
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Fast algorithms and solvers in computational electromagnetics and micromagnetics on
GPUs

Permalink
https://escholarship.org/uc/item/5st179c0

Author
Li, Shaojing

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5st179c0
https://escholarship.org
http://www.cdlib.org/

i

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Fast Algorithms and Solvers in Computational Electromagnetics

 and Micromagnetics on GPUs

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Photonics)

by

Shaojing Li

Committee in charge:

 Professor Vitaliy Lomakin, Chair
 Professor Yeshaiahu Fainman
 Professor Eric E. Fullerton
 Professor Carl H. Gibson
 Professor Ross C. Walker

2012

ii

Copyright

Shaojing Li, 2012

All rights reserved

iii

The dissertation of Shaojing Li is approved, and it is acceptable in quality and form for

publication on microfilm and electronically:

 Chair

University of California, San Diego

2012

iv

DEDICATION

献给一直支持我的

爸爸李长真，妈妈邵燕琼

和

我亲爱的梁文琴

v

TABLE OF CONTENTS

SIGNATURE PAGE .. iii

DEDICATION .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... x

LIST OF TABLES ... xv

ACKNOWLEDGEMENTS ... xvi

VITA .. xx

ABSTRACT OF THE DISSERTATION ... xxiii

1 Introduction .. 1

1.1 Importance of numerical simulations to science and engineering 1

1.2 Acceleration of numerical simulation ... 2

1.3 Many-core and heterogeneous computing architectures ... 5

1.3.1 Massive parallelization architectures ... 5

1.3.2 Unique memory architecture ... 6

1.4 Hardware-adapted algorithm design .. 7

1.5 Summary of contributions .. 8

1.6 List of publications .. 10

1.6.1 Book chapters .. 10

1.6.2 Journal articles .. 11

1.6.3 Conference presentations ... 15

1.7 Outline of the thesis ... 15

2 Problem statement and mathematical outline .. 19

2.1 Numerical solutions of general micromagnetic problems 19

2.1.1 Gibbs free energy ... 19

2.1.2 The Landau-Lifshitz-Gilbert equation ... 21

2.1.3 Solution of the dynamic equation .. 22

2.1.4 Evaluation of the magnetostatic field component ... 23

vi

2.2 Numerical solutions of general electromagnetic problems 25

2.2.1 Helmholtz wave equations and its Green’s function 25

2.2.2 Solution of the Helmholtz equation ... 27

2.3 Numerical solutions of electromagnetic problems with periodic boundary
conditions .. 28

2.4 Integral equation solvers .. 29

2.5 Fast methods for integral equations ... 31

3 Introductions to the Graphics Processing Units (GPUs) 34

3.1 A short history of GPUs .. 34

3.1.1 3D graphics pipeline .. 34

3.1.2 Fixed-function GPUs ... 37

3.1.3 The Emergence of GPGPUs .. 39

3.2 The Architecture of GPGPUs .. 40

3.2.1 NVIDIA G80 architecture ... 40

3.2.2 AMD Radeon R600 architecture ... 44

3.3 GPU programming model and its impact in scientific computing 45

3.3.1 Graphics APIs ... 45

3.3.2 General purpose programming APIs for GPGPUs .. 46

3.4 Future architectures and potential impact to scientific computing 50

3.4.1 NVIDIA’s Kepler GK110 architecture [130] .. 50

3.4.2 Intel’s Many Integrated Cores (MIC) [79, 150] ... 52

3.4.3 Reconfigurable Computing (RC) architectures [18, 38] 52

3.4.4 Merge of traditional CPU and GPUs .. 53

4 Fast algorithms for integral equation solvers on GPUs 54

4.1 Current status and literature review .. 54

4.1.1 MoM on GPUs .. 54

4.1.2 FFT-based fast algorithms on GPUs ... 55

4.1.3 Hierarchical fast methods .. 57

4.1.4 Solution of linear systems .. 58

vii

4.2 Non-uniform Grid Interpolation Method (NGIM) ... 58

4.2.1 Algorithm description .. 60

4.2.2 GPU NGIM ... 68

4.2.3 Overall results ... 87

4.2.4 Summary and future directions ... 97

4.3 Box Adaptive Integral Method (B-AIM) ... 97

4.3.1 Procedure of B-AIM .. 98

4.3.2 The GPU implementation of B-AIM ... 101

4.3.3 Computational complexity and result analysis .. 105

4.3.4 Multi-GPU B-AIM .. 107

4.3.5 Summary ... 112

4.4 General designing guidelines for algorithms running on GPUs 113

4.4.1 Massive parallelism .. 113

4.4.2 Memory exchange between host and device .. 114

4.4.3 Floating point intensive and memory intensive applications 115

4.4.4 Using shared memory to avoid global memory access 116

4.4.5 Coalesced access to global memory ... 117

4.4.6 Occupancy ... 117

4.4.7 Branching and divergence ... 118

4.5 Summary .. 119

4.6 Acknowledgement .. 119

5 Fast Methods for Periodic Boundary Problems 121

5.1 Problem formulation .. 122

5.2 Fast Periodic Interpolation Method (FPIM) ... 125

5.3 Evaluation of the near-field periodic field in FPIM ... 127

5.4 Evaluation of the far-field periodic field in FPIM .. 129

5.4.1 Stage 1: Evaluating p
farG at source and observer grids 129

5.4.2 Stage 2: Evaluating faru at the observation grid ... 132

viii

5.4.3 Stage 3: Evaluating faru at the actual observers ... 134

5.5 Computational complexity ... 135

5.5.1 Low- and moderate-frequency regime .. 136

5.5.2 High-frequency regime ... 137

5.5.3 Mixed-frequency regime ... 138

5.6 Results ... 139

5.6.1 Computational times in various frequency regimes 139

5.6.2 Computational times for various kernels ... 146

5.6.3 Computational accuracy .. 148

5.7 Discussions on extended applications of FPIM .. 150

(a) Periodic 1D and 2D arrays in 2D free-space .. 150

(b) Periodic 1D and 2D arrays in metal wall waveguides 150

(c) Periodic 1D and 2D arrays in layered media .. 152

5.8 FPIM on GPUs .. 153

5.9 Summary .. 154

5.10 Acknowledgement .. 157

6 Electromagnetic and micromagnetic simulators on GPUs 158

6.1 The micromagnetic simulator (FastMag)... 158

6.1.1 Large scale bit patterned media array simulations 159

6.1.2 Magnetic recording head simulations .. 161

6.2 The electromagnetic simulator ... 162

6.2.1 Scattering from free-standing spheres .. 163

6.2.2 Scattering from human upper body ... 164

6.2.3 Scattering from periodic meta-materials .. 165

6.3 Acknowledgement .. 167

7 Micromagnetic simulations of advanced magnetic recording media and
systems ... 169

7.1 High density capped bit patterned media .. 169

7.1.1 Introduction ... 169

ix

7.1.2 Structure configuration .. 170

7.1.3 Switching field distributions .. 172

7.1.4 Readback process ... 175

7.1.5 Summary ... 177

7.2 Microwave assisted magnetic recording ... 178

7.2.1 Introduction ... 178

7.2.2 Experiment configuration .. 179

7.2.3 Reversal mechanism for homogeneous and composite media 181

7.2.3 Reversal mechanism for homogeneous, composite media 184

7.2.4 MAMR for multilevel recording .. 187

7.2.5 Summary ... 190

7.3 Acknowledgement .. 191

8 Summary and future directions... 192

8.1 Summary .. 192

8.2 Future directions .. 194

8.2.1 Further development of NGIM .. 194

8.2.2 FastMag on GPUs ... 194

8.2.3 Parallelization across multiple computing nodes ... 195

Appendix A The big-O notation .. 197

Appendix B Periodic Green’s function .. 199

References .. 201

x

LIST OF FIGURES

Figure 1 Stages of a common 3D graphics pipeline ... 35

Figure 2 The Geforce 8800GTX architecture (G80) with unified shaders. The figure on

the bottom shows the internal structure of an SM. .. 42

Figure 3 Calculating the field from far away sources by interpolation through NG

samples. The direct evaluation of the interaction between the source and the observer is

shown as the green dashed line and the indirect evaluation through NGIM is done

through grid samples (cyan points) and interpolations (blue dashed lines). 61

Figure 4 The illustration of the Stage 1: field calculation on NG samples on the finest

level. The fields on the NG samples (red dots) from sources (cross dots) are calculated

directly. .. 64

Figure 5 The illustration of Stage 2, aggregating fields on NG samples on coarser levels.

The fields on NG samples on the higher levels (red dots) are calculated through

interpolations from lower levels (yellow dots). .. 65

Figure 6 The illustration of Stage 3, calculating fields on CG samples (large green dots)

from NG samples of IL boxes (yellow dots) and CG samples of higher levels (green dots).

 .. 66

Figure 7 The illustration of Stage 4, calculating field values on observers (cross dots)

from CG samples (green dots) ... 67

Figure 8 The flow chart of CPU and GPU NGIM. (a) The sequential version of the near-

field stage of the NGIM involves a four-level loop that takes into account each source-

observer pair satisfies the Near-Field criterion. (b) In the corresponding parallel version

of the near-field stage of the NGIM, two levels of loop are spread onto parallel stream

processors of GPU. X and Y are number of observer box and number of observers in

each box. Coalesced memory loading is utilized and shown in details in Figure 9. 71

Figure 9 Memory access patterns of threads within the same block. Coalesced global

memory is utilized to accelerate the memory loading. .. 72

xi

Figure 10 The relationship of two sub-stages: NG-CG transition stage and CG

decomposition stage in calculating the field values on CG samples of boxes at each

computational level in the low-frequency regime. ... 82

Figure 11 Computational times of the direct method and multi-level NGIM on CPU and

GPU as a function of N in the low frequency regime. The time of all necessary memory

transfer between the hosts and the GPU devices are included, as will be the case for all

other timing results in this section. The size of the computational domain is / 2D  .

The relative 1L error is approximately 35 10 89

Figure 12 Sources distributed on two surfaces forming an “inverted T” structure with the

lateral length equals D 94

Figure 13 Schematic illustration of B-AIM. Subtraction of inaccurate near-field is not

shown as they follow the same procedure as the projection stage. 101

Figure 14 The flow chart of multi-GPU B-AIM. The details of parallel FFT can be found

in Ref. [33, 42]. ... 109

Figure 15 shows the computational time as a function of number of nodes used. The code

has been tested up to 4 GPUs and we could see that the blue line deviates further from

the 100% efficiency reference line at n=4. This is due to suboptimal integration between

the solver and the B-AIM, which leads to unnecessary rearranging of sources at every

field evaluation call. ... 111

Figure 16 The parallel efficiency of the B-AIM in terms of strong scalability 112

Figure 17 An example periodic structure comprising an infinite 2D periodic array in free

space. 1D and 3D arrays in 3D space are also considered. The method is also applicable

to many other periodic structures for which a PGF can be computed and a far-field PGF

with smooth behavior can be defined. ... 126

Figure 18 The schematic illustration of the source and observer grids. The grids are

chosen as shifted Cartesian lattices to allow for using simple Floquet summations for

PGFs. The choice of grids, however, is flexible and other grid types can be used. The

grey dots represent the grid points around the computational domain for which PGFs

need to be computed. ... 131

xii

Figure 19 The preprocessing and computational times vs. N in the low-frequency regime

for a linear (1D) array with  0 1.2 0.01xk j k  . The sources are distributed randomly

in a cube of linear size / 2xD L   . The times for two different methods for the

PGF are shown, including the Floquet summation in Eq. (8.3) and the alternative (faster)

approach of [164] . The number of grid points is 38gN  and the cubic interpolation is

used. The RMS error is 31 10 . .. 143

Figure 20 The preprocessing and computational times vs. N in the high-frequency

regime for a linear array with 0 (1.2 0.01)xk j k  . The size of the computational

domain varies from 2 to 8 and 3(16)N D  . The number of grid points is chosen

as 3(12)gN D  . The PGF is computed via the Floquet expansion in Eq. The cubic

interpolation is used. The RMS error is 33 10 . .. 144

Figure 21 The preprocessing and computational times vs. N in the mixed-frequency

regime for a linear array. The array is oriented along the x axis with 0xk 

(1.2 0.01)j k and a quasi-planar source distribution. The size of the computational

domain is 8 8 0.1    . The sources are arranged in four identical horizontal layers in

the x y plane. In each layer, the source distribution is a combination of two set of

sources, including a number of 128 128 16384  sources, which represent the high-

frequency regime with the uniform source density determined by the source-to-source

separation of 16 , and a number of (65536) 4N  sources, which represent the low-

frequency regime with a density increasing as 1 ()xy towards the origin. The number of

grid points is 24 (12)gN D   and the cubic interpolation is used. The simple

Floquet expansion in Eq. (8.3) is used for the PGF. The RMS error is 33 10 146

Figure 22 NGIM performance vs. the interpolation order and number of grid points for a

linear (1D) array with 0 (1.2 0.01)xk j k  . The sources are distributed in a cube of

liner size 2xD L   . (a) Error vs. the number of grid points for different

interpolation orders; (b) The preprocessing and computation time vs. the interpolation

order for 524,288N  . The PGF is computed using the approach of [164]. 149

Figure 23 The computational time of FPIM on CPUs and GPUs. The execution times

are shown and compared to the CPU direct evaluation time. The asymptotic complexity

xiii

of FPIM decreases from  2O N to  logO N N and the speed-ups are around 150x for

problems larger than approximately 30 K. .. 154

Figure 24 Block diagram of FastMag. The meshing and visualization component are

third-party open source packages. ... 159

Figure 25 (a) Model of a state-of-the-art magnetic recording head and its geometrical

dimensions. (b) The computational time for 1 nanosecond of simulation time using

different meshes. ... 162

Figure 26 The RCS of a free-standing sphere. The red curves are generated using the IE

solver with GPU accelerated fast methods. ... 164

Figure 27 Electrical current distributions along x axis on human body excited by an

incident wave above the head. ... 165

Figure 28 The normal reflection coefficient of a doubly periodic array. The Wood

anomaly is achieved around / 1.07xd  ... 166

Figure 29 The reflections coefficient of a doubly periodic metamaterial structure 167

Figure 30 The geometrical structure of CBPM. The structure is shown as a two-

dimensional periodic structures. ... 171

Figure 31 Normalized reversal field /r kH H vs. the hard element spacing   /B w w

for three BPM structures and two magnetization configurations for each structure. 174

Figure 32 The readback signal of an interleaved bit pattern from a double shielded

reading head (shown in inset), for three different material structures: conventional

patterned media, the “cap” media and the “inverse cap” media. The spacing between the

elements in (a) is the same of the hard element width; (b) 60% of the hard element width.

The parameters of the read head defined in the inset are hd t , 0.4 ht t , 1.5 hg t

 .. 176

Figure 33 Reversal field vs mwf for different elements with the coercivity 60kOeKH  ,

damping constant 0.1  , exchange field 1.6exl w and thickness of the hard

layer 1.5ht w . For the composite elements, in (a) the amplitude of

microwave 0.05mw KH H , the thickness of the soft layer 1.5st w ; in

xiv

(b) 0.07mw KH H , 0.75st w . Gray areas represent the conditions under which the

reversal occurs. ... 182

Figure 34 Schematic representation of the spin time evolution in the regime of (a)

uniform and (b) non-uniform (microwave assisted domain wall) reversal. In (c), the

thickness of soft layer is too large that the domain wall stops before move into hard

layer. ... 184

Figure 35 Reversal field vs. mwf for different KH for composite and homogeneous

elements. The damping constant  is always 0.1. In (a) 3kOemwH  , the thickness of

the soft layer is 1.5st w ; In (b), the right curves are homogeneous element

with 1.5t w , under the microwave strength 8.4kOemwH  , and the left curves are

composite elements with 0.75st w , 1.5ht w , under the microwave

strength 4.2kOeH  186

Figure 36 (a) Schematic representation of a multi-layer microwave-assisted magnetic

recording system; (b) A reversal pattern of double layer recording system. Four different

areas represent different magnetization states of in a two-layer structure comprising

homogeneous elements for different microwave frequencies. Area I corresponds to no-

switching of any layer. Area II corresponds to switching of both layers. Area III

corresponds to switching of the lower layer only. Area IV corresponds to switching of the

upper layer only. .. 188

xv

LIST OF TABLES

Table 1 Computational times and speed-up ratios of the near-field stage 74

Table 2 Computational times and speed-up ratios of the source-to-NG stage (stage 1) .. 78

Table 3 Computational times and speed-up ratios of the NG aggregation stage (stage 2)

in the low-frequency regime ... 80

Table 4 Computational times and speed-up ratios of the NG aggregation stage (stage 2)

in high-frequency regime .. 81

Table 5 Computational times and speed-up ratios of field to CG stage (Stage 3) in the

low-frequency regime .. 84

Table 6 Computational times and speed-up ratios of field to CG stage (Stage 3) in the

high-frequency regime .. 84

Table 7 Computational times and speed-up ratios of CG-to-receiver stage (stage 4) 87

Table 8 Computational times and speed-up ratios of the CPU and GPU NGIM 91

Table 9 Computational times and speed-up ratios of the GPU and CPU NGIM with

oversampled grids ... 92

Table 10 Computational times and speed-up ratios of the GPU and CPU NGIM for the

surface source-observer distribution of the "inverse-T" structure in Figure 12 93

Table 11 The computational time of the NGIM on GPUs in the high-frequency regime 95

Table 12 Computational times of the NGIM on GPUs in the mixed-frequency regime ... 96

Table 13 Computational times of serial B-AIM on CPU and parallel B-AIM on one GPU

card ... 106

Table 14 The memory consumption of B-AIM under different interpolation schemes ... 107

Table 15 The PGF tabulation time of different computational kernels. 148

Table 16 Computational time for FPIM on CPUs and GPUs .. 154

Table 17 The computational times of the bit patterned media array simulation 160

xvi

ACKNOWLEDGEMENTS

 It is my great pleasure to have this chance, after more than twenty years of

formal education, to thank the people who have helped me all the way. Whilst I owe

great gratitude to many people, I especially want to thank my advisor, Prof. Vitaliy

Lomakin, for his continued guidance and encouragements during my five years of

graduate studies. From the time I first came to the United States, I have received

countless help and support from him in academic research as well as in everyday life. It

is my privilege to have met such an advisor that has exceptional intellectual ability

while at the same time talk to his students just like their peers. He has been involved

in all the work presented in this thesis, from the early brainstorming stage, to the final

analysis and discussions. Without his tremendous help, I would have never been able to

reach the current stage of my career and the thesis could have never been completed.

 I would also like to thank Prof. Eric Fullerton who taught most of my

knowledge in magnetic recording systems and magnetic materials. I can still remember

the day he came into the classroom, smiling, being proud to tell us that the 2008 Nobel

Physics Prize was awarded to discoverers of the GMR effect. His interesting and funny

classes have always been my favorite. My gratitude also goes to Prof. H. Neal Bertram,

who I am fortunate to meet before I knew anything in the field of micromagnetics. I am

also grateful for the encouragements on numerous occasions from Prof. Thomas Schrefl

xvii

(Austria), Dr. Ganping Ju (Seagate) and Dr. Jan van Ek (Western Digital Corpora-

tion).

 I treasure my friendship with all my labmates I have during my stay in Room

3507 of the Jacobs Hall. Dr. Boris Livshitz gave me much help in my early days and a

part of the data in this thesis is obtained using the micromagnetic solver he wrote.

Many thanks to Dr. Derek van Orden, who I enjoyed talking to about anything from

complex Green’s function to the great time you had in France. My greate appreciation

goes to Ruinan Chang, Marko Lubarda, Marco Escobar, Javier Martin and Sidi Fu.

Many times we learned together and fought through obstacles and bottlenecks in

various projects. It my great pleasure to have known and worked with you all.

