Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

An electroencephalographic signature predicts craving for methamphetamine.

Abstract

Craving is central to methamphetamine use disorder (MUD) and both characterizes the disease and predicts relapse. However, there is currently a lack of robust and reliable biomarkers for monitoring craving and diagnosing MUD. Here, we seek to identify a neurobiological signature of craving based on individual-level functional connectivity pattern differences between healthy control and MUD subjects. We train high-density electroencephalography (EEG)-based models using data recorded during the resting state and then calculate imaginary coherence features between the band-limited time series across different brain regions of interest. Our prediction model demonstrates that eyes-open beta functional connectivity networks have significant predictive value for craving at the individual level and can also identify individuals with MUD. These findings advance the neurobiological understanding of craving through an EEG-tailored computational model of the brain connectome. Dissecting neurophysiological features provides a clinical avenue for personalized treatment of MUD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View