K. Nishibayashi, T. Okuno, Y. Masumoto, and H.-W. Ren, Phys. Rev. B 68,
035333 (2003).

[103] L. Pang, W. Nakagawa, and Y. Fainman, Applied Optics 42, 5450 (2003).

[104] Giovanna Panzarini, Ulrich Hohenester, and Elisa Molinari, Phys. Rev. B
65, 165322 (2002).

[105] M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and
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