 Finally, my deepest gratitude goes to my parents, Changzhen Li and Yanqiong

Shao, and my beloved Wenqin Liang. The love and support you have been giving me is

unconditional.

 Part of the materials presented in this thesis have been published or is accepted

for future publication on refereed journals.

 Chapter 4 contains materials from the following papers:

• S. Li, B. Livshitz, and V. Lomakin, “Fast evaluation of Helmholtz potential on

graphics processing units (GPUs),” Journal of Computational Physics, vol. 229,

no. 22, pp. 8463-8483, 2010.

xviii

• S. Li, R. Chang, and V. Lomakin, "Chapter 19 - Fast Electromagnetic Integral

Equation Solvers on Graphics Processing Units," GPU Computing Gems Jade

Edition, W. H. Wen-mei, ed., pp. 243-266, Boston: Morgan Kaufmann, 2012.

• S. Li, R. Chang, and V. Lomakin, “Fast integral equation solvers on Graphics

Processing Units for Electromagnetics,” IEEE Antennas and Propagation Maga-

zine, to appear in 2013.

 Chapter 5, in part, is reprint, with some minor modifications for the clarity, of

the materials as it appears in

• S. Li, D. A. Van Orden, and V. Lomakin, “Fast periodic interpolation method

for periodic unit cell problems,” Antennas and Propagation, IEEE Transactions

on, vol. 58, no. 12, pp. 4005-4014, 2010.

 Chapter 6 contains results from:

• M. A. Escobar, M. V. Lubarda, S. Li, R. Chang, B. Livshitz, and V. Lomakin,

“Advanced Micromagnetic Analysis of Write Head Dynamics Using Fastmag,”

Magnetics, IEEE Transactions on, no. 99, pp. 1-1, 2012.

• R. Chang, S. Li, M. Lubarda, B. Livshitz, and V. Lomakin, “FastMag: Fast mi-

cromagnetic simulator for complex magnetic structures,” Journal of Applied

Physics, vol. 109, no. 7, pp. 07D358-07D358-6, 2011.

 Chapter 7 consists of results and discussion from papers:

xix

• S. Li, B. Livshitz, H. N. Bertram, E. E. Fullerton, and V. Lomakin, “Micro-

wave-assisted magnetization reversal and multilevel recording in composite

media,” Journal of Applied Physics, vol. 105, no. 7, pp. 07B909-07B909-3, 2009.

• S. Li, B. Livshitz, H. N. Bertram, A. Inomata, E. E. Fullerton, and V. Lomakin,

“Capped bit patterned media for high density magnetic recording,” Journal of

Applied Physics, vol. 105, no. 7, pp. 07C121-07C121-3, 2009.

xx

VITA

2009 – 2012 Ph. D. in Electrical Engineering (Photonics), University of California, San Diego

2007 – 2009 M. Sc. in Electrical Engineering (Photonics), University of California, San Diego

2003 – 2007 B. Sc. in Electrical Engineering, Wuhan University

PUBLICATIONS

[1] S. Li, R. Chang, V. Lomakin, “Fast Electromagnetic Integral Equation Solvers on

Graphics Processing Units”, IEEE Antennas and Propagation Magazine, accepted for

publication, 2013.

[2] M. V. Lubarda, M. A. Escobar, S. Li, R. Chang, E. E. Fullerton, and V. Lomakin,

“Domain wall motion in magnetically frustrated nanorings”, Physics Review B, vol. 85,

no. 21, p. 214428, 2012.

[3] M. A. Escobar, M. V. Lubarda, S. Li, R. Chang, B. Livshitz, and V. Lomakin,

“Advanced Micromagnetic Analysis of Write Head Dynamics Using FastMag,” IEEE

Transactions on Magnetic, vol. 48, no. 5, pp. 1731-1737, 2012 (invited)

[4] R. Chang, S. Li, M. A. Escobar, M. V. Lubarda, and V. Lomakin, “Accurate Evalu-

ation of Exchange Fields in Finite Element micromagnetic solvers,” Journal of Applied

Physics, vol. 111, p. 07D129, 2012

xxi

[5] S. Li, R. Chang, V. Lomakin, “Fast Electromagnetic Integral Equation Solvers on

Graphics Processing Units”, GPU Computing Gems Jade Edition Chapter 19, Elsevier,

2011

[6] M. Lubarda, S. Li, B. Livshitz, E. E. Fullerton, and V. Lomakin, "Antiferromag-

netically-coupled capped bit patterned media for high-density magnetic recording",

Applied Physics Letters, vol. 98, p. 012513, 2011.

[7] R. Chang, S. Li, M. V. Lubarda, B. Livshitz, and V. Lomakin, "FastMag: Fast

micromagnetic solver for large-scale simulations", vol. 109, p. 07D358, Journal of

Applied Physics, 2011 (invited).

[8] M. Lubarda, S. Li, B. Livshitz, E. E. Fullerton, and V. Lomakin, "Reversal in Bit

Patterned Media With Vertical and Lateral Exchange", IEEE Transcations on Mag-

netics, vol. 47, no. 1, pp. 18-25, 2011 (invited).

[9] S. Li, B. Livshitz, and V. Lomakin, "Fast evaluation of Helmholtz potential on

graphics processing units (GPUs)", Journal of Computational Physics, vol. 229, no. 22,

pp. 8463-8483, 2010.

[10] S. Li. D. A. Van Orden, and V. Lomakin, "Fast periodic interpolation method for

periodic unit cell problems", IEEE Transactions on Antennas and Propagation, vol. 58,

no. 12, pp. 4005- 4014, 2010.

xxii

[11] S. Li, B. Livshitz, and V. Lomakin, "Graphics Processing Unit accelerated O(N)

micromagnetics solver", IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 2373 –

2375, 2010.

[12] S. Li, B. Livshitz, H. N. Bertram, M. Schabes, T. Schrefl, E. Fullerton, and V.

Lomakin, “Microwave assisted magnetization reversal in composite media”, Applied

Physics Letters, vol. 94, p. 202509, 2009.

[13] S. Li, B. Livshitz, H. N. Bertram, A. Inomata, E. E. Fullerton, and V. Lomakin,

“Capped bit patterned media for high density magnetic recording”, Journal of Applied

Physics, vol. 105, p. 07C121, 2009.

[14] S. Li, Boris Livshitz, H. N. Bertram, E. E. Fullerton, and V. Lomakin, “Microwave

assisted magnetization reversal and multilevel recording in composite media”, Journal

of Applied Physics, vol. 105, p. 07B909, 2009.

[15] V. Lomakin, S. Li, B. Livshitz, A. Inomata, and H. N. Bertram, “Patterned media

for 10 Tbit/in2 utilizing dual-section “ledge” elements,” IEEE Transactions on Magnet-

ics, vol. 44, no. 11, pp. 3454-3459, 2008 (invited).

[16] V. Lomakin, R. Choi, B. Livshitz, S. Li, A. Inomata, and H. N. Bertram, “Dual-

layer patterned media ledge design for ultra-high density magnetic recording”, Applied

Physics Letters, vol. 92, p. 022502, 2008.

xxiii

ABSTRACT OF THE DISSERTATION

Fast Algorithms and Solvers in Computational Electromagnetics

and Micromagnetics on GPUs

by

Shaojing Li

Doctor of Philosophy in Electrical Engineering (Photonics)

University of California, San Diego, 2012

Professor Vitaliy Lomakin, Chair

 In this thesis, fast algorithms for solving fields defined by the Helmholtz equa-

tion using integral equation methods are developed and implemented on Graphics

Processing Units (GPUs). GPUs are massively parallel processors that offer tens or

even hundreds of times of floating point computing capability to current generation

CPUs. A short history of the GPUs is given and their unique architecture is described

in details. On this new hardware architecture, algorithms like the hierarchical Non-

uniform Grid Interpolation Method (NGIM) and the FFT-based Adaptive Integral

xxiv

Method (AIM) have to be significant changed from their original sequential forms to

achieve high performances. Specifically, the computational domains of the problems are

divided into boxes, homogenizing the computing burdens across the wide SIMD-style

stream multiprocessors. Computing operations are reformed and reorganized to exploit

the enormous floating point computing power and while at the same time to minimize

the data transfer latencies. The achieved computing performance on commercial GPUs

is generally two orders of magnitude higher than that on state-of-the-art CPUs and

with much lower memory consumption.

 Based on these fast algorithms, an ultra-fast micromagnetic solver with linear or

 logO N N computational complexity is built. This solver, named FastMag, runs on

desktop workstations with one or several GPU cards and is able to simulate magnetic

systems with over one hundred million degrees of freedom. Electromagnetic solvers that

use slightly different algorithms are also implemented and provide impressive perfor-

mance on general electromagnetic problems such as wave scattering. This

electromagnetic solver is also capable of handling periodic boundary problems using a

new algorithm called the Fast Periodic Interpolation Method (FPIM). This algorithm

significantly uses spatial interpolations as well as the FFT to reduce the time of evalu-

ating fields generated by infinitely periodic structures.

 Using previously developed micromagnetic solvers, the author investigated two

novel magnetic recording systems that might be useful in the next generation ultra-high

xxv

density magnetic recording. The capped bit-patterned media (CBPM) are proposed to

have lower reversal fields, lower switching field distribution as well as better readback

signals. The reversal mechanisms of bit-patterned media under the influence of micro-

waves are also investigated. This leads to the proposed multi-layer recording system

using the microwave-assisted magnetic recording (MAMR) technology.

1

1 Introduction

 This chapter describes the motivations of the work presented in this thesis, the

necessary background of the work, the current status of the field and author’s contribu-

tions to the area.

1.1 Importance of numerical simulations to science and engineering

 Numerical simulation is one the most important tools for the human beings to

understand the physical world. Contrary to other approaches, such as experiments and

analytical reasoning, simulations as a general approach for solving scientific problems

appeared much later. It became widely used only after the emergence of modern elec-

tronic computers. Though it has a relatively short history, it has some unique features

that make it irreplaceable.

 Many real world phenomena can be modeled with fundamental physics laws,

expressed mathematically using one or a system of ordinary differential equations

(ODEs) or partial differential equations (PDEs). In particular, in the fields of computa-

tional micromagnetics and electromagnetics, the Landau-Lifshitz-Gilbert (LLG)

equation and the Helmholtz equation are PDEs and numerically can be cast as ODEs.

With proper initial or boundary conditions, the solutions of these differential equations

could predict the behavior of actual physical systems.

2

 However, for practical systems, few of these ODEs or PDEs can be solved

analytically, so modeling realistic systems requires using numerical methods to solve

the underlying equations. Furthermore, in many situations, performing numerical

simulations has advantages over experiments as a power predictive tool. There are also

cases that experiment in which experiments cannot be a viable option, e.g. when de-

structive or hazardous experiments are required.

1.2 Acceleration of numerical simulation

 Scientists and engineers in all disciplines have sought ways to reduce the com-

puting resources, such as the processor time and memory, used by their numerical

simulators. Faster simulator can reduce the overall cost of research, produce more

results within a fixed period of time or simulate larger or more accurate models of a

system. A complete list of techniques to accelerate the simulation of a problem is far

beyond the scope of this thesis, but for a certain types of problems that will be dis-

cussed in the field of computational electromagnetics and micromagnetics, general

guidelines can be made on where and how to explorer the opportunities for acceleration.

Similar approaches can also be used for a set of models in many other fields of compu-

tational physics.

3

 For all the problems that will be discussed in this thesis, physical systems are

modeled by a set of coupled differential equations, which can be often further cast into

an integral equation form. Solutions of these equations follow a general procedure. First,

the computational domain of interests is discretized both temporally and spatially, and

the continuous differential or integral operators are emulated by their discrete counter-

parts. There are a number of ways for such discretization, such as Finite Difference

methods (FD) [85, 175], finite element method (FEM) [5, 81] and the method of mo-

ments (MoMs) for the integral equation (IE) methods [68, 135, 140].

 These methods usually express the original problem as a system of linear equa-

tions that can be represented by either sparse or dense matrix equations. Then, in a

second stage, solution, stage, these matrix equations are solved through either direct

matrix inversion methods [137] or iterative methods [60]. Finally, the obtained solutions

can either be output to in proper visualized form or be plugged into the simulator again

for other calculations or optimizations.

 To accelerate the aforementioned process, multiple options are available and

most efficient simulators most likely use many of them aiming at accelerating the most

time consuming, bottlenecks, stages.

 One obvious way to accelerate the computation is to reduce the number of

independent variables or parameters to be solved. This can be achieved by modeling

the original physical problems with coarser discretization, everywhere in the domain or

4

in appropriate areas, leading to fewer degrees of freedom in the matrix-vector equations.

In this thesis, the term “degrees of freedom” is also referred to as “unknowns”, “problem

size” or sometimes “number of equations”.

 Another approach of acceleration is to solve the presented linear equation

system using “fast algorithms” that use less number of operations than the straightfor-

ward direct inversion or iterative solution techniques would need. Following this

approach usually requires identifying and utilizing certain characteristics of the corre-

sponding matrices generated by a specific modeling method. The Adaptive Integral

Methods (AIM) [11, 136], Fast Multipole Methods (FMMs) [34, 61], Non-uniform Grid

Interpolation Methods (NGIMs) [16, 103]and H2-Matrix Approximation Methods [64,

65] are a few examples among many other. These fast algorithms can often be ex-

pressed as a series of complex matrix transform operations applied to the matrix

equations.

 Computational methods are developed for using digital computers and they

must account for the hardware features. For several decades the computational power

increase largely relied on the increase of the processor speed. However, the speed of

single core systems has saturated due to fundamental physical limitations [23, 74, 78].

Further improvement of performance of computers should rely on the adoption of

parallel computer systems, such as multi-core CPUs [55, 75], alternative many-core

architectures [4, 79, 101, 130, 150] and heterogeneous computing architectures [3, 21,

5

23]. These hardware architecture developments have a major impact on the design of

computational algorithms.

 Considering all these aspects, we can see that accelerating numerical solvers

usually involves extensive domain knowledge of modeling physics phenomena in sets of

mathematical equations, capabilities to design and implement fast algorithms efficiently

as computer programs and in-depth knowledge of computer architectures for the algo-

rithms being adapted to state-of-the-art hardware and software. In this thesis, we will

focus primarily on the latter two areas and describe the designing, optimizing and

benchmarking processes of several fast algorithms on the General Purpose Graphics

Processing Units (GPGPUs).

1.3 Many-core and heterogeneous computing architectures

1.3.1 Massive parallelization architectures

 Many-core computing architectures emerged as an important technology for

scientific computing less than ten years ago and it is becoming an increasing plausible

platform of choice for numerical computing. With the instruction level parallelism (ILP)

provided by compilers or hardware control logic being exhausted, chip designers decid-

ed to replicate multiple cores inside one chip and leave the higher level logic to utilize

the thread-level or data-level parallelism [74, 78].

6

 Historically, massive parallelization was the strategy of choice to scale the

computation performance of scientific simulations to multiple tera- or peta-FLOPS

range. The research area “high-performance computing” (HPC) deals mostly with

computer clusters that consist of multiple computer nodes. In this regime, homogeneous

high-performance computing nodes are built on processors responsible for all computing

tasks, regardless of their nature. These nodes are connected through relatively slow

network connections and interact with each other via certain message passing mecha-

nism such as the Message Passing Interfaces (MPIs). Contrary to the traditional HPC

approaches, newly emerged many-core processor like Graphics Processing Units (GPUs),

IBM’s Cell Broadband Engine (CBE) and Field Programmable Gate Arrays (FPGAs)

allow for massive parallelization happens even within a single computing device. In

particular, a single GPU card can contain hundreds of cores, e.g. 1536 cores (or stream

processors) on NVIDIA GeForce GTX 680 card [130] and 2048 processors on AMD

Radeon 7970 HD card [4]. Each of the processor cores can run several permitting for

tens of thousands individual threads in parallel [127]. Multiple GPUs can be installed

on a single workstation or a single cluster node.

1.3.2 Unique memory architecture

 In addition to the unique processor architecture, the aforementioned many-core

systems also have complex memory architectures to deal with the so-called Memory

Wall Problem [116].

7

 The cause of memory wall problem is closely related to the concept called

arithmetic intensity, which is defined as the average number of arithmetic operations

per memory access. For algorithms that have very low arithmetic intensity, the perfor-

mance does not scale with the number of processor, because it is the latency of memory

access that limits the overall arithmetic throughput. With the emergence of multi-

TFLOPS single chip processors like the GPUs, this effect is magnified as the speed of

GPU memory is only slightly faster than that of CPUs with a much fewer cores.

 Therefore, GPUs employ more complex multi-level memory hierarchies includ-

ing the shared memory, constant memory, L1/L2 cache and texture memory [101, 125,

127]. Utilizing these different types of memory against different types of tasks solely

relies on the programmer and is critical for achieving high performance from any nu-

merical algorithm to run on GPUs. To keep these high-speed caches and shared

memory efficiently used, data reuse has to be maximized by improving the spatial and

temporal data access locality. There are also other features provided by specific vendors,

like the coalesced memory access and arithmetic/memory instruction overlapping to

further accelerate the data access throughput.

1.4 Hardware-adapted algorithm design

8

 All the aforementioned hardware architectures require much more efforts from

the programmers than just expressing their formulas in high level languages and letting

the compilers to do the rest. Architects of a simulator should consider not only the

theoretical computational complexity of the algorithm but also how the algorithms can

be matched to these computing architectures. Programmers have to utilize task or data

parallelism at a much finer scale and try to increase the data locality as much as possi-

ble. Sometimes, they may face a trade-off between parallel efficiency and computational

complexity and one might need to adopt unconventional techniques such as trading

memory access with extra numerical computations to break the memory wall.

 In this work, the hypothesis is that for various algorithms in the fields of com-

putational electromagnetics and micromagnetics, high performance can only be

achieved by simultaneously reducing the computational complexity and adapting the

algorithms to the hardware. We believe researcher in all the numerical computing areas

must pay close attention to the technology trends in all layers of the computing plat-

form, from the very low-level hardware processor arrangement to mid-level runtime

library and to high-level task-level parallelization.

1.5 Summary of contributions

9

 The main contribution of the thesis is to demonstrate that GPUs and other

similar emerging many-core accelerator architectures are promising platforms for scien-

tific computing applications. This is especially true for areas that involve high floating

point operation intensity such as computational electromagnetics and micromagnetics.

 The thesis also gives important tips and hints on how existing algorithms

should be modified to accommodate GPUs. The algorithms described, implemented and

benchmarked show orders of magnitude improvements in speed and memory consump-

tion over compiler-optimized single thread sequential code. It is also shown that GPUs,

as a typical and widely used many-core computing architecture, are very effective for

computational electromagnetics and micromagnetic applications. However, in order to

obtain significant speed-ups, developers of numerical simulation software have to keep

the hardware architecture in mind, in order to write code ready to scale on to the large

number of cores with heterogeneous processor and memory configurations.

 The thesis also shows several simulators utilizing fast algorithms on GPUs. The

effectiveness of GPU-accelerated fast algorithms is demonstrated by complex magnetic

recording simulations, perpendicular magnetic write head simulations and the electro-

magnetic wave scattering simulations.

 Employing the ultra-efficient micromagnetic solver built on those GPU-

accelerated fast algorithms, the author proposed several possible recording media de-

signs for the next generation magnetic recording systems and verifies them by

10

computer simulations. The first set of simulations deal with a novel design of bit pat-

terned media (BPM). The other use case is the simulation and verification of the

microwave-assisted magnetic recording (MAMR) system. The simulation of the BPM

and the MAMR applied on multilayer patterned media arrays shows interesting physi-

cal phenomena might help the design of the next generation hard-disk drive..

1.6 List of publications

 During the past five years, the author has published several peer-review papers

on several journal and made many presentations on conferences. Since the author

started to do researches since the relatively early stage of GPUs emerged as a disrup-

tive technology, many results shown in this are slightly outdated. Therefore, the

readers should be careful when comparing the absolute numbers listed in the paper

with those published much later and on more advanced hardware platforms.

 The author of this thesis and those publications conducted his research with

many collaborators. Consequently, all of the papers listed described below as well as

this thesis involve extremely large amount of cooperative work. The author would like

to acknowledge all the co-authors listed on all the publications, in various academic

institutions and industrial partners.

1.6.1 Book chapters

11

 In the book titled “GPU Computing Gems: Jade Edition”, published by Elsevier

in 2011, the chapter 19 named “Fast electromagnetic integral equation solvers on

graphics processing units” described the electromagnetic solvers based on Non-uniform

Interpolation Method (NGIM) on GPU [93]. The NGIM is a hierarchical multilevel fast

algorithm that reduces the quadratic computational complexity of general iterative

integral equation solvers to linear or O(NlogN) complexity. The section 4.2 will discuss

this NGIM algorithm in more details with updated results and detailed analysis.

1.6.2 Journal articles

 Currently, 13 journal articles have been published or accepted for publication

under the author’s name. Among them, 8 papers are on the topic of fast algorithms and

numerical techniques for high performance simulation solvers on GPUs and the rest are

in the area of design and analysis of the magnetic recording system.

 The first two papers published in 2008 discussed a novel design for ultrahigh

density magnetic recording system [106, 107]. The papers discussed a dual-layer pat-

terned element magnetic recording medium design that has two layers of different sizes

stacked in the vertical directions. The magnetic behavior of this design has been inves-

tigated by simulations. From the simulations, various interesting behaviors induced by

the prolonged soft upper layer and the ferromagnetic coupling between layers have

been observed and it was found that the reversal field of such magnetic medium can be

much lower than other single and multilayer design that have the same thermal stabil-

12

ity. Following these papers, the proposed media have been fabricated and tested exper-

imentally [20, 25, 58].

 In 2009, the author published two papers on the topic of the microwave-assisted

magnetic recording [95, 97]. In these papers, the author revealed various interesting

physical phenomena when a double-layer ferromagnetically coupled pattern media

element is excited by applied microwave field. In the second paper, the possibility of

multi-layer recording was discussed [95]. The content of these papers will be presented

and discussed again in the Chapter 7 of this thesis. In addition, the author also pub-

lished a paper proposing another magnetic recording media design, called the “capped

media” in 2009 [96]. This paper also directly inspired another paper published in 2011

on Applied Physics Letters [113]. Capped media can be seen as an extension and

improvement of the “ledge” media and the AFC-capped media is the design with fur-

ther optimized performance. Following these papers, capped bit patterned media have

been fabricated and their properties have been experimentally tested [84, 138, 139].

 In 2010, the author started publishing extensively in the field of numerical

computing and GPU algorithms and computing. Three papers were out. The first one

in the IEEE Transactions on Magnetics describes micromagnetic solver on GPU with

linear computational complexity [99], which is the early prototype of the FastMag

solver that later published one year later in 2011 and is being used internally and

externally in academia and industry. The next paper titled “Fast periodic interpolation

13

method for periodic unit cell problems” [100] describes a fast algorithm that can make

and integral equation based electromagnetic solvers several orders of magnitude faster

for problems with periodic boundary conditions. The new algorithm uses extensive

spatial interpolations to accelerate the computation of fields and it can be efficiently

parallelized on many-core architectures. The third paper in 2011, published in the

Journal of Computational Physics describes the non-uniform interpolation methods

(NGIMs) [15, 16, 102] on GPU in details [98]. The paper illustrates several key points

for the NGIM to have high efficiency running on a single GPU card. This is the first

published efficient implementation of a hierarchical fast method for integral solvers of

Helmholtz equation. The key contributions of the paper are the unique approach of

domain subdivision, the task distribution across stream processors and the on-the-fly

interpolation calculation.

 In 2011, the author published three papers in collaboration with other students

in the lab. The paper titled “FastMag: Fast micromagnetic solver for large-scale simu-

lations” summarized features of the FastMag micromagnetic solver [31]. The FastMag

simulator is extremely fast and has the capability of handling very large and complex

magnetic systems. The solver can efficiently solve ultra-complex problems on a desktop

workstation utilizing the fast algorithms on GPUs designed by the author. Several

other papers showed a few simulations running on the FastMag simulator and interest-

ing phenomena have been observed leading to new and improved designs for various

14

magnetic systems. The papers on AFC-capped BPM extend the study of the “capped

bit pattern media” and introduced an antiferromagnetically coupled cap layer that

provides better cancellation of magnetostatic interactions between patterned islands

[112, 113].

 At the time of writing this thesis, two other papers have been published. One

paper in the Journal of Applied Physics discussed accuracy of the evaluation of ex-

change field which is a critical component during the solving of the LLG equation [30].

The other paper on the IEEE Transactions on Magnetics discussed several aspects in

the micromagnetic simulations while designing and analyzing magnetic recording sys-

tems [49]. The paper reveals that improper discretization would significantly affect the

accuracy of the simulations via investigating the effect of wrap around shield (WAS).

By using sufficiently dense meshes model the recording head, it is found that WAS

improves the head field gradient in both down- and off-track directions but reduces the

magnitude of the field. This study shows the capability of the FastMag simulatr by

running ultra-complex magnetic systems. This work has further proven the practicality

of the GPU acceleration for scientific simulators.

 The most recently published paper “Domain wall motion in magnetically frus-

trated nanorings” [111], discussed interesting physical phenomena observed in

frustrated magnetic nanorings which might be useful as an alternative storage device in

the future.

15

 Another accepted and yet to be published paper on the IEEE Antennas and

Propagation Magazines introduces a new fast algorithm called box adaptive integral

method (B-AIM) on GPUs. This algorithm also accelerates the field evaluation process

in many iterative solvers for Helmholtz equations like NGIM but with slightly different

philosophy. B-AIM is a newly designed FFT-based fast algorithm that also runs over

100x faster on a single GPU card versus the sequential implementation for CPUs. This

algorithm will be discussed in details in the Section 4.3.

1.6.3 Conference presentations

 The author is a regular attendant of various conferences organized by IEEE,

APS and ACM, where he presented the new algorithms outlined above in the confer-

ences.

1.7 Outline of the thesis

 This thesis presents the scientific findings and engineering innovations the

author has done during his PhD studies. Each chapter is mostly self-contained, includ-

ing a motivation, introduction, and summary. However, the chapters also have many

cross-relations between each other.

 The document is organized in eight chapters. The first (current) chapter con-

tains general introduction that describes the background of the fields and the

16

motivations of the author’s researches. It also summarizes the contributions of the

thesis that will be presented later on and listed the publications and other academic

activities the author has involved.

 Chapter 2 presents problems the author has been concerned, in a concise but

accurate way. This section begins with a description of the equations to be solved in

computational micromagnetics and electromagnetics. Then several approaches to reach

these equations numerically are described, analyzed and compared. Most of the numeri-

cal work is concentrated on the integral equation (IE) or integral superposition

approach of solving partial differential equations (PDEs) in the form of either Poission

equation or Helmholtz equation.

 Chapter 3 introduces the hardware platform the author used, the graphics

processing units (GPUs). In the first section of Chapter 3, the history of GPUs is

briefly described, including its emergence as special purpose coprocessor, development

driven by consumer electronics and the current state of being powerful accelerators that

possesses more computing power than CPUs. Then in Section 3.2 and 3.3, the hardware

and software architectures of GPUs are described and analyzed. In the final section, the

author concludes the chapter with an outlook of future development trends of many-

core and heterogeneous computing platforms, including possible new hardware designs,

software models, and programming concepts.

17

 Chapter 4 concerns the fast algorithms implemented by the author. Detailed

descriptions of three different algorithms that are common and efficient for evaluating

various fields encountered in simulations are described and analyzed. Numerical results

of each algorithm are shown in each section. Section 4.1 presents a literature review

surveying the state-of-the-art at the time of construction of this thesis. Section 4.2

deals with the Non-uniform Grid Integration Methods (NGIM), which belongs to the

class of multi-level hierarchical fast algorithms. Section 4.3 describes the Box Adaptive

Integral Methods (B-AIM) which is based on FFTs and near field corrections. In Sec-

tion 4.4, general guidelines for designing algorithms for GPUs are listed and discussed.

 Chapter 5 describes Fast Periodic Interpolation Methods (FPIM) which targets

a set of problems with infinite periodic boundary conditions.

 In Chapter 6, several use cases of our computational electromagnetic and mi-

cromagnetic solvers are shown. The solvers is a collaborative effort of several people,

including the author’s advisor Prof. Vitaliy Lomakin and the author’s contributions are

mostly in the numerical fast algorithms, parallelization, GPU implementations, perfor-

mance optimizations, and integration. The use cases include several verification

problems that show the capability and validity of developed solvers and two real world

simulation projects done for industrial partners of the group.

18

 In Chapter 7, presents the use of micromagnetic solvers for application in the

design of magnetic recording system. The material in this chapter is mostly from the

previously published papers by the author.

 The last chapter summarizes the thesis with observations at a higher-level

perspective and also lists several the possible future work directions to improve and

extend the existing methods and codes.

19

2 Problem statement and mathematical outline

 This chapter aims to lay the mathematical foundations of the problems to be

solved in the field of computational micromagnetics and electromagnetics.

2.1 Numerical solutions of general micromagnetic problems

 Micromagnetic simulation deals with various phenomena that happen in the

magnetic materials. It was introduced by William F. Brown Jr. in 1963 via the Brown’s

equation, which is derived by obtaining stationary points from the free energy func-

tional [22]. The magnetization dynamics is described through the Landau-Lifshitz-

Gilbert equations [56, 86]. This equation describes the motion of magnetic moments as

a damped gyromagnetic precession around the local magnetic field they observe. Equi-

librium states can be found by minimizing the magnetic energy of the system.

Moreover, minima energy paths between various magnetic states can be found either

using minimization methods of the Nudged Elastic Band method [46, 73].

2.1.1 Gibbs free energy

 The total Gibbs free energy of a magnetic system is given by [22]

  total exch anis zeeman demagE E E E E dv


    (2.1)

Within this formula, each energy component can be expressed as:

20

a)  2 2 2() () ()exch x y zE A m m m dv


      is the exchange energy, where A is the

exchange constant and xm , ym , zm are three components of normalized magnetization

in any discretized volume;

b)   2
1 1anisE K dv


   m a , where 1K is the magnetocrystalline anisotropy

constant, m is the normalized magnetization defined as / sMm M and a is the

unit vector along the easy axis. This expression is for materials with simple uniaxial

anisotropy and more complex forms of anisotropy do exist but are not discussed within

this thesis;

c) zeeman extE dv


   M H , where M is the magnetization and extH is the external field;

d) 1
2demag demagE dv


   M H , where magnetoH is the magnetostatic field.

 Calculating the equilibrium state of the magnetic system requires finding the

minimal total energy. Brown proposed a variational method that calculates the varia-

tional derivative of the total energy with respect to the magnetization [22]. So in the

equilibrium state,

 0totalE



M

 (2.2)

This leads to the Brown’s equation:

   2
12 2 0s sA K M M      ext demagM m a a m H H (2.3)

21

 This means that at the equilibrium state, the magnetization polarization will

align itself with an effective field that can be expressed as

 2

122

s s

KA
M M


   eff ext demag

a a mm
H H H



 (2.4)

 To solve a large magnetic system, one usually needs to discretize the whole

computational domain into many small subdomains, within which all the magnetic

properties are assumed to be uniform or have prescribed variations. The above energy

calculation is valid for any of these subdomains and the equilibrium state of the entire

system can be obtained by minimizing the total energy possessed by all the subdomains.

As stated briefly in the Section 1.2, there are many ways of discretization, with the

finite difference (FD) and finite element method (FEM) being two most widely used

methods. Using any of these methods will generate a system of equations that can be

expressed as a matrix equation and its solution will be discussed in later sections.

2.1.2 The Landau-Lifshitz-Gilbert equation

 Often the dynamic behavior of the magnetization is of main interest. The dy-

namics of a single magnetic moment under the influence of a magnetic field is governed

by its Larmor precession and the model to describe this motion was proposed by Lan-

dau and Lifshitz [86] and later modified by Gilbert [56, 57]. The Landau-Lifshitz

equation for modeling the dynamic behavior of a single magnetic moment is as follows:

22

  L
s

d
dt M


     eff eff

M
M H M M H (2.5)

, where the L and  are precession and damping constant respectively.

 The first term of the above equation is the precession term and the second term

is an empirical damping term. Later in the 1955, Gilbert proposed a different approach

to model the dissipation process and came out with another expression of the damping

term. The magnetic dynamics equation with the Gilbert damping term is expressed as

follows

x

d d
dt M dt


    eff

M M
M H M (2.6)

 These two equations are mathematically equivalent, though they are derived

from different physical perception. The damping and precession constants in the above

two equations can be related via

21

L








,
21








 (2.7)

 The commonly used as the “Landau-Lifshitz-Gilbert equation” (LLG equation)

has the following form

 

 
2 21 1 s

d
dt M

 
 

     
 eff eff

M
M H M M H (2.8)

 This is the equation that we are going to discuss and attempt to solve in this

thesis for all the micromagnetic problems.

2.1.3 Solution of the dynamic equation

23

 As discussed in the previous two sections, using either FEM or FD method to

construct either the energy variational equation or the LLG equation for a disrectized

magnetic domain will lead to a series of ODEs. The LLG equation can be expressed in

a general form of

  ,
d

f t
dt


y

y (2.9)

 This system of ODEs can be solved by various time integration methods, in-

cluding explicit and implicit methods [37, Tenenbaum, 1985 #304].

 In order to supply the right-hand-side (RHS) as shown in Eq. (2.9) to the time

integrators, the simulator will have to evaluate the effH at every time step, which

means that Eq. (2.4) needs to be calculated for multiple times (often tens of thousands

and hundreds of thousands times). Therefore, the ability to rapidly compute the effec-

tive field is of a primary importance.

2.1.4 Evaluation of the magnetostatic field component

 Among the four components of the effective field, the magnetostatic component

differentiates itself from other field components as it is the only long range field. So to

obtain the magnetostatic field in the entire computational domain, one has either to

solve the Poisson equation or use the superposition principle to calculate the interac-

tions between all sources and observers via the Green’s function method. Both

approaches have high computational complexity. The actual simulations confirm that

24

even for relative small problems with sizes up to several hundreds, the time used to

obtain the magnetostatic field may be dominant as compared to other effective field

components.

 In this thesis, we are focusing on accelerating the Green’s function method as

will be called in the following texts. The magnetostatic field can be expressed as

 '
' 'demag

V S

H dV dS


   
M M n'

r - r' r - r'
 



, (2.10)

where the first and second terms corresponds to the field generated by the equivalent

volumetric and surface magnetic charge distributions, respectively. Both of the above

integration terms can be transformed into a discrete convolution followed by the gradi-

ent operator

 

1

1
, 1,...,

| |

N

j i
i i j
i j

demag

q j N

H








 


 

 r
r r , (2.11)

where  iq r is discretized volumetric or surface magnetic charge and  is the static

magnetic scalar potential.

 The evaluation of the magnetic scalar potential is a computationally complex

task, which is of primary interest of Chapter 4.

25

2.2 Numerical solutions of general electromagnetic problems

 Electromagnetics is a branch of science that deals with physical phenomena

related to electromagnetic fields and interactions. The contemporary electromagnetics is

built on the foundation laid by James Clerk Maxwell between 1861 and 1862 through

the Maxwell’s equations [114]:

0

jw

jw



        

E B
B
H D J

D

 , (2.12)

 Here the Maxwell’s equation is shown in for time-harmonic fields, and

 E, D, B, H, J are electric field, electric displacement, magnetic flux density, mag-

netic field and electrical current density, respectively.

2.2.1 Helmholtz wave equations and its Green’s function

 From those four equations, electromagnetic wave equation can be deduced and

the wave equation in the vacuum can be expressed as second-order partial differential

equations:

2 2

0
2 2

0

k

k


 




   

   A A J
 (2.13)

where A and  are the magnetic vector potential and the electric scalar potential

defined as

26

 , jw    B A E A , (2.14)

respectively and under Lorentz Gauge Condition

2

0
jw

c
  A (2.15)

 To solve these wave equations, a number of integral equation formulations can

be used. In this paper, we discuss the frequency domain volumetric/surface integral

equation only and for time domain IEs, please refer to Ref. [118, 141] for more details.

Here a frequency surface integral equation formulation is shown as an example. Consid-

er a surface problem comprising a structure made of a perfect electric conductor

residing in free space. An electric field IE can be written for an unknown surface cur-

rent sJ distributed on the surface S of the structure of the linear size D in the

following mixed potential form [135]

| |

| |

() (() ());

() ()1
() ; ()

4 | |

()
()

4 | |

i

jk
s s

s
S

jk
s

S

j S

e
ds

j

e
ds

 


 

 




 

 

     

      











r r

r r

n E r n A r r r

r J r
r r

r r

J r
A r

r r

 (2.16)

 Here, iE is the incident field, is the magnetic vector potential generated by the

surface current sJ , and  is the scalar potential generated by the surface charge s

related to the surface current via the divergence. In addition, k is the wavenumber

corresponding to the wavelength 2 k  and frequency 2f kc  with velocity c .

27

2.2.2 Solution of the Helmholtz equation

 Careful readers can easily see that Eq. (2.16) is very similar to the Eq. (2.10)

except for different unknowns to be solved. To solve Eq. (2.16), the Method of Mo-

ments (MoM) is usually used to discretized the surface, which is meshed into surface

elements, typically triangles [68]. The unknown current is expanded via

1
() ()sN

n nn
j

sJ r f r , where nj are unknown coefficients, ()nf r are basis functions,

and sN is the number of the degrees of freedom in the expansion. Often Rao-Wilton-

Glisson functions are chosen as the basis functions due to its versatility in handing

various geometries [140]. The current expansion is substituted in the IE and subse-

quently tested (i.e. integrated) with testing functions (which may be chosen the same

as the basis functions). Integrating by parts the scalar potential component the IE is

transformed in a set of algebraic equations

1

sN

mn n m
n

Z j V


 , (2.17)

where mnZ are elements of the impedance matrix and mV is the tested (known) inci-

dent field

' '
n n

mn m m

m

(') ' (')1
() ' () '

' '

4
()

n n

jk jk

Sm S Sm S

inc
m

Sm

e e
Z k d d d d

k

V j d



   
  

 



   



r r r rf r f r
rf r r r f r r

r r r r

f r E r



 



(2.18)

28

 For m n the integrals in Eq. (2.18) are computed using quadrature rules of a

certain order while for m n the singular behavior of the integral kernel is taken into

account via an analytical integration. The ways to solve this system of equations by

iterative methods will be described in the Section 2.4, but usually the solver will need

to evaluate the following equation:

1;

()
m nN jk

m n
n n m m n

e
u Q

 

 



r r

r
r r

, 1,2,...,m N (2.19)

 Here, the potential ()mu r at the observation locations mr is evaluated by a

discrete convolution of the Green’s function (,) m njk
m n m nG e  r rr r r r and sources

nQ co-located with the observers.

 The advantage of the IE method is that it generally does not require the empty

spaces in a computational domain to be discretized thus are very effective for complex

geometries with empty spaces. It is also good for 3D surface problems such as the

electromagnetic wave scattering from conductors.

2.3 Numerical solutions of electromagnetic problems with periodic boundary

conditions

 Periodic programs are often met in electromagnetics and micromagnetics, e.g.

antenna arrays, meta-materials, arrays of magnetic elements, etc. [135]. Using the

integral equation methods, the only difference between solving a free-space problem and

29

periodic problem is the form of their respective Green’s functions. To account the

infinite cells in the computational domain, the free space Green’s function need to be

replaced by a periodic Green’s function (PGFs) which is usually much more complex

than the one shown in the Eq. (2.19) [13, 83, 164]. Therefore, to accelerate the solution

of periodic problems, a solver must overcome two major obstacles: 1) Evaluation of

PGFs and 2) Convolution as in Eq. (2.19).

2.4 Integral equation solvers

 From the description in the previous sections, we could see that in computa-

tional micromagnetics and electromagnetics, one of the most critical issues for

accelerating the solution of problems are the rapid evaluation of the fields. The fields

can either be static fields such as the magnetostatic field defined by the Poisson’s

equation or the electromagnetic field defined by the Helmholtz equation. Using the

Green’s function method to solve this two equations will result in integral equations in

the form of Eq. (2.17) and Eq. (2.18). Combining the equations for the whole computa-

tional domain, we could obtain a matrix equation expressed as

 U = GQ (2.20)

 As mentioned earlier, in the micromagnetic simulations as described in the

Section 2.1, we need to evaluate the magnetostatic field from given known distribution

of magnetic charges. This leads to “forward” evaluation of the matrix equation Eq.

30

(2.20) with  2O N operations. (For the definition of the big-O notations used through-

out the thesis, please refer to the Appendix B) In other applications, such as those

commonly seen in the electromagnetic simulations, we need to solve for the unknown

source distribution from a known field distribution. This can be accomplished via direct

inversion methods, which have the cost of  3O N if implemented naïvely. Another

class of methods named iterative methods solves the above equation without inverting

the matrix G and replaces this process with multiple passes of “forward” evaluation. A

general iterative method would have the following steps:

1. Guess the initial solution of Q as 0Q

2. Evaluate the matrix-vector multiplication and obtain 0 0U = GQ

3. Calculate some measure of the residual 0 oR U - U whether it is smaller than a

prescribed error 0 . If yes, return 0Q as the solution. If no, calculate 1Q from 0Q using

a formula or with the information from 0R .

4. Repeat the stage 2 and 3 until the residual meets the exit condition.

 There are many iterative methods such as Jacobi method, Gauss-Seidel method,

conjugate gradient (CG) method or the generalized minimal residual (GMRES) method,

etc. [60, 147, 148]. The cost of these methods if implemented directly is  2
itO N N ,

where itN is the number of iterations. Therefore, for both the micromagnetic simula-

tions and the electromagnetic simulations, the most critical issue of a high performance

31

solver is the rapid evaluation of the matrix-vector multiplication as shown in the

Eq.(2.20), which can be seen as a convolution between two functions. This thesis is

concerned with iterative methods.

2.5 Fast methods for integral equations

 Reducing the computational complexity of the Eq. (2.11) or the Eq. (2.19) has

been pursued by many researchers in the various disciplines, e.g. Ref. [36] This thesis

presents two algorithms that represent two categories of fast algorithms.

 The first category of methods realizes that the Eq. (2.11) and Eq. (2.19) can be

seen as a convolution between two functions, which can be accomplished through

multiplication in the frequency domain after Fast Fourier Transforms [39]. The result-

ing computational complexity is  logO N N , which is a significant reduction over the

original  2O N

operations. However, the utilization of FFT requires the sources to

present uniformly and in a periodic pattern. Thus, to meet this requirement, the Con-

jugate-Gradient FFT (CG-FFT) method [26] assumes a uniform source discretization

scheme, resulting in regularly distributed discrete sources. On the contrary, the precor-

rected-FFT (pFFT) method [136] and Adaptive Integral Method (AIM) [11] do not

impose any restrictions on the discretization by introducing uniform auxiliary grids for

transferring the interaction between the actual discretized sources and observers. These

32

auxiliary grids interact with their primary sources/observers through various interpola-

tion and anterpolation/projection schemes. Both of these methods make the evaluation

of the convolution to be done in  logO N N operations for general volumetric prob-

lems and  3/2 logO N N for general surface problems [36]. In Section 4.3, the author

presents a modified AIM method called, Box AIM (B-AIM) that achieves the same

asymptotic complexity but with much higher parallel efficiency on GPU hardware

platforms.

 The second category of method is the hierarchical multi-level method, often

called “tree-code” due to the way they divide the computational domain. Algorithms fall

in this category include the Barnes-Hut Method [8], Particle-Particle Particle-Mesh

(P3M) [48, 161], and Multi-Level Fast Multipole Methods (MLFMMs) [34, 61, 110, 143],

etc, with MLFMMs being the most well-known one. The FMMs are originally proposed

by Greengard and Rokhlin in their famous paper published in 1987 [61]. For statics In

FMMs use the fact that the field far from a group of sources can be represented in

terms of a small number of multipoles. For dynamics, the field can be represented in

terms of plane waves or related expansions and the translation properties of plane

waves can be utilized to achieve a similar complexity reduction as in the static case,

albeit with a higher complexity. This property reduces the computational complexity

contrary to treating sources one by one as in direct methods. To correctly and efficient-

ly represent the field generated by sources both far and near, the computational

33

domain is divided into far-field region, where the error of the multipole expansion is

below a prescribed value, and near-field region, where the field can only be calculated

directly through superposition. The total complexity of FMM-like methods depends on

the two competing factors, the near-field operations and the far-field operations which

are dictated by the choice of the near-far field criteria. The asymptotic computational

complexity of the MLFMM is  O N for the static field calculation as in Eq. (2.11) and

(log)O N N for dynamic field calculation as in Eq. (2.19) [36, 143].

 In Section 4.2, a spatial multi-level “tree-code” called the Non-uniform Interpo-

lation Method (NGIM) is described. The NGIM is theoretically proposed by A. Boag in

[16] and the computational complexity is proven to be the same as the MLFMMs [15,

16, 102]. However, this algorithm has several advantages while dealing with specific

types of problems and the author will present detailed results and analysis in that

section.

34

3 Introductions to the Graphics Processing Units (GPUs)

 Graphics Processing Units (GPUs) are one of the many processors in modern-

day desktop, laptop and mobile PCs and tablets. GPUs were originally designed for

handling display-, image- video- and graphics-related applications. However, the im-

pacts of GPUs have stepped outside traditional definitions and a new term, General

Purpose Graphics Processing Units (GPGPUs), is becoming increasingly popular in a

number of computational communities. To help understand why computational scien-

tists and researchers put much effort in designing or modifying their data or compute

intensive algorithms to run on GPUs, and to understand what distinctive features

GPUs have a brief history of GPUs is presented next.

3.1 A short history of GPUs

 Graphic processors appeared long time ago ever since the invention of the

computer itself. Early graphic processors were used for drawing texts and pictures on

the screen and later, after the three-dimensional (3-D) graphics contents became popu-

lar, the modern graphics pipeline emerged. We begin our survey on the history of

GPUs from the late 1990s, when the 3D graphics appeared. The earlier history of

GPUs can be found in Ref. [12].

3.1.1 3D graphics pipeline

35

 A typical scene in 3D computer graphics consists of many objects that a viewer

might be able to see. The geometrical shapes of these objects can be very complicated

with thousands of surfaces. These objects are formed through basic elements such as

points, line segments, and polygons. Often the surface of a 3D object model is repre-

sented by a bundle of triangles, each of which is made of three vertices.

 The major tasks of GPUs are to process the information related to these objects

and to draw them on the screen in the way that looks natural to the viewer. To that

end, the GPUs need to perform various transforms on primitive geometrical data

related to the objects and this process is described in the “graphics pipeline”.

(a) Vertex transformation:

 After geometrical data of a 3D object is passed to the GPUs, one of the jobs

they need to perform is to transform the data into a two-dimensional space that

Scene to be rendered
in 3D world space

Vertex processing Rasterization Fragment processing

Figure 1 Stages of a common 3D graphics pipeline

36

matches the actual display region. This is done through transforming all vertices of the

objects and reconnects them in the new coordinate space. There are many coordinate

systems associated with this process. An object has a position and orientation in the 3D

world space, a global coordinate system that relates the object with other objects in the

same scene. There is also camera space where the z axis is parallel to the viewing

direction and x and y axis are aligned with the display boundaries. Before showing it

onto the screen, the object also needs to undergo a transformation that takes the per-

spective into consideration, which make the far objects smaller to the viewer. Finally,

the object is mapped onto the screen taking the position of the active window into

consideration.

 The operations in this stage consist of large amount floating point number

operations. Transformations done on different vertices are completely independent,

which allows for massive parallelization. Therefore, it is not surprising that modern

GPUs have thousands of parallel processors and a very high parallel performance

(currently in the tera-FLOPS range).

(b) Rasterization:

 Once a graphic object has been transformed into the window space, the GPU

must determine which pixels are covered by the object. The process of converting a

triangle to a collection of pixel fragments is called rasterization. Each triangle sampled

37

uniformly at the center of each pixel consists of a group of points. The depth, interpo-

lated color, and textures of these points are called a fragment.

(c) Fragment operations:

 Fragments generated by different primitive objects are well possible to overlap

with each other and some fragments might even be facing back. The GPUs may elimi-

nate these unnecessary fragments at beginning of this stage and this is called “fragment

shading”. Each pixel is then subsequently processed to compute a final color value, via

simple superposition of interpolated color values from vertices or very complicated

formulas that emulates complex environmental lightings. This is called “pixel shading”.

The need for complex shading processes led to programmable compute units that later

made the GPU capable of doing general purpose calculations.

(d) Frame buffer operations:

 Finally, the computed shaded pixel fragments are written to a frame buffer that

are ready to be displayed onto a windowed application.

3.1.2 Fixed-function GPUs

 Before the year 2000, GPUs were mostly fix-function engines. One notable

generation of GPUs, the NVIDIA’s Geforce 256 and ATI’s Radeon 7200, introduced in

Oct. 1999 were the first set of devices that took the entire graphic pipeline onto its

shoulder, freeing the CPUs for other tasks. In fact, the name “GPU” itself was intro-

38

duced by NVIDIA after the launch of GeForce 256. Nevertheless, scientists did try to

map non-graphics operations to those GPUs. They found many limitations on then-

state-of-the-art GPUs such as fixed-precision numbers and very slow frame-buffer

readback [146].

 Two generations later, the NVIDIA Geforce 3 and ATI Radeon 8500 cards

implemented the programmable shaders that significantly changed the way developers

thinking about graphics pipelines. The programmable shaders allowed developers to

write codes without thinking about setting the pipeline states. This change intrigued

more researches to explore the possibility of using GPUs for general-purpose computa-

tions. In Ref. [69, 70], PDEs were implemented on this generation of GPUs and the

term General Purpose GPU (GPGPU) was first introduced by Mark Harris.

 Two generations later, in the NVIDIA Geforce FX 5800 and ATI Radeon 9700

cards, a new shader model was implemented and the GPUs started to support the

floating point precisions. The floating point precision calculation is a critical feature for

the computer graphics developers to render many physical phenomena such as fire,

smoke, fog, clouds to the realistic quality. It opened the door to new possibilities of

employing GPUs in general computations. 32-bit floating point format was supported

by NVIDIA right at the launch of those GPUs while ATI chose to implement a 24bit

scheme as they believed that it was sufficient for most graphic applications. Later, both

39

vendors started supporting support 32-bit single precision floating points, though they

were not entirely IEEE-754 compliant.

 Another important feature that appeared in this generation of GPUs is the high

level shading languages, replacing the assembly-level languages used for programming

previous generation shaders. NVIDIA proposed Cg, Microsoft integrated a High Level

Shading Languages (HLSL) into its DirectX API and loyalty-agonistic OpenGL stand-

ard introduced GL Shading Languages (GLSL), which made coding GPU shaders much

easier than before.

3.1.3 The Emergence of GPGPUs

 From the previous description of the graphics pipeline, the reader could see that

the two programmable stages, the vertex processing and the fragment processing,

perform quite different operations. The vertex processing stage, in which coordinate

transformations are involved, is abundant of arithmetic operations. The fragment

processing stage, on the other hand, is filled with high-throughput memory transfer due

to texture filtering. Typical graphics workloads requires more computational power in

the fragment processing stage than in the vertex processing stage and the GPUs listed

in the last section usually handling this by providing 2 or 3 time more fragment shaders

than vertex shaders. However this static solution is obviously suboptimal for tasks

under extreme conditions such as rendering scenes with many large triangles.

40

 In addition to the load balancing problem between vertex and fragment shaders,

the demand of rendering increasingly complex scenes made it necessary to have a new

shader, called the “geometric shader”, appearing in between the vertex and fragment

processing stage. Allocating and balancing hardware resources across these three types

of shaders became an impossible job and the GPU architects began considering what

was a revolutionary “unified shader” that could handle all the tasks involved in these

three stages. These “common” processors had powerful floating point operation capabili-

ties as well as high bandwidth for accessing the graphics memory. As a result they were

becoming more and more suitable for general- purpose computing tasks.

3.2 The Architecture of GPGPUs

 The first generation of GPUs with unified processor architecture were NVIDIA’s

Geforce 8800GTX (released in November 2006) and ATI’s Radeon HD 2900XT (re-

leased in May 2007).

3.2.1 NVIDIA G80 architecture

 Figure 2 illustrates the architecture of the Geforce 8800 GTX chip, codename

G80, the first CUDA-capable GPUs. The device was built from an array of stream

processors (SP), which are sometimes called ALUs in other vendors GPUs. Eight of

these SPs were bundled together to form streaming multiprocessors (SM). Various

41

other functional units such as texture memory caches, instruction dispatcher and spe-

cial function unit (SFU), etc., were attached to SM to assist dealing with the pipeline

operations. In Geforce 8800 GTX, there were 128 SPs, grouped into 16 SMs, and in

each SM there were 8 ALUs, 2 special function units, 1 instruction dispatcher unit, 16

KB of fast “scratch pad” memory. There were also 64 KB read-only constant memory

shared by all SMs.

42

 Since different shaders might use different function units within an SM, each

SM was hardware multithreaded, which meant it was able to manage much more

threads than actual SP it contained with almost no scheduling overhead. For G80

architecture, each SM could handle up to 768 concurrent threads and the entire GPU

would handle up to 12K threads simultaneously. Later architectures from NVIDIA such

Figure 2 The Geforce 8800GTX architecture (G80) with unified shaders. The figure
on the bottom shows the internal structure of an SM.

43

as the GT200, GF104 and current generation GK104 are all similar to G80 with some

changes in processor arrangement and cache levels [125, 130].

 For performance reasons, the GPU architect invented a concept called “warp”

[127] that is made of 32 threads. Threads within each warp execute same instruction at

the any given time, which brings down the scheduling burden of the dispatcher unit.

However, if the code branches within a single warp, resulting in different instruction

paths for different threads, the warp will go through all the instruction paths sequen-

tially and disabling threads not at that path one at a time. This will significantly

reduce the execution efficiency and should be avoided when possible.

 Another unique feature of G80 architecture is its various types of memories.

The latencies of each types of memory are benchmarked in Ref. [6, 172]. The registers

are on-the-chip temporary storage that has almost no latency to be accessed, similar to

those inside CPU. One level higher, there is “shared memory”. These extremely fast

memories are designed for the threads within the same “thread block” to access simul-

taneously. Thread block consist of several warps that may or may not do similar tasks.

The threads within the same block can communicate with each other without going

back to the off-chip DRAMs and can be synchronized with specific instructions. They

are always mapped to the same SP. Communication between threads of different block

has to be done via off-chip DRAMs, called the “global memory”. Global memories is

relatively large in sizes (768 MB for Geforce 8800GTX) and several giga-bytes for more

44

recent generations (e.g. 6 GB for Tesla M2090). GPUs’ global memory has very high

bandwidth compared to CPUs’ main RAM but it can only be accessed at a rate close

to the theoretical limit through the “coalesced memory access”. The “coalesced memory

access” occurs only when multiple contiguous threads within the same warp attempts to

access contiguous memory addresses that are aligned to a certain number. If these

conditions are met, a burst of data can be transferred through global memory bus and

the non-negligible latency of global memory can be hidden across multiple threads.

3.2.2 AMD Radeon R600 architecture

 Though AMD Inc. acquired ATI Technologies in 2006, it kept ATI’s product

line and branding. Radeon R600 architecture was the first generation GPUs featuring a

unified shader architecture from AMD.

 The R600 architecture is very similar to G80 and only different in the way that

it bundles its stream processors. The Radeon HD 2900XT GPU contains 320 scalar

stream processors (SP) arranged into for groups. For each group, the 80 SPs are again

divided into 20 units and each 4-SP unit is attached a special function unit to form a 5-

way superscalar shader. Each of this 5-way shader has its own branch control unit and

general-purpose registers. This architecture has changed in the latest generation of

AMD GPUs that will be mentioned in Section 3.4, so the hardware architecture is

described here only for completeness. R600 architecture also used the same types of

memories that match to those in the G80 architecture.

45

3.3 GPU programming model and its impact in scientific computing

 A mature and easy-to-use development environment usually hides the hardware

details from developers as the hardware implementations are different from different

vendors. A well-defined set of APIs sits between the application and driver layer is

necessary for software developers to unleash the power of GPUs. Several famous APIs

are listed here.

3.3.1 Graphics APIs

 The two most widely used graphics APIs are DirectX (Direct3D, specifically)

and OpenGL. These two APIs were proposed in 1995 and 1992, respectively and they

have evolved significantly. The OpenGL specification is moderated by an industrial

consortium called Khronos Group and is implemented as a multi-platform loyalty-free

open standard. The DirectX is a product of Microsoft for exclusive use on Windows

and its XBOX gaming console. There were other APIs being used at some point in the

history, such as the Glide3D proprietary API developed by 3dfx, but it was later aban-

doned.

 Both of these APIs serve the same purpose - abstracting the hardware details

and letting the programmer to focus on the actual operations in the graphics pipeline.

Graphics APIs are designed specifically for computer graphics applications and some-

46

times influence the hardware design as well. New features and functionalities sometimes

appears in definition of graphics APIs before being actually realized in the hardware.

This is especially true for DirectX.

3.3.2 General purpose programming APIs for GPGPUs

 As have described in the previous chapters, even before the GPGPU had ap-

peared, researchers and scientists have tried to leverage the computing power provided

by GPUs to accelerate the scientific simulation codes. However, GPUs were not a

popular choice among the majority of researchers until much more user-friendly high-

level languages and APIs appeared.

(a) CUDA C

 The CUDA C programming model was the first and most widely used compu-

ting model for GPGPUs, proposed by NVIDIA. It is a multi-platform API, supporting

Windows, Linux and MacOS, but runs only on NVIDIA GPUs after Geforce GTX 8800.

CUDA C is designed for developers to directly control the stream processors and mul-

tiple levels of on- and off-chip memory as well as the communication between the CPU

(the host) and GPU (the device).

 On the host side, CUDA deals with necessary initialization, data passing be-

tween host as well as device and kernel launching. On the device side, it is an extended

version of traditional C programming language with modifications to address the

47

unique needs of massive parallelization and multiple levels of memories. Each function

written to be running on the device is called a “kernel” and kernels are usually designed

to be executed thousands or even millions of times simultaneously. Each of the

launched instances is called a “thread” and they are usually identified via a distinct

“thread ID”. Several threads are bundled into warps and several warps form a “thread

block”. A “thread block” is mapped to a SM. Each block has its own shared memory

and threads can communicate with each other using this “shared memory”. It is usually

a good practice to use the shared memory as it is on-chip and is at least one order of

magnitude faster than the global memory. Correct utilization of the shared memory is

one of the most important aspects to make many GPU codes efficient. There is no way

to determine the sequence of executions among threads from different thread blocks

and there is no synchronization mechanism for them except at the end of a kernel

launch. There is a size limit on the number of threads that a thread block can contain,

and this number is 512 for older CUDA compute architectures like G80 and 1024 or

2048 for newer ones.

 Since the launch of the first version of CUDA in 2007, NVIDIA has continuous-

ly added many new features to this programming model to accommodate the change of

hardware architecture and to increase its usability. The latest beta release of CUDA is

version 5, which introduces many new features that will be discussed in the Section 3.4.

48

All the GPU algorithms that will be presented in Chapter 4 and all the GPU-

accelerated solvers presented in Chapter 5 are written for NVIDIA GPUs using CUDA.

During the writing of this thesis, the current stable version of CUDA is 4.2 but many

timing results shown in Chapter 4 are still obtained using older version as far back as

3.0.

(b) OpenCL

 OpenCL is an API proposed by Apple Inc. in 2008 and maintained by Khronos

Group. It aims at creating portable, vendor, and device independent programs that are

capable of being accelerated on many different hardware platforms and it is the first

API that explicitly aims at utilizing all computing resources in a computer system,

including CPUs and GPUs [82, 121]. However, as the GPGPUs remain as the most

widely used many-core processors, the OpenCL programming model turns out to be

very similar to the NVIDIA’s CUDA model. It also contains two different sections, the

host side APIs and the device side kernel language based on C. Despite small differ-

ences in names, the OpenCL APIs can almost be one-on-one matched with

corresponding CUDA Driver APIs. The OpenCL extensions used in the kernel code can

also be understood by many experienced CUDA developer with ease. Interested readers

can refer to Ref. [2, 82, 121] for further details of OpenCL.

(c) DirectCompute

49

 DirectCompute is a component of DirectX 11, published by Microsoft and

supported by both NVIDIA and AMD GPUs. DirectCompute differs itself from the

CUDA and OpenCL programming environment as it runs only on Windows operating

systems, specifically speaking, Windows 7 and above. Naturally, the host side APIs of

DirectCompute follows the Direct3D fashion and the device side kernel code is similar

to HLSL, both of which are maintained by Microsoft.

(d) Microsoft C++ AMP

 Microsoft C++ Accelerated Massive Parallelism (AMP) is a library developed

by Microsoft and bundled as a run-time library with its Visual Studio 2012 compiler

suite [117]. C++ AMP accelerates the execution of C++ code by automatically identify

pieces of code that can be executed on GPUs with high efficiency. C++ AMP exploits

the data parallelism opportunities that are often met in loops, multidimensional arrays

and memory transfer etc. It is built up on DirectCompute and if no compatible

GPGPUs are presented, it will fall back onto CPUs. The syntax of C++ AMP is

similar to the newly proposed and standardized C++11, and should be relatively easy

for C++ programmers. However, same as the DirectCompute, the lack of multi-

platform support limits its applicability in many scientific computing applications.

(e) OpenACC

50

 OpenACC is an open standard proposed by NVIDIA that intends to make the

GPGPUs more accessible for scientists who focuses less on the optimization process.

OpenACC adopts a similar approach as the OpenMP and is designed as set of direc-

tives and pragmas for the programmers to hint the compiler to do certain

parallelization and optimizations on certain sections of codes. OpenACC is still in its

very early stage of development and very limited information is available [131].

3.4 Future architectures and potential impact to scientific computing

 Ever since their emergence in 2006, GPGPUs have gained a tremendous mo-

mentum in compute intensive applications such as computational photography and

physics simulations. This wide adoption of GPGPUs has encouraged the vendors of

GPUs to improve their architecture further for compute tasks. Other many-core archi-

tectures, too, have begun entering the high performance computing area. In this section,

we briefly introduce these new architectures and interested readers should follow to

documentations from each vendor to see their latest development.

3.4.1 NVIDIA’s Kepler GK110 architecture [130]

 The Kepler GK110 GPGPU architecture is the latest generation CUDA capable

compute architecture. It pushes the GPUs a step further towards the HPC and empha-

51

sizes not only the raw computing power but also energy efficiency. The key features of

GK110 GPGPUs include:

(a) Significant boost in double precision computing capability

One of the most critical areas that GPU has lacked so far is the double precision com-

puting capability, partly due to the fact that graphics applications do not require such

high precision. In fact, many operations, especially in the fragment shading stage,

require only 16-bit floating point accuracy to be visually satisfying. However, for many

scientific computations, such as iterative solvers and other sensitive systems, a little

truncation error of floating point numbers may lead to high numerical inaccuracies.

Therefore, increasing double precision performance should increase the range of GPG-

PU use in high-performance scientific computing.

(b) Increased ability handling complex flow

 NVIDIA implemented two new features, thread launching from within GPU

kernels and handling multiple kernels simultaneously. This would make the program-

ming of GPUs similar to multithreaded applications on CPUs.

(c) Changed SM composition.

 The new architecture also changed the way SPs are organized into an SM and a

rebalance of compute resources for better accommodating the HPC computing needs.

This includes but not limited to, significant increase in the register resources, quad

52

warp scheduler for each SM and new shuffle instructions useful for non-sequential

memory operations, etc.

3.4.2 Intel’s Many Integrated Cores (MIC) [79, 150]

 Intel’s approach towards heterogeneous computing architecture is different from

graphics vendors like NVIDIA or AMD. In 2009, Intel demonstrated a GPU that is

completely different from their widely adopted Intel GMA graphics chip. This GPU

was at that time known as “Larrabee” but its development was terminated in 2010.

Later, Intel proposed a new architecture, called “Many Integrated Cores” that inherited

many features of Larrabee and the first device named “Knights Corner” with 50 cores

integrated into a single chip, was released in 2012. There are very few benchmarks

available for this new device at the moment and the technical design is not exposed to

public either. However, Intel claims that MIC is fully compatible with application

compiled for x86 CPUs but it does include special graphic function units, such as the

texture sampling unit.

3.4.3 Reconfigurable Computing (RC) architectures [18, 38]

 Reconfigurable computing has long been a hot topic in scientific computing. It

takes the advantage of reconfigurable hardware such as field programmable gate arrays

(FPGAs) as accelerators to handle highly parallel computing tasks. FPGAs can change

their hardware design during the runtime and adapts themselves to different algorithms

53

at the hardware level. More importantly, RC takes advantages of data parallelism in

the algorithm too. Comparing with multi-core CPUs and GPUs, FPGAs utilizes every-

thing on the chipset to do the specific operations and waste nothing in non-task-related

functions like interrupt handling or even instruction branch prediction, etc. Another

advantage of RC is its low FLOPS-Watt ratio, which might be a critical limiting factor

for the current supercomputers to reach the Exa-FLOP scale. Benefitted from its low

clock frequency, the power efficiency of FPGA is usually higher than that of the tradi-

tional CPUs and GPUs. However, since FPGAs are expansive and relatively hard to

program, the growth rate of their usage in HPC community is much lower comparing

with GPGPUs.

3.4.4 Merge of traditional CPU and GPUs

 From the above discussion one can see that there is a tendency that GPUs

become increasingly general-purpose and CPUs become increasingly parallel. This

tendency has been well identified by many chip vendors. Companies like AMD even

started developing unified computing unit called Accelerated Processing Units (APUs)

that aims at ultimately unified the CPUs and GPUs. This parallelization process actu-

ally fits the scientific computing application very well as many physical phenomena are

intrinsically parallel. Many researchers share the same conclusion as the ultimate

physical limit for any forms of processors should be the same [32, 78, 176].

54

4 Fast algorithms for integral equation solvers on GPUs

4.1 Current status and literature review

 In Section 2.5, we have briefly discussed the ways that integral equation solvers

can be accelerated. However, even IE solvers using those fast methods easily take too

long for desktop workstations. GPUs are very promising to further accelerate those

solvers.

4.1.1 MoM on GPUs

 Accelerating the direct implementation of iterative MoMs approaches is

straightforward. There is actually a tech demo in the NVIDIA GPU Computing SDK

that shows simple gravitational simulations, within which the gravity n-body problem is

calculated using Eq. (2.11) [129]. In this demo, the algorithm to obtain the aggregated

gravitational forces on each particle is the direct superposition as shown in Eq. (2.11).

Though simple in implementation, it is very effective for accelerating simulations that

require solving this type of n-body problem. When the number of degrees of freedom is

relatively small the small overhead of direct method makes it the fastest option. In

Section 4.2.3, we could see that GPU direct method outperforms many CPU fast meth-

ods on problems even up to several millions.

 In the field of computational electromagnetics specifically, accelerating the

method-of-moments (MoMs) without fast methods has also been the topic of many

55

research literatures. Most of the implementations of MoMs on CPUs lead to a system

of linear equations represented in the form of matrix equations, in order to take ad-

vantage of existing well-optimized high-performance linear algebra libraries, such as

BLAS.

 Speaking specifically about the computational electromagnetics, Ref. [44, 89, 90,

92, 160], the impedance matrices are filled in the preprocessing stage and solved by LU

decomposition. In Ref. [45, 132], the synthesized matrix equations are solved by the

conjugate gradient (CG) iterative method. The speed-ups achieved following these

approaches are in the range of 10-50 depending on the optimization details and the

actual hardware platforms the comparisons are made on. Nevertheless, due to signifi-

cant memory used by the uncompressed impedance matrix, the largest problem sizes

these solvers can handle are limited to tens of thousands, even on a dedicated compute-

only NVIDIA TESLA card with several giga-bytes of memory. To the best of the

author’s knowledge, there is no literature on “on-the-fly” implementation of MoM on

GPUs. “On-the-fly” means filling the impedance matrices right before they are used and

discarding them after. However, either the LU decomposition or the iterative solvers

involves many interactions between elements so most of them require the whole matri-

ces being existed on GPUs’ global memory at a certain point. This would make the

previous “on-the-fly” approach meaningless from the perspective of memory saving.

4.1.2 FFT-based fast algorithms on GPUs

56

 As mentioned in Section 2.5, the quadratic computational complexity of the

direct MoMs limits its applicability to realistic simulations, so porting MoM with fast

methods to GPUs draws much attention from the researchers in the computational

electromagnetic field. Due to relatively simple data structures and high parallelizability,

the FFT-based fast methods are popular among solvers designed for multi-node com-

puter clusters and are naturally being considered for porting to GPUs. In any of the

FFT-accelerated algorithms, one of the essential building blocks is the FFT itself. Not

being a perfect algorithm for GPUs but widely used in many areas, the FFT has been

ported to GPUs long before the GPGPU era. The Ref. [119] might be among many

earliest attempts to use OpenGL APIs for the general computing needs. Since CUDA

was introduced, various implementations were published for several generations of

GPUs. The CUFFT library that comes along with the CUDA release might be the

most widely used one due to its similarity with the popular FFTW libraries on CPUs

and adequate, constantly improving performance [128]. Other researchers have claim

that they achieved higher performance [52, 59, 63, 109, 124, 144]. Meanwhile, Ref. [42,

47, 123] focus on other aspects, such as the memory transfer between CPU and GPU,

mixed-radix performance improvement, and automatic performance tuning. There are

also efforts on accelerating FFTs across multiple GPUs, e. g. in [33], but to the best of

the author’s knowledge, the performance achieved are not satisfactory for many appli-

cations due to significantly data exchange latencies on multi-GPU systems.

57

 Being built based on aforementioned FFT libraries, researchers in computation-

al electromagnetics tried to implement AIM and pFFT algorithms on GPU. Only a few

attempts are recorded. In Ref. [50, 51, 133], FFT-based fast algorithms are implement-

ed and tested up to 80k unknowns. These implementations try to express the fast

methods in the form of matrix-vector multiplication explicitly, just like for direct

MoMs. Thus all of them can go up to only few tens of thousands of degrees of freedom.

4.1.3 Hierarchical fast methods

 Hierarchical fast methods usually divide the computational domain into multi-

ple levels of boxes and treat the far- and near-field separately. In Ref. [67, 155], multi-

level direct Coulomb summation is shown to achieve over 100 GFLOPS on NVIDIA

Geforce 8800GTX card and approximately 50x speed-ups comparing with a core of a

Intel Core2 QX6700 CPU. More complex tree codes like the Barnes-Hut and Particle-

to-particle-particle-to-mesh (P3M) methods [9, 24, 66, 80, 154] are implemented on

desktop CPU- and GPU- clusters, achieving astounding tens to hundreds of Tera-

FLOPS of peak performance on several hundreds of nodes. FMMs are also a quite

popular choice for evaluating long range forces such as the electrostatics. Ref. [62] is an

early attempt to porting static FMMs onto GPUs though most of the speed-ups are

obtained by changing the ratio of near- and far-field computational burdens as the

near-field is easier to be accelerated on GPUs. Later attempts obtained much better

performance due to improvement in both the algorithm designs and hardware architec-

58

tures [29, 43, 87, 108, 178, 179]. The largest problem sizes these FMMs implementa-

tions can handle on a single GPU card is in the order of 710 [178] and on multiple

GPU-clusters has exceeded one billion level [77, 179].

 Although researches on FMMs for static fields are quite fruitful recently, using

FMMs to calculate Helmholtz-type of dynamic fields is quite hard as the series repre-

sentation and translation of dynamic fields are more complex. In Ref [41] , the

researchers did a satisfactory job for accelerating FMMs in the low frequency and

achieved good speed-ups.

4.1.4 Solution of linear systems

 With or without those fast methods, the MoMs usually produces a system of

linear equations that need to be solved either directly by matrix inversion or by various

iterative methods. Direct matrix solvers on GPUs have been shown in Ref. [54, 91, 168]

and researches on iterative solvers can be found in Ref. [7, 17, 28, 71, 165]. The perfor-

mance obtained on widely used iterative methods like the GMRES are around 5-10x,

comparing with sequential codes on CPUs.

4.2 Non-uniform Grid Interpolation Method (NGIM)

 In this section, we describe a highly efficient GPU implementation of a modifi-

cation of the non-uniform grid interpolation method (NGIM) [16, 98, 102], for fast

evaluation of the potential ()mu r in Eq. (2.11) or Eq. (2.19) . Acceleration of NGIM is

59

built on the fact that the field potential far from a source is a function with a known

asymptotic behavior. The slowing varying fields far from the sources can be sampled

and represented pretty accurately by a few sample points. Then the field values on

many other points can easily be interpolated from these samples points instead of doing

costly Green’s function evaluation. The algorithm is implemented using a hierarchical

domain decomposition method, similar to Multi-level FMMs (MLFMMs) [36, 152]. The

domain is subdivided into several levels comprising subdomains of different sizes. Near-

and far-field spaces are identified and the interpolation procedures are implemented for

the sufficiently separated subdomains. This algorithm achieves the computational cost

of ()O N in the low-frequency regime, (log)O N N in the high-frequency regime, and

somewhere in between in the mixed-frequency regime.

 Similar to the MLFMMs, NGIM can also handle non-uniform geometries and

has the same asymptotic cost for both volumetric and surface problems. The NGIM

differs from the MLFMMs in that it relies on direct spatial interpolations, which are

operations the GPUs destined to do. Moreover, the same NGIM can be applied to

static (0k ) and dynamic (0k ) problems, as well as to problems with other

kernels, without major changes in its structure and mathematical operations, as op-

posed to MLFMMs. Moreover, NGIM does not require any special function evaluations,

which increases it execution efficiency on GPU systems, as will be shown in the Section

4.2.3.

60

4.2.1 Algorithm description

 In this section we present the description of the NGIM and its implementation

scheme. We discuss how the algorithm is coupled with general electromagnetic IE

solvers.

 The NGIM divides the computational domain into a hierarchy of boxes contain-

ing sources and observers. At any level, each box is treated as a “parent” box, which is

divided into eight “child” boxes at lower level. This process goes on recursively and

stops until boxes at finest level contain less than a prescribed number of sources. These

boxes form an oct-tree. Then, for a certain box, near-field and far-field boxes are identi-

fied by distances larger or smaller than a predefined value (e.g., twice of the box

diameter). The fields contributed by sources in the near-field boxes will later be evalu-

ated via direct superposition. The fields generated by sources in far field boxes are

aggregated to their respective box center and have them interpolated on observers

through several stages of operations, including complex upward and downward travers-

ing of the oct-tree. This procedure, illustrated in Figure 4 - Figure 7, is similar to other

multi-level algorithms such as MLFMMs.

61

 The field outside a group of sources is amplitude- and phase-compensated with

respect to the common distance from the group center. The resulting slowly varying

“compensated field” can then be sampled at a sparse non-uniform grid (NG) and calcu-

lated at all desirable observation locations via inexpensive local (e.g. Lagrange)

interpolation. The density and specific position of NG samples are determined mathe-

matically [14] in the preprocessing stage and remain unchanged during the entire

simulation. For low-frequency evaluations, a total number of  O N NG samples are

required to sample the field across all levels of the boxes. But, in high-frequency regime,

since its oscillation does not diminish to zero at infinity, this number is  logO N N .

Generally speaking, in both regimes, the higher the accuracy requirement, the denser

the NG grid.

source

observer

NG sample

r-r’

Figure 3 Calculating the field from far away sources by interpolation through NG
samples. The direct evaluation of the interaction between the source and the
observer is shown as the green dashed line and the indirect evaluation through
NGIM is done through grid samples (cyan points) and interpolations (blue dashed
lines).

62

 The frequency of fields also affects another aspect of the algorithm. For low

frequency problems, the field transition from NG samples to the final observation

points are not done directly but via another set of intermediate Cartesian Grid (CG).

The CG saves the computational cost because in low frequency applications the density

of observers is determined by the geometry of objects thus might be very high. In this

case, a small number of sampling points is sufficient for calculating fields on a large

number of observers. In high-frequency regime, the density of discretized sources is

determined by the wavenumber of the field, so the number of CG samples would be the

same as the observers and would not save operations. Therefore, CG is not used in the

high-frequency calculations. In the mixed-frequency regime, CG is built for lower levels

with boxes much smaller than wavelengths (low-frequency levels) and is omitted for

higher levels otherwise (high-frequency levels).

 After the boxes and grids are built, fields at actual observers are calculated

from sources via a sequence of interpolations. In the low-frequency regime, for example,

the field at observers is interpolated via CG samples, which is in turn obtain from NG

samples of certain boxes and CG samples of their parent boxes. The fields at NG

samples are obtained, via interpolation, from their child boxes, except on the lowest

level, on which they are calculated directly from the sources. This process can be de-

scribed as a stage-by-stage procedure shown below: [93, 98]

Stage 0 (near-field evaluation):

63

 All near-field interactions between the sources in the near-field boxes at the

finest level are computed via direct superposition. This step is completely independent

of the rest of the algorithm and can be separately implemented and executed in parallel

or in sequence of other stages, depending on the available hardware.

Stage 1 (finest level NG field calculation):

 The field values on NG samples are computed directly from the sources. This

operation is only valid for the boxes at the finest level.

64

Stage 2 (aggregation of NGs/upward pass):

 The field values on NG samples of the boxes at coarser levels are computed by

accumulating fields at NG samples of their eight child boxes. Such aggregation involves

local interpolations and common distance compensation in the amplitude and phase

between the corresponding NG samples.

NG samples
Sources

Qs

Qr

Figure 4 The illustration of the Stage 1: field calculation on NG samples on the
finest level. The fields on the NG samples (red dots) from sources (cross dots) are
calculated directly.

65

Stage 3 (NG to CG transitions and CG decomposition/downward pass):

 Field values on CG samples are calculated for boxes at all levels. Field values at

CG samples of an observer box on a specific level come from two origins. The first is

from the interaction-list boxes on the same level. The interaction-list boxes have their

parent box as a neighbor of the observer box, except for those having already been

taken into considerations in the near-field stage (corresponding to influences of the

Lagrange
Interpolation

Pt

Active CG samples at level l
Inactive CG samples at level l
NG samples at level l-1

Figure 5 The illustration of Stage 2, aggregating fields on NG samples on coarser
levels. The fields on NG samples on the higher levels (red dots) are calculated
through interpolations from lower levels (yellow dots).

66

source of “medium distance”). The second contribution of field at CG samples comes

from their parent box. This contribution is valid only for boxes below the interface

level if the calculation is done in mixed-frequency. CG samples of an observer box

obtain fields from these two sources through interpolations, from NG samples in the

former case, and from CG samples in the latter case.

Stage 4 (CG to observation point):

Interpolation from NG samples of IL box
(stage 3 first sub-stage)

Interpolation from CG of parent box
(stage 3 second sub-stage)

CG samples to be calculated

CG samples
NG samples

Active NG samples
Active CG samples

Figure 6 The illustration of Stage 3, calculating fields on CG samples (large green
dots) from NG samples of IL boxes (yellow dots) and CG samples of higher levels
(green dots).

67

 The field values at actual observation points are obtained by local interpola-

tions from the CG samples of the finest level boxes. The whole process has a

computational cost of ()O N . Using local interpolations guarantees the adaptivity of the

algorithm to non-uniform geometries since the NG samples and CG samples are built

and processed only around locations where sources and observers exist.

 One thing worth mentioning is that, as discussed in previous paragraph, there

are no CGs constructed for computations in high-frequency regime, so the CG-CG

interpolations and CG-observer interpolation do not exist and the whole downward

CG samples
Observers

Figure 7 The illustration of Stage 4, calculating field values on observers (cross
dots) from CG samples (green dots)

68

pass disappears. In this regime, fields are directly interpolated from the NGs at each

level to the observers. In the mixed-frequency regime, the downward pass partially

exists, for the “low-frequency” levels of boxes. So the downward pass of mixed-frequency

calculation is a hybrid scheme of the “direct NG-observer interpolation” and “NG-CG-

observer interpolation”.

4.2.2 GPU NGIM

 To implement NGIM efficiently on GPUs, special care should be taken concern-

ing the unique programming model and hardware architecture of GPUs. Coalesced

global memory accessing and utilization of shared memory are two critical features,

among many others, that should be taken advantage as much as possible. All these

concepts and mechanisms have been discussed extensively in Ref. [127], as well as many

other works related to scientific computing on GPUs. The implementation of the NGIM

on GPUs follows the same ”stage-by-stage” protocol as that on CPUs, but contains

significant changes.

(a) Preprocessing and initialization stages

 In the preprocessing stage, all necessary data structures used by the NGIM are

allocated and initiated. The initialization operations include copying coordinates of

sources and observers to the allocated matrices on GPUs and reshaping and copying

69

various auxiliary data, such as the interaction-list. The operations here are executed

only once in standard IE solvers for one specific problem.

 In addition to the memory transfer operations, another crucial task done in the

preprocessing stage specifically for GPUs is rearranging the source amplitude and

coordinate arrays so that sources belong to the same box can be found at contiguously

places in the memory. This is critical for GPUs to adopt the coalesced accessing for

accelerated the memory read and write, which will be described in details later. For

NGIM, the hierarchical relationship between boxes matches this requirement as the

sources that belong to the same box at the finer level belong to the same box at the

coarser level too.

 In the GPU version of NGIM, the grids are not built in the preprocessing stage.

Instead, the position of NG or CG samples and the interpolation coefficients are com-

puted on-the-fly when needed. This on-the-fly approach reduces the memory

consumption and the total memory access operations in the later stages and eventually

leads to much better overall performance. As a result, the preprocessing time of the

GPU code is reduced by a few orders of magnitude compared with the CPU code,

making the NGIM more effective for large problems. It is noted that using a similar

approach for FMM-type methods is also possible but it may be somewhat less efficient

due to more complex operations in the field evaluation stages, as these methods usually

require computing special functions, e.g. the Hankel functions.

70

(b) Near-field computation

 In this stage, the fields at the observers are evaluated directly by accumulating

the field contributions from sources belonging to the level L boxes in the near-field

region of the observer box. Methods to parallelize this stage also apply to direct evalua-

tions of the classical “n-body” problems [129]. Since the computational domain has

already been divided into boxes with sources and observers, the traversing the list of

observers and sources can be done in a box-by-box fashion.

 Mathematically, the near-field computation is a sparse matrix-vector multiplica-

tion. However, for many problems, the sparse impedance matrix is too large for GPUs

if pre-filled and stored. Therefore, instead of trying to accelerate sparse matrix-vector

products directly, we compute all the fields “on-the-fly”. Figure 8 shows the flowchart

diagram of CPU and GPU implementation of near-field stage, respectively, and Figure

9 shows the thread arrangement and assignment in the same stage. The key points are

summarized as follows:

71

(a)

x < number of
observer boxes?

y < number of
observers?

z < number of
source box in
Near-Field List?

w < number of
sources?

d
calculate fields between
near sources/observers

output

yes

yes

yes

yes

no

no

no

no

sequential parallel

……

z < number of
source box in
Near-Field List?

w < number of
sources?

calculate fields between
near sources/observers

yes

no

no

block 0,
thread 0

block 0,
thread 1

block X-1,
thread Y-2

block X-1,
thread Y-1

load source coord. and amp.

output

(b)

load source coord. and amp.

Figure 8 The flow chart of CPU and GPU NGIM. (a) The sequential version of
the near-field stage of the NGIM involves a four-level loop that takes into ac-
count each source-observer pair satisfies the Near-Field criterion. (b) In the
corresponding parallel version of the near-field stage of the NGIM, two levels of
loop are spread onto parallel stream processors of GPU. X and Y are number of
observer box and number of observers in each box. Coalesced memory loading is
utilized and shown in details in Figure 9.

72

(1) We adopted “one-thread-per-observer” type of parallelization, in which one

thread is responsible for calculating the field value at one observer.

(2) The number of threads per block can be chosen by the user or determined by

the computing hardware, the number of unknowns of the problem, or the

source/observer distribution. However, only threads processing observers be-

longing to the same box are bundled together to form a block. One or several

thread blocks might be needed to handle certain boxes when the number of ob-

servers in that box is too large. To achieve a better performance, the number of

p CG samples

q NG samples

thread i+1
thread i+2

Shared memory

block m(k+1)

thread i

…
…

Coalesced

block m(k+1)

thread i

…
…

Lagrange interp.

Figure 9 Memory access patterns of threads within the same block. Coalesced
global memory is utilized to accelerate the memory loading.

73

threads per block should be multiples of 32 on NVIDIA GPUs as this is the size

of a warp.

(3) Since observers in the same box have the same set of near sources, those sources

are cooperatively loaded from global memory once and in later stages they can

be accessed through ultrafast shared memory. This cooperative memory loading

is coalesced as the sources belongs to the same box is stored in contiguous loca-

tions.

(4) Some intrinsic mathematical functions are used to accelerate the computations.

Though not as accurate as their CPU C version counterparts [127], these trigo-

nometric and exponential functions are adequate for NGIM in terms of accuracy

and are much faster than standard-binding double precision functions.

74

 Table 1 shows the computational time of the near-field stage on CPUs and

GPUs. The CPU timing results were obtained on a single core of an Intel Xeon X5248

CPU at 3.2GHz using Intel Fortran Compiler v10 with –O3 optimization. On the GPU

Table 1 Computational times and speed-up ratios of the near-field stage

pN

L CPU (Xeon X5482) GPU (GTX 480) ratio

16 3 2.11e-1 1.02e-3 206.9

32 3 8.63e-1 2.22e-3 388.7

64 3 3.42e0 5.90e-3 579.7

pN L CPU GPU ratio

16 4 1.97e0 7.49e-3 263.0

32 4 7.84e0 1.74e-2 450.6

64 4 3.13e1 4.84e-2 646.7

pN L CPU GPU ratio

16 5 1.85e1 7.76e-2 238.4

32 5 6.75e1 1.45e-1 465.5

64 5 2.66e2 5.30e-1 501.9

pN L CPU GPU ratio

16 6 1.43e2 6.38e-1 224.1

32 6 5.66e2 1.19e0 475.6

64 6 2.22e3 4.37e0 508.0

All timing results shown in this section are in seconds. pN is the average
number of sources per box on level L . The relation between l and N is L .

75

side, an NVIDIA GTX480 at 700MHz with 1.5 GB of memory was used. The GPU

implementation was written and compiled using CUDA Toolkit v3.0 from NVIDIA.

Both CPU and GPU versions of the code use “on-the-fly” approach and the positions of

sources and observers are distributed randomly in a cubic computational domain with a

uniform probability distribution function.

 It is evident that the speed-up ratios between the GPUs and the CPUs are very

high, varying between 200 and 650. The speed-ups are higher for larger pN when the

enormous number of parallel processors are fully exploited. Taking into account the

fact that the number of the GPU cores in the considered case is 480 and they are run

at the clock rate around 4.5 times lower than that of the CPUs, achieving the accelera-

tion ratio above 600 is impressive. Such high rates are obtained not only due to massive

floating point computing powers and memory bandwidth of GPUs but also faster

manually handled shared memory on GPUs.

 A comment should be made on the timing results in Table 1. For fixed number

of levels, the complexity of the near-field calculation stage scales quadratically since the

number of near-field evaluations is proportional to 2
pN . The linear complexity of the

near-field stage is achieved by the increase of number of levels L with the increase of

N . Indeed, the computational time behaves as  O N when the number of level L is

properly chosen, balancing the near- and far-field computation time.

(c) Outward computation from sources to NG samples (Stage 1)

76

 The NG construction stage computes the field values on the NG grid points,

which is the first step of the upward pass of the algorithm. The core operations in this

stage are the construction of NGs for each non-empty box at the finest level L and the

direct calculation of the field values at these NG samples. The sequential version of this

stage consists of three nested loops dealing with all pairs of sources and NG samples for

individual boxes and another loop to account for all boxes at level L .

 Since the relative positions of NG samples and sources do not change during the

whole process of IE solver, their interactions coefficients can be calculated beforehand

in the pre-processing stage and stored for later use (i.e. the interacting matrix filling).

However, this is only done in our CPU version of code. For GPU, no coefficient matri-

ces are used for the reasons mentioned in previous sections.

 In the parallel version of this stage, the “one-thread-per-observer” approach

described in the preprocessing stage is also used, but here the “observers” are in their

broader definition, referring to NG samples. One or several blocks of threads are allo-

cated for each observation box. For calculation in the low-frequency regime, there are

generally a moderate number of NG samples per box, so one block of threads would be

enough to achieve the maximal parallel efficiency. In the high- and mixed-frequency

regimes, however, the boxes at high-frequency levels may contain many NG samples.

This requires assigning multiple blocks to each box. Regardless the number of blocks

77

assigned to each box, the “coalesced” memory reading technique is always triggered and

the global memory accessing is of high efficiency.

 Computational times of Stage 1 are presented in Table 2 (these results are

frequency independent for the same N , L , and the number of NG samples per small-

est box). It is evident that the speed-up ratio increases significantly with the increase of

the number of sources per box.

 It should be mentioned that, generally, the computational time of stage 1 is

about 1-5% of the total time.

78

(d) NG upward aggregation (Stage 2)

Table 2 Computational times and speed-up ratios of the source-to-NG stage
(stage 1)

Accuracy require-
ment pN L

CPU
(Xeon X5482)

GPU
(GTX 480) Ratio

3
1 error 1 10L  

for domain size

/ 2D 

16 3 5.89e-3 1.33e-4 44

32 3 1.55e-2 1.00e-4 155

64 3 3.16e-2 1.33e-4 238

pN L CPU GPU Ratio

16 4 5.01e-2 6.31e-4 79

32 4 1.21e-1 9.28e-4 130

64 4 2.45e-1 1.66e-3 148

pN L CPU GPU ratio

16 5 4.74e-1 3.99e-3 119

32 5 1.16e0 6.73e-3 172

64 5 2.44e0 1.24e-2 197

pN L CPU GPU ratio

16 6 5.49e0 2.99e-2 184

32 6 1.07e1 5.23e-2 205

64 6 2.14e1 9.78e-2 219

All timing results shown in this paper are in seconds. pN is the average number
of sources per box on the level L . The relation between pN and N is

/ 8L
pN N .

79

 In this stage, the field values at the NG samples of the parent boxes at levels

from 1L  to 2 are computed by interpolation from the NG samples of the correspond-

ing non-empty child boxes. In this paper, we use Lagrange interpolations for phase- and

amplitude-compensate fields.

 Similar to other stages, the GPU implementation follows the “one-thread-per-

observer” parallelization, in which one thread handles one observer and threads han-

dling observers in the same box are bundled to form one or more blocks. The

interpolation process includes calculating coordinates of the NG samples of parent

boxes, transforming them into the coordinate system of their child boxes, extracting

coordinates and amplitudes of the nearest grid samples around the observers, calculat-

ing the interpolation coefficients, and finally evaluating the fields. All these operations

are are implemented in a single kernel to minimize the stress on global memory. This

seems to be stressful for registers, shared memory and ALUs on the GPUs but the

actual test runs reveals that the GPUs can handle such computational tasks with ease.

 Table 3 shows the computational time results of Stage 2 of the low-frequency

case. Note that the results are not shown for different N since this stage depends solely

on grids but not on N for a fixed L . (We assume all boxes are active, which means at

least one source/observer is presenting in any boxes.) The speed-up ratios are in the

same range as those of stage 1 for most problem sizes. It is noted that in the low-

frequency regime, stage 2 takes only less than 2% of the total computational time.

80

 Table 4 shows the computational time of the GPU code in the high-frequency

regime. The absolute computational time is noticeably larger than that of the low-

frequency case in Table 3 due to larger number of necessary operations. It is noted that

no CPU results are shown for this case because the increased number of grid points for

sampling high-frequency fields make the current CPU code consumes way too much

memory. For the same reason, in this thesis, high-frequency NGIM results for other

stages are shown for the GPU code only.

Table 3 Computational times and speed-up ratios of the NG aggregation stage
(stage 2) in the low-frequency regime

Accuracy requirement L CPU (Xeon X5482) GPU (GTX 480) Ratio

3
1 error 1 10L   for

domain size / 2D 

3 2.70e-3 1.33e-4 20

4 2.74e-2 3.96e-4 69

5 2.25e-1 1.77e-3 127

6 1.81e0 8.33e-3 217

All timing results shown in this paper are in seconds. The number of NG samples
per box is chosen as 64 due to the accuracy requirement.

81

(e) Evaluation of field values on CG samples (Stage 3)

 In Stage 3, the field values at the samples of CGs are calculated. This stage can

conceptually be treated as a two-step process in low-frequency regime as shown in

Figure 10 but as a one-step process in high-frequency regime. In the two sub-stages in

low-frequency regime, each of the two origins of fields, as mentioned in Section 4.2.1,

are accounted. In the high-frequency regime, fields on observers are obtained directly

via interpolations. In the mixed-frequency regime, the process is a combination of those

two as described in Ref. [98]. The “one-thread-per-observer” approach is used as the

“observers” now are CG samples for low-frequency calculations and actual observers for

high-frequency calculations.

Table 4 Computational times and speed-up ratios of the NG aggregation stage
(stage 2) in high-frequency regime

Accuracy requirement L GPU (GTX 480)

2
1 5 10L  

3 4.14e-4

4 2.92e-3

5 3.59e-2

6 3.89e-1

* All timing results shown in this paper are in seconds. No CGs are constructed.
The number of NG samples per box at level l is 64 8L l , and the frequency for a
given L is chosen as  2D L  .

82

 The sub-stage that evaluates fields at CG samples from NG samples in the

interacting far-field boxes is the most time consuming part of the entire far-field calcu-

lation. The major reason is the enormous number of operations involved. For each box,

there are at most 189 boxes in its interaction-list, if the near-field range is defined at

the closest neighbors of a certain box. This number could go much higher for an in-

creased near-field range. However, there are several other reasons to make this sub-

stage the bottleneck of the calculation as well. To name a few, for a certain observer

box, the interaction-list boxes are not necessarily situated contiguously in the memory

which lowers the global memory cache hit-rate.

 The CG decomposition sub-stage is executed for CG samples in all observer

boxes at the low-frequency levels after the NG-CG transition sub-stage. On each such

level, CG samples in the child boxes are obtained from the CGs samples in the parent

boxes via Lagrange interpolations. This step is similar to the NG-NG aggregation stage

(Stage 2) but in the opposite direction. Computationally, it is much simpler as no

CG samples
at level l

CG samples
at level l+1

CG samples
at level l+2

NG samples
at level l+1

NG samples
at level l+2

NG samples
at level l

NG-CG transition stage

CG decomposition stage

Figure 10 The relationship of two sub-stages: NG-CG transition stage and CG
decomposition stage in calculating the field values on CG samples of boxes at
each computational level in the low-frequency regime.

83

spherical-Cartesian coordinate transformations are needed. The total contribution of

this sub-stage to the overall computational time is low, only about 1-2%.

 Table 5 shows the computational time of Stage 3 (NG-CG transition stage and

CG decomposition combined) for different L in the low-frequency regime. Similar to

the results in Table 3 (Stage 2), for a fixed number of levels L , the speed of Stage 3 is

independent of the problem size N and hence no dependence of N is shown. The

obtained computational times depend on the number NG samples and CG samples

constructed for each box. The speed-up ratio is at least 100, which is in the same order

to other far-field stages (comparing with significantly lower speed-up for similar stages

in GPU implementation of MLFMMs from Ref. [41, 62]). The speed-up ratio increases

for increasing oversampling rates as GPUs use those extra operations to fully saturate

their thousands of stream processor. In addition, from our tests on different generations

of GPUs, we found that the Fermi GPUs (GeForce GTX 480) handle kernels with

access to relatively “random” sets of data much better. This is due to the improved

architecture with L1 cache and better organized SMs. The result is three-fold computa-

tional time reduction on GeForce GTX 480 as compared to Tesla C1060. This time

reduction is interesting taking into account that the number of stream processors in

GTX 480 is only twice as large (480 vs. 240) and with very similar core frequency.

84

Table 5 Computational times and speed-up ratios of field to CG stage (Stage 3)
in the low-frequency regime

Accuracy requirement L CPU
 (Xeon X5482)

GPU
(GTX 480) Ratio

3
1 error 1 10L   for

domain size / 2D 

3 2.68e-1 2.44e-3 110

4 3.02e0 2.32e-2 130

5 2.95e1 2.11e-1 140

6 2.43e2 1.82e0 134

 L CPU GPU Ratio

4
1 error 2.5 10L   for
domain size / 2D 

3 3.23e0 2.10e-2 154

4 4.16e1 2.32e-1 179

5 3.38e2 2.18e0 155

Times are shown in seconds.

Table 6 Computational times and speed-up ratios of field to CG stage (Stage 3)
in the high-frequency regime

Accuracy requirement L GPU (GTX 480)

2
1 error 5 10L  

3 3.33e-3

4 4.79e-2

5 6.16e-1

6 6.97e0

 L GPU

2
1 error 1.5 10L  

3 2.84e-2

4 4.39e-1

5 5.33e0

The times shown are in seconds. The number of NG samples per box at level l

85

 Table 6 shows the computational times of stage 3 in the high-frequency regime.

The time increases compared to the low-frequency case in Table 5 but this increase is

relatively insignificant (on the order of the number of levels L), which demonstrates

the efficiency of the code in the high-frequency regime.

(f) CG grids to observers (Stage 4)

 In this stage, the fields at actual observers are interpolated from the CG sam-

ples of the finest level L boxes. This stage is only valid in low- and mixed-frequency

regime. This stage is conceptually reciprocal to the Stage 1. All critical designing strat-

egies in Stage 1 are followed, including the “one-thread-per-observer”, coalesced loading

of sources, etc. The computational time of this stage is usually smaller than that of

stage 1, because the interpolation operations are less demanding than the direct field

calculations through the Green’s functions.

 Timing results of Stage 4 are presented in Table 7. The general trend of compu-

tational times is similar to that of Stage 1 (Table 2). The GPU computational times

are constant for smaller problem sizes and grow up to a saturation point of around 150

when the problems size increases. We have also tested more cases with increased CG

oversampling rates. We found that the increase of the CG oversampling rates barely

affects the computational times on either CPUs or GPUs, even though with more CG

samples per box, more data has to be loaded before doing the interpolations. For the

CPUs, the reason might be that the time spent memory loading time is negligible

86

compared with that of calculations, while for the GPUs the memory loading time is

small due to coalescent access.

 It should be mentioned that, generally, the computational time of stage 4 is

below 1% of the total time. Therefore, the influence of this stage is insignificant provid-

ed other stages are implemented efficiently.

87

4.2.3 Overall results

Table 7 Computational times and speed-up ratios of CG-to-receiver stage (stage 4)

pN L CPU
(Xeon X5482)

GPU
(GTX 480) ratio

16 3 1.18e-3 1.50e-4 8

32 3 1.99e-3 1.50e-4 13

64 3 3.62e-3 1.70e-4 21

pN L CPU GPU ratio

16 4 9.77e-3 3.30e-4 30

32 4 1.68e-2 3.30e-4 51

64 4 3.53e-2 5.06e-4 70

pN L CPU GPU ratio

16 5 1.03e-1 1.50e-3 69

32 5 1.84e-1 1.50e-3 123

64 5 3.51e-1 2.60e-3 135

pN L CPU GPU ratio

16 6 9.01e-1 9.90e-3 91

32 6 1.58e0 1.01e-2 156

64 6 2.95e0 1.79e-2 165

All time shown in this table is in seconds. There are 64 CG samples per box. pN is
the average number of sources per box on the level L . The relation between pN
and N is / 8L

pN N .

88

 In this section, we present and analyze the overall performance of the NGIM

algorithm on CPUs and GPUs for low-, high- and mix-frequency problems. The asymp-

totic time and space complexity of the algorithm are shown to meet the theoretical

hypothesis. The speed-ups between GPUs and CPUs are astonishingly high and we

listed several reasons that might contribute.

(a) Computational time for low frequency problems

 We present the computational times in the low-frequency regime in this section.

The overall performance of CPU and GPU implementations of NGIM is shown in

Figure 11 and Table 8. The GPU implementations have been tested on two generations

of NVIDIA GPUs: the Tesla C1060 with 4 GB memory (GT200 architecture, with

CUDA compute capability 1.3) and new generation Geforce GTX 480 with 1.5 GB

memory (Fermi architecture, CUDA compute capability 2.0). Since the accelerations

brought by GPUs vary across different stages and are closely related to the problem

sizes, optimal performances of respective CPU and GPU version are achieved under

different parameters. As a result, similar to [62], we define “effective” speed-up ratios as

the ratios between optimal computational times achieved on CPUs and GPUs.

 In Figure 11, the computational time of the direct method, i.e. the evaluation of

each source-observer pair on CPUs and GPUs, are provided as a reference. The direct

method has  2O N complexity. Computational times of the NGIM shown as solid and

dashed lines, scale as  O N for both CPU and GPU NGIM when the optimal number

89

of levels is chosen respectively. It can be observed that each curve actually consists of

several pieces of curves, each of which corresponds to computational times achieved

under a certain L . At some points, L has to be increased in order to balance the near-

and far-field time. This leads to the overall linear increase of computational time with

respect to N . We also see that the “cross points” that the optimal L changes are

different for GPU and CPU cases. This is due to different acceleration ratios of near-

and far-field components.

103 104 105 106 107 108
10-4

10-2

100

102

104

106

108

CPU direct (Xeon X5482)
CPU NG (Xeon X5482)
GPU direct (GTX 480)
GPU NG (GTX 480)

C
om

pu
ta

tio
n

tim
e

(s
ec

s)

N

Figure 11 Computational times of the direct method and multi-level NGIM on
CPU and GPU as a function of N in the low frequency regime. The time of all
necessary memory transfer between the hosts and the GPU devices are included,
as will be the case for all other timing results in this section. The size of the com-
putational domain is / 2D  . The relative 1L error is approximately 35 10 .

90

 The GPU code is significantly faster in the entire test range. The largest prob-

lem size N that GeForce GTX 480 can handle is 28 million (1.5 GB memory) while

Tesla C1060 can handle 64N M (4 GB memory). As a comparison, the CPU code

can run up to 16 million with 32 GB of memory. Since the GPUs accelerate the near-

field calculations better than the far-field calculations, the cross points of curves be-

tween neighboring levels all shift towards larger N on GPUs. It is remarkable that the

breakeven point of the computational time between the GPU direct code and the

NGIM CPU code is around 4MN  . The breakeven point between the GPU direct

code and the NGIM GPU code is approximately 4 KN  .

 Table 8 shows a detailed list of the computational times. For a problem with

242N  , the computational time is only 6.36 seconds, which is 392 times faster than

the CPU version of NGIM, 862 times faster than the GPU direct version, and 7 million

times faster than the CPU direct version (estimated). The comparison between the

GPU NGIM code running on Tesla C1060 and GeForce GTX 480 shows around two-

fold speed increase of the latter, which is consistent with the two-fold increase of the

number of stream processor in GeForce GTX 480 (480 vs. 240). As having been dis-

cussed in the previous paragraphs, the speed-up of GTX 480 compared to Tesla C1060

of the far-field regime is around 3 times. We attribute this fact to the improved archi-

tecture of Fermi cards, allowing easier handling more complex memory loading and

thread arrangement required for the far-field calculation. However, for near-field calcu-

91

lations, the computation is almost brute force so it is natural to obtain approximately 2

times of speed-ups between the two generations of cards.

 Table 9 lists the computational time when the NG and CG grids are over-

sampled to improve the accuracy of the calculation. Obviously, the computational time

increases due to more NG and CG grid samples to be processed in the far-field stages.

Qualitatively, the performance of the CPU and GPU versions is similar to the low

oversampling case but GPU code handles the increased computational burdens much

better. In fact, the “ 1L error = 22 10 ” case runs at the same speed as “ 1L error =

35 10 ” case. This is because our current version of the code uses at least one warp to

handle one observer box, as explained in Section 4.2.2. In these two cases, NGIM uses 8

Table 8 Computational times and speed-up ratios of the CPU and GPU NGIM

of Unknowns
N

142 162 182 202 222 242 262

CPU Time 1.15e0 4.84e0 2.69e1 9.66e1 3.67e2 2.49e3 N/A

GPU (GTX480) 5.19e-3 3.09e-2 7.49e-2 3.69e-1 2.33e0 6.36e0 N/A

Speed-up 222 157 359 262 152 392 N/A

GPU (C1060) 1.15e-2 5.29e-2 1.53e-1 8.14e-1 3.85e0 1.18e1 8.49e1

Speed-up 100 90 176 119 95 211 N/A

The GPU and CPU implementations of the NGIM and the direct method for
2r a x      . The size of the computational domain is 2D  . The

relative 1L error is approximately 35 10 .

92

and 27 CG samples per box, respectively, both less than the warp size 32. Thus the

computational times are the same.

 Finally, the performances of NGIM for surface problems are shown in Table 10.

The simulation is done in the low-frequency regime and all sources are placed on the

surface of an “inverse T-structure". For this problem, FFT-based methods that will be

described in Section 4.3 would need to build a grid enclosing the whole computational

Table 9 Computational times and speed-up ratios of the GPU and CPU NGIM
with oversampled grids

of Unknowns N 202 232

1L error = 22 10

CPU NG Time (sec) 5.29e1 4.46e2

GPU NG
Time (sec) 3.69e-1 3.11e0

Speed-up 143 143

1L error = 35 10

CPU NG Time (sec) 9.66e1 8.14e2

GPU NG
Time (sec) 3.69e-1 3.11e0

Speed-up 262 262

1L error= 31 10

CPU NG Time (sec) 3.43e2 N/A**

GPU NG
Time (sec) 1.02e0 8.87e0

Speed-up 336 N/A

** The CPU version of code requires more than 32 GB of RAM. The accuracy of
each simulation is shown in the first column. The size of the computational do-
main is 2D  .

93

domain, including the vast empty spaces, resulting in excessive computational time and

memory consumption. As evident from Table 10, the CPU and GPU implementations

of the NGIM have performance similar to (and even better than) that obtained for the

source/observer distribution in a box. The GPU-CPU speed-up ratios are high as well.

Table 10 Computational times and speed-up ratios of the GPU and CPU NGIM for
the surface source-observer distribution of the "inverse-T" structure in Figure 12

of Unknowns N 8,192 32,768 131,072 524,288

CPU NG
(Xeon X5482)

Time
(sec) 4.35e-1 2.03e0 8.34e0 4.41e1

GPU NG
(GTX 480)

Time
(sec) 2.22e-3 6.33e-3 2.16e-2 1.12e-1

Speed-up 196 321 386 394

* The size of the computational domain is / 2D 

94

(b) Computational time for high- and mixed-frequency problems

 Next we show the computational time results of the GPU NGIM code in the

high- and mixed-frequency regimes. The trend of the computational times is qualita-

tively similar to that in the low-frequency regime and hence many observations and

conclusions in the low-frequency regime apply here as well. In Figure 11 and Table 12,

we present a quantitative summary of the results in a format similar to that of Table 8.

Table 11 shows the computational time in the high-frequency regime for the number of

sources up to 14millionN  and domain sizes up to 12D  . The trend of the

computational time is consistent with that in the low-frequency regime, with a reason-

D

D

D

Figure 12 Sources distributed on two surfaces forming an “inverted T” structure
with the lateral length equals D .

95

able increase due to higher grid density. As in the low-frequency case, the speed in-

crease brought by the newer generation GPU is around two-fold.

 Table 12 shows the computational time in the mixed-frequency regime with the

hybrid NG-CG transformation scheme. Computational times for the same N are

noticeably smaller comparing with those in the high-frequency regime. This means that

the hybrid scheme does save some operations due to constant CG samples in the low-

frequency levels.

Table 11 The computational time of the NGIM on GPUs in the high-frequency regime

of Unknowns N 8K 64K 256K 1M 4M 14M

/D  1.0 2.0 3.0 5.0 8.0 12.0

Level L 3 3 3 4 5 5

GPU Time GTX 480 5.0e-3 2.8e-2 2.0e-1 9.6e-1 4.9e0 2.1e1

GPU Time TESLA C1060 1.4e-2 6.1e-2 3.8e-1 1.8e0 1.0e1 4.4e1

The number of sources N is taken such that there are around 20 sources per a linear
wavelength. The density of NGs are to keep the 1L error less than 25 10 for all
problem sizes.

96

(c) Memory usage

 Memory usage is a very important factor affecting the applicability of GPU-

accelerated algorithms since GPUs typically have smaller amounts of memory than

CPUs. For example, in the Dell Precision T7400 workstation we used to test our

algorithm, any core of the two Xeon processors can take the entire 32 gigabytes of the

main RAM. In our GPU platform, NVIDIA GeForce GTX 480 has 1.5 GB global

memory.

 In our current version of the code, the memory usage of GPU code is deter-

mined by both L and N. With 1.5 gigabytes of memory, NVIDIA GeForce GTX 480

can go up to 6L  and up to 28MN  . The memory consumption of our CPU

NGIM is significantly larger (while at the same time, much slower). For example, the

memory required by NGIM CPU implementation for a problem of 8MN  is 18.1 GB

for the same accuracy requirements. This is almost 50 times more than that of the

Table 12 Computational times of the NGIM on GPUs in the mixed-frequency regime

of Unknowns N 64K 256K 1M 4M 8M 64M*

Level L 3 4 5 5 6 6

GPU Time (GTX 480) 2.6e-2 9.2e-2 3.7e-1 1.8e0 3.1e0 N/A

GPU Time (TESLA C1060) 4.4e-2 1.7e-1 8.6e-1 3.1e0 7.0e0 8.0e1

The domain size is set to be 2D  . The 1L error is 6.0e-2 for all cases. For the
case 64MN  , the optimal level L should be 7 but due to the memory limitations
the results are shown for 6L  .

97

GPU code. Most of the CPU memory is used for storing the interpolation coefficient

matrices, impedance matrices and other grid sample information, which if eliminated,

would make the CPU code several orders of magnitude slower and completely not

usable.

4.2.4 Summary and future directions

 From this section, it is clear that the NGIM is a very good candidate for mas-

sive parallelization including on GPUs. Furthermore, the high-frequency NGIM method,

without the CG, would be very easy to scale to multiple nodes on high-performance

computing clusters. These options will be explored in the next revision of the NGIM

code.

4.3 Box Adaptive Integral Method (B-AIM)

 Box Adaptive Integral Method (B-AIM) is one variation of FFT-accelerated fast

methods that are designed specifically for massively parallel computing architectures.

Comparing with the other popular variations, B-AIM has the same computational

complexity but much higher execution efficiency on current and possibly future many-

core computer systems, including GPGPUs.

 All FFT-based algorithms follow similar philosophy and flow. In these algo-

rithms, two auxiliary sparse uniform grids are created, one interacting with sources,

98

called the source grid and the other interacting with observer, called observer grid. The

source grid points are used as virtual sources participating in the source-observer field

calculation through FFT. The observer grid points are used as the virtual observers.

After the fields on the observe grid points are where the fields on actual observers are

interpolated from. The process of calculating the amplitudes on those “virtual sources”

are called “projection” or, as in Ref. [36, 177], “anterpolation” and the reciprocal process

of obtaining field strengths on actual observers from the “virtual observers” is called

“interpolation”. The projections and interpolations introduce errors and the errors

might be unacceptably large when sources and observers are too close to each other. B-

AIM, AIM and pFFT algorithm all have correction mechanisms to neutralize this

inaccuracy. For each observer, interactions from sources residing within a certain range

of observers are identified as “near-fields”, and are supposed to be inaccurate. Since

they are inseparable from other “far-fields” while being calculated through FFT in the

first pass, they have to be calculated separately again and subtracted. Then, accurate

near-fields are added through direct superposition. Detailed description of the process

can be found in Ref. [11, 94, 136].

4.3.1 Procedure of B-AIM

 The B-AIM algorithm presented in this chapter does have similar stages as the

traditional AIM and pFFT algorithms but it follows a different approach in projections

and corrections. In the following, we describe the stages of the algorithm.

99

Preprocessing (Stage 0):

 The operations described in this stage are only to be done once before the

iterative solution of fields starts. The computational domain is divided into multiple

subdomains, called boxes, as shown in Figure 13. The number of boxes can be set by

the user or by some criteria such as memory usage or computational time requirement.

Boxes with no sources or observers are excluded from the computations. Two grids are

constructed for each non-empty box, one for emulating the field generated by actual

sources, referred to as the source grid and the other for estimating the field resulted on

actual observers, referred to as the observer grid. In many cases (e.g. for free space

problems) these two grids can overlap, thus saving half of the storage space, but for

some specific cases, such as periodic problems, these two grids are shifted to ensure fast

convergence of the periodic Green’s function [100]. These grids of individual boxes are

then combined and form two larger grids covering the whole computational domain.

These two large grids can be expressed as two gN -length vectors, I and U , respective-

ly.

 After the grids have been established, the algorithm proceeds as follows

Projection (Stage 1):

 The source amplitudes are projected from actual sources to the source grid

points for them to emulating the influence of the actual sources. Lagrange interpola-

100

tions are used. The result of the projection operation can be expressed as an gN N

matrix V , so that I = VQ .

Grids interaction calculation (Stage 2):

 Field generated by the source grid points are calculated at each observer grid

points via a convolution gridU = G I . This is done by convolving the grid sample

matrix with the Green’s function matrix via FFT.

Interpolation (Stage 3):

 In this stage, the fields at actual observers are found by interpolating from the

field values of observer grid points. The interpolation operation is the reciprocal opera-

tion of the projection so can be expressed as the transpose of V , so that TF = V U

where F is an approximation of F . Combining the above equations, this coarse estima-

tion can be summarized as  invFFT{FFT{ } FFT{ }} T
gridF V G VQ .

Near field correction (Stage 4):

 The approximation near-field parts of F are substituted by field values com-

puted directly. This substitution requires a second pass of the previous stages and

direct calculation of a portion of Z . This process has (1)O complexity for a single

observer and ()O N complexity overall. This correction can be summarized as



_
T  near grid near near nearF = F V (G (V Q)) Z Q

101

4.3.2 The GPU implementation of B-AIM

 As stated and restated several times in the thesis, implementing any algorithm

efficiently on GPUs requires it adapting to the hardware architecture. The B-AIM is no

exception.

Source

Observer

Far field interaction via grids
Projection / Interpolation

Near field interaction

Figure 13 Schematic illustration of B-AIM. Subtraction of inaccurate near-field is
not shown as they follow the same procedure as the projection stage.

102

(a) “On-the-fly” calculation:

 In sequential AIM/pFFT implementations, the operations shown in Section

4.3.1 are usually implemented as several matrix-vector multiplications and the matrices

are usually pre-filled in the processing stage to save CPUs from calculating the un-

changing matrix elements at very iteration. This is not done in the GPU B-AIM

because the GPUs are very good at arithmetic calculation and have much less memory

to store the pre-filled tables. So, GPUs calculate each matrix element right before the

matrix-vector multiplication is required. This is called the “on-the-fly” mechanism, and

has been explained in the Section 4.2. This technique inevitably increases the total

number of arithmetic operations but, with appropriate task arrangement actually

utilizes GPUs’ extremely wide SIMD SMs well. The final results in Section 4.3.3 shows

that the “on-the-fly” approach produces incredible speed-ups comparing with the CPU

AIM/pFFT that uses the prefilling approach.

(b) Box-level domain decomposition and regulation:

 Another critical issue in the tradition AIM algorithm that limits its efficiency

on GPUs is the inhomogeneous computational burden across sources. This happens in

the projection, interpolation as well as in the near-field correction stage. For example,

in the near-field correction stage, common implementations of AIM maintain a list of

near sources for each observer (or basis function). The fields exerted by the sources on

this list are to be corrected as the corresponding sources are too close to be calculated

103

via FFT. In order to do this, a sparse matrix is formulated with its non-zero elements

representing the Green’s function between these near-sources and observers. However,

non-zero entries are highly dependent on the geometrical distribution of sources and

can be unstructured. Accelerating unstructured sparse matrix-vector multiplication has

been shown in many research literatures to have relatively limited GPU-CPU speed-ups

[10, 88]. AIM implementations adopting this approach confirm the conclusion by show-

ing less than 10x speed-ups [51, 133].

 Our B-AIM solves this problem by grouping close sources and observers into

boxes and replacing the separate near-source list of each observer by a unified near-

source list shared between observers in the same box. As mentioned in Section 4.3.1,

the computational domain is divided into subdomains called “boxes”. Sources and

observers are then associated with their enclosing boxes. The relationship between a

pair of source and observer is no longer determined by their distance but by the boxes

they belong, whose relationship is in turn determined by the distance between the

centers of themselves.

 Using this double-layer mapping scheme, observers that belong to the same box

always have the same near and far field sources and the same interpolation grid points

too. In fact, adopting this box-to-box mapping eliminates the near-source lists altogeth-

er because any observer box can find their near boxes using their index numbers alone.

This not only saves the precious memory resources of GPUs but also dramatically

104

reduces the number of global memory access, which is a critical for improving the

execution efficiency of the code.

(c) Pre-sorting:

 The source information such as the coordinates and amplitudes are pre-sorted in

the preprocessing stage, after the box decomposition, so that the source information

belonging to the same box occupies contiguous memory spaces. This increases the data

locality of the algorithm, so the code would have much higher global memory cache hit

rate.

(d) Block-box mapping:

 Similar to the tactics we adopted in the NGIM, one block of threads are always

responsible for processing observers that belong to the same box. This intrigues coa-

lesced memory access that are critical for achieving high global memory accessing

throughput, especially on older architectures like G80 or GT200. This block-box map-

ping techniques also significantly improves the shared memory utilization so that global

memory access can be further reduced.

(e) Lagrange projection and interpolation schemes:

 There are many projection and interpolation schemes to be chosen for AIM or

pFFT, and comparison studies have been done by researchers [174]. However, tradi-

tionally the selection of schemes rarely considers their computing efficiency on specific

105

hardware architectures. In the B-AIM algorithm, Lagrange interpolation scheme is

chosen for both projection and interpolation because they can be done on GPUs

through either hardware texture filtering units using intrinsic commands or through

Lagrange polynomials evaluations that can take advantage of the very fast constant

memory. In other schemes, the interpolation coefficients would require enormous

amount of operations such that they have to be calculated in the preprocessing stage

and tabulated for future usage, which are ineffective or infeasible for GPUs.

4.3.3 Computational complexity and result analysis

 In principle, the user would keep the average number of sources per box to be a

constant. This means the number of boxes and the total number of grid samples is

proportional to number of sourcesN . This leads to (log)q qO N N computational com-

plexity of the stage 2. Stages 1, 3, and 4 contain only local operations so they have an

()qO N complexity. The overall asymptotical complexity of the algorithm is (log)O N N .

The memory complexity of the algorithm is ()O N .

 Computational times of B-AIM are shown in the Table 13 for cubic and linear

order of interpolations with 1e-4 and 1e-5 average L1 error, respectively. The parallel

GPU B-AIM using a single NVIDIA Geforce GTX 680 card is compared against serial

CPU B-AIM using one core of Intel i7-950 CPU. All computational times are obtained

using optimal settings for CPU and GPU code. We can see that the times of both the

CPU and GPU codes have close to linear scaling starting from very small problems

106

sizes. The speed-ups between GPU and CPU implementations are around 100-200. For

example, one field evaluation using GPU B-AIM costs 0.246 secs in cubic settings, for a

problem of 1 million unknowns, which is 162x and 143x faster than CPU B-AIM and

GPU direct method, respectively.

 It is interesting to see that the speed-ups between GPUs and CPUs B-AIM far

exceed the difference of their respective theoretical computing power. The reason is

two-fold. It happens that the commercial x86 CPUs lacks accessible APIs to exploit the

massive parallelization opportunities in the B-AIM algorithm. Developers usually rely

on automatic optimization and vectorization from compilers or directive-based

OpenMP APIs to utilize the cores on chips. Two x86 CPU vendors, Intel and AMD do

provide SSE or AVX vectorization commands, but they are at the assembly language

level so it requires extraordinary efforts to use. The other reason is that GPUs’ onboard

memory has much higher throughput. Even the slowest “main” memory, which is called

the global memory in CUDA and OpenCL API, is two generations advanced of the

Table 13 Computational times of serial B-AIM on CPU and parallel B-AIM on one
GPU card

N Direct CPU Direct
GPU

B-AIM CPU
(cubic)

B-AIM GPU
(cubic)

B-AIM GPU
(linear)

16K 7.02e-1 3.74e-3 2.65e-1 3.10e-3 2.10e-3

64K 4.47e1 1.45e-1 2.28e0 8.40e-3 5.70e-3

256K 7.17e2 2.13e0 9.87e0 3.28e-2 2.05e-2

1M N/A 3.53e1 3.99e1 1.34e-1 8.89e-2

4M N/A N/A N/A 5.76e-1 3.90e-1

107

main memory of CPU and has a much wider bus. The shared memory on die provides

several terabytes per second throughput and can be accessed by tens of SPs at the

same time. With appropriate accessing patterns, these super-fast memories may provide

one or two orders of magnitude larger throughput, comparing with the CPUs’ main

memory. With those being said, we should be aware that any comparison between

CPUs and GPUs in term of the absolute times should be made with clear explanation

of the implementation, optimization and execution environment. Obviously, the speed-

ups between CPU and GPU vary a lot among different algorithms [88], and this is due

to the nature of mathematical operations involved.

 The memory consumption of B-AIM is shown in Table 14. The asymptotical

complexity of the memory consumption of B-AIM is  O N . For problems with the

same size, the cubic interpolation B-AIM uses approximately 6 times more memory due

to larger grids.

4.3.4 Multi-GPU B-AIM

Table 14 The memory consumption of B-AIM under different interpolation schemes

N 16K 64K 256K 1M 4M

Linear 0.8M 3.2M 9M 31M 111M

Cubic 6.9M 14.9M 43M 163M 673M

108

 The B-AIM algorithm has been further parallelized across multiple GPUs. The

flow chart of the multi-GPU B-AIM is shown in Figure 14. The main difference be-

tween the multi-GPU version and the single-GPU one is multiple scattering and

collecting stages between B-AIM stages. This is necessary when only partial data is

situated on each computing nodes. With the execution being carried by multiple devic-

es, not only the computational time is cut drastically, but also the largest problem sizes

the algorithm can handle is increased significantly. The largest problem that has been

tested on the four GeForce GTX 570 GPUs with 1.2 GB memory each is 262N  , and

the a single field evaluation takes 3.19 seconds to complete.

109

 Computational times of B-AIM on four GeForce GTX 570 GPUs are shown in

Figure 15, with the times on a single GTX 470 GPU card shown as a reference. It can

be seen that the blue curve drops below the red one at approximately N=30K. At

approximately N=1 million, the time indicated by the blue curve is 38% of that of the

red curve, which corresponds to approximately 65% of parallel efficiency (here, the

parallel efficiency, in term of strong-scaling, is defined as 1/nnt t  , where n is

number of nodes the algorithm is running on, nt is execution time on n GPUs and 1t is

Figure 14 The flow chart of multi-GPU B-AIM. The details of parallel FFT can be
found in Ref. [33, 42].

110

the execution time on the single GPU). The parallel efficiency of the near-field calcula-

tion is extremely high since they do not require communication between nodes at all.

The 65% of efficiency is partly due to element rearranging procedure to transform a

random scattered set of sources into a sorted one, which is just happened to be neces-

sary at all iterations in our specific solver. The relationship of the computational times

as a function of the number of GPU cards are shown in Figure 16.

111

1.E-03

1.E-02

1.E-01

1.E+00

1.E+04 1.E+05 1.E+06 1.E+07

4 GPUs

1 GPU

0.0452 s

0.1188 s
C

om
pu

ta
tio

n
tim

e
(s

)

Problem Size N

Figure 15 shows the computational time as a function of number of nodes used.
The code has been tested up to 4 GPUs and we could see that the blue line
deviates further from the 100% efficiency reference line at n=4. This is due to
suboptimal integration between the solver and the B-AIM, which leads to unnec-
essary rearranging of sources at every field evaluation call.

112

4.3.5 Summary

It has been shown that the FFT-based fast methods for evaluating convolution in Eq.

(2.11) and Eq. (2.19) can be accelerated by GPUs effectively. The speed-up ratios

between parallel GPU code and the sequential CPU code are generally above 100.

Significant changes are needed in order to adapt the algorithm with GPU’s unique

architectures. Specifically, we successfully reduced the memory consumption of the B-

AIM algorithm while achieving such high computing throughput. Using less memory

also makes the code to be able to process much larger problem and we have the algo-

rithm handling problems with hundreds of millions sources using merely 4 Tesla GPUs

that can be put into a desktop computer case.

20

40

80

160

1 2 4

Overall Time
Near-Field Only

Cubic interpolationC
om

pu
ta

tio
n

tim
e

(m
s)

Number of GPUs

Figure 16 The parallel efficiency of the B-AIM in terms of strong scalability

113

4.4 General designing guidelines for algorithms running on GPUs

 In this section, we summarize the general features of algorithms that would be

favorable for GPUs and present some general strategies for designing algorithms run-

ning on GPUs. Most of the materials presented here can be found in Ref. [126] and

various other documents from NVIDIA or third-party tutorials. Programmers using

AMD GPUs would also be benefited from these guidelines [2]. Here we list only those

that are related to common algorithms met in computational electromagnetics, compu-

tational micromagnetics and other areas that use iterative linear equation solvers.

 Designing and optimizing a specific algorithm would definitely require much

more efforts than just following the points listed below. Sometimes critical decisions

have to be made when trade-offs are inevitable. The algorithms described in this chap-

ter are designed, implemented and tuned from scratch by the author so to achieve

encouraging performance in terms of both time and memory consumption. In general,

we believe, as stated in Section 1.4, that adapting algorithms to appropriate hardware

architectures at relatively low-level is necessary for extracting computing performance

out of any computing systems.

4.4.1 Massive parallelism

114

 One of the major differences between GPUs and CPUs are the scale of parallel-

ism and threading model. Although CPUs are drastically increasing the number of

cores they contain in the recent years, they are not at all comparable to the number of

cores per chip on GPUs. In desktop computing systems, the highest-end CPU systems

may have 8 or 10 cores per die. Meanwhile, a single high-end GPU card, like Geforce

GTX 680, consists of 1536 cores. Therefore, one critical factor determining the execu-

tion efficiency of an algorithm on GPUs is the available parallelism.

 Many algorithms have massive parallelization opportunities, such as the matri-

ces multiplication example shown in the Ref. [127]. This category of algorithms is

generally very suitable for GPUs and the GPU-CPU speed-up ratio could reach up to

several thousands. However, there are many other algorithms that are intrinsically

sequential, such as the Gaussian elimination for solving linear equation systems. These

algorithms are harder to accelerate by GPUs. Therefore, GPUs are not the panacea but

a specific dose of medicine under appropriate situations where hundreds of thousands of

concurrent threads can be launched to solve a compute intensive problem.

 In our micromagnetic solver, the number of discretized magnetization elements

and other intermediate data points can be in the range from several thousands to

multiple millions. It is rather common to launch a few million threads to process these

elements and the GPU can generally achieve full utilization in these simulations.

4.4.2 Memory exchange between host and device

115

 The peak global memory bandwidth of GPU is extremely high (192.2 GB/s for

GTX 680 card) but the memory transfer bandwidth between GPUs and CPUs are

through much slower PCI Express bus. Hence, to achieve the fastest execution efficien-

cy, it is critical to minimize the data transfer between CPUs and GPUs.

 Taking it as a general principle, the complexity of a certain algorithm or part of

it should be high enough to compensate the extra time spent on moving data back and

forth to and from the devices. Ideally, that part of the algorithm suitable for GPUs

should contain large amount arithmetic operations that can be handled in parallel

fashion. Once the programmer decides to process this part on the GPUs, one should

keep the same data on the device as long as possible. This sometimes requires redesign-

ing the algorithm to increase the temporal locality of the data accessing. For example,

in our micromagnetic solver, all the components of the effective field are computed on

GPUs though we gain almost nothing from lightweight kernels for calculating the

Zeeman field. If possible, the entire algorithm should be run on the GPUs. For example,

in our future micromagnetic solvers, an efficient ODE time integrator is being ported to

GPUs so that no CPU-GPU memory transfers are required at every time integration

step.

4.4.3 Floating point intensive and memory intensive applications

 Memory operations and arithmetic operations are two most commonly met

types of operations in many scientific computing applications. These two types of

116

operations follows very different execution path, from the hardware architecture per-

spective. GPUs indeed offer high global memory bandwidth but they possess much

more arithmetic computing power. Generally speaking, memory access initiated by

GPUs requires very special accessing patterns, called “coalesced access”, to hide the

intrinsic latency of GDDR RAM and this latency cannot be eliminated by adding more

SPs. On the contrary, the arithmetic operations usually executed on registers that have

no latency and can be accomplished in a few cycles. Furthermore, the floating point

number computing power of GPUs can be scaled further by adding more SPs. There-

fore, massively parallel processors like GPUs prefer higher arithmetic intensity

operations. In our electromagnetic solver, the Green’s function evaluation kernel has

very high arithmetic intensity. The Helmholtz-type potentials need more than 30

floating point number operations (FLOPS) to process a single source-observer pair,

with only 4 global memory loading and storing operations.

4.4.4 Using shared memory to avoid global memory access

 The shared memory is a type of on-chip and extremely fast memory with sever-

al unique features. The shared memory can serve as the scratch pad for threads to

share the intermediate results, relieve the register pressure and also reduce the global

memory access. The shared memory has extremely low latency and can be read and

written by all threads within a block at the same time, providing they are not accessing

the address in the same bank. Using shared memory could significantly improve the

117

data readiness for parallel processors, as mentioned in the Chapter 1 when the memory

wall problem is discussed. In our solver, shared memory is actively used due to our box-

level decomposition of the domain, after which, multiple observers within the same box

would have exactly the same sources to be interacted with. In this case, threads pro-

cessing these observers would have same execution paths and be able to share same set

of information through the shared memory.

4.4.5 Coalesced access to global memory

 When global memory accesses are unavoidable, coalesced memory accesses

would be the most important performance consideration. Coalesced memory access

combines the memory loading operations by threads of the same warp into a single

transaction when necessary conditions are met. For NVIDIA GPUs with compute

capability of greater than 2.0, the coalesced memory access happens when a warp of

threads access a single 128-byte contiguous memory piece in the global memory, mean-

ing each thread handling a single 4-byte floating point number. Our simulator employs

this access pattern wherever possible. Pre-sorting of the coordinates of sources into

boxes means when a block of threads could load these coordinates into shared memory,

they always follows the box boundaries and are guaranteed to load a significant chunk

of data in contiguous memory locations.

4.4.6 Occupancy

118

 Occupancy is also an important concept in understanding how hardware actual-

ly process multi-million parallel tasks. As we known from the Chapter 3, a warp of

threads are always mapped to a single SM. But in order for a SM to hide the latencies

of certain operations, it holds multiple warps simultaneously and switches to other

execution-ready warps when the currently active warp is temporarily stalled. The

number of warps that can be simultaneously situated on a SM is limited by available

resources, particularly speaking the registers, the shared memory and the number of

different blocks each SM can have. The way to calculate the occupancy can be found in

Ref. [127] or using occupancy calculator provided with the CUDA compiler. Higher

occupancy does not guarantee higher performance [167], but in general, it can provide

better chance for the SM’s warp scheduler to hide the latencies resulting from memory

operations or register dependencies.

4.4.7 Branching and divergence

 The flow control instructions in kernels significantly affect the instruction

throughput if divergent branches happen within a warp. If this happens, different

execution paths would be serialized and threads not participating in a certain path are

disabled temporarily for their turns. If the algorithm has extremely fine parallelized

tasks, it might be hard to deploy a warp of 32 threads without branching among them.

However, our solvers do not have this problem as long as most of the boxes contain

119

more than 32 sources or observers. The boxes make the whole computational domain

parallelized adequately but not too finely.

4.5 Summary

 The GPU-accelerated fast methods for IE solvers can achieve extremely high

performance in both the computational time and memory consumption but non-trivial

efforts have to be made before “porting” any existing algorithms to GPUs. The unique

architecture of GPUs requires rethinking of the fundamental data-structures and execu-

tion paths of algorithms. Various techniques has to be used to achieve high efficiency,

such as ordering the data in a way that GPUs can access with minimal latencies and

homogenize the computational tasks that handles by a single SM. The outcomes are

encouraging. Over 100x or more speed-ups are achieved for problems of a wide range of

sizes comparing with a highly efficient sequential version of the same algorithms run-

ning on a high-end CPU.

4.6 Acknowledgement

 The contents in this chapter contain the materials that have been previously

published in the following papers.

120

• S. Li, B. Livshitz, and V. Lomakin, “Fast evaluation of Helmholtz potential on

graphics processing units (GPUs),” Journal of Computational Physics, vol. 229,

no. 22, pp. 8463-8483, 2010.

• S. Li, R. Chang, and V. Lomakin, "Chapter 19 - Fast Electromagnetic Integral

Equation Solvers on Graphics Processing Units," GPU Computing Gems Jade

Edition, W. H. Wen-mei, ed., pp. 243-266, Boston: Morgan Kaufmann, 2012.

• S. Li, R. Chang, and V. Lomakin, “Fast integral equation solvers on Graphics

Processing Units for Electromagnetics,” IEEE Antennas and Propagation Maga-

zine, to appear in 2013.

121

5 Fast Methods for Periodic Boundary Problems

 Periodic structures are widely used in microwave engineering and optics, and

their efficient computational analysis is important in a multitude of applications. In

many cases, a periodic structure can be considered as an infinite array of unit cells and

the fields are solved for only in a single unit cell.

 Integral equation (IE) solvers are often used to analyze such periodic unit cell

problems [135]. When solved iteratively, IE solvers require evaluating spatial convolu-

tions between a source distribution within the unit cell and the periodic Green’s

function (PGF) accounting for the presence of an infinite number of unit cells. Periodic

convolutions may be also required in micromagnetic solvers when a single unit cell of

an array of magnetic elements is of interest. Evaluating such convolutions is similar to

that described in Chapter 4 except for the evaluation of free space Green’s functions

being replaced by the evaluation of PGFs. The Green’s functions need to be computed

2()O N times to fill up an IE impedance matrix for directly implemented IEs, where N

is the number of sources and observers. Then, the fields are found by convoluting the

PGF results and the source amplitudes.

 In this chapter, we present a fast periodic interpolation method (FPIM) for

computing fields generated by N sources and observed at N observers in a unit cell of

an infinitely periodic problem at a small (()O N or (log)O N N) number of operations

in the low-, high-, and mixed-frequency regimes. This method is based on separating

122

the PGFs into its near- and far-field components and analyzing them separately. The

near-field component may be analyzed using any conventional fast methods for a finite

distribution of sources and observers such as NGIM and B-AIM, presented in the

previous chapter. The far-field component has slow variations thus may be solved on a

sparse grid and then followed by interpolation to the source and observer locations.

This would save a great number of PGF evaluations, reducing the computational cost.

The FPIM is kernel independent and can handle different periodic problem types,

including arrays of different dimensionality in free-space, metallic waveguides, and

layered media. More importantly, FPIM allows using any available methods for evalu-

ating the PGF, including simple Floquet summations. Practically achievable

computational times can match those of conventional non-periodic fast methods that

have ()O N or (log)O N N complexity [100].

5.1 Problem formulation

 The periodic boundary problems are slightly different from free space problems

presented in Chapter 2 and 4. Using a slightly different set of terminology, we present

their definition in this section before starting to describe the procedures of the FPIM.

Consider an infinite periodic array of unit cells residing in free space. Each unit cell of

the array comprises N scalar point sources, labeled nq , located at the source locations

123

nr , and the same number of coinciding observers. The sources can be distributed on a

surface or in a volume of a linear size D . The array can be one-, two-, or three dimen-

sional (1D, 2D, or 3D) and it resides in an infinite homogeneous 3D space. The array’s

periodicity is , ,x y zL L L in the three possible (, ,x y z) periodicity directions (with

{ , , }x y zD L L L). There is a linear phase shift with wavenumbers 0 0 0, ,x y zk k k in the

three dimensions, between the sources and fields in the unit cells. Compared to the

wavelength  , the domain size can be small , (i.e. D ), moderate (~D ), or

large (i.e. D ).

 The scalar field in the prime unit cell is given by

1

() (,)
N

m p m n n
n

u G q


 r r r (5.1)

where pG , the PGF describing the periodic array, is found by summing up the Green’s

function of a single source over all unit cells in a periodic array.

 0(, 0) (,)tj
pG e G

  


  ik r
ii

r r r (5.2)

 Here, 0(,)G ir r is the free-space Green’s function, given by

| |

0 0(,) (, 0)
4 | |

jke
G G



 

  


ir r

i i
i

r r r r
r r

 (5.3)

 The vector ir is the coordinate of the source in the thi unit cell, and the wave

vector 0 0 0(, ,)t x y zk k kk with generally complex components describes a linear phase

shift between the source amplitudes and field in the unit cells. The index i is under-

124

stood in a general form and it can be referred to 1D, 2D, and 3D arrays. A more de-

tailed description of this index as well as spatial and Floquet (spectral) summations for

the 1D, 2D, and 3D cases are given in Appendix B. For arrays in free-space, (,)pG r r

is shift invariant, i.e. (,) (, 0)p pG G  r r r r . Although the formulation presented here

is for 3D free-space environments, the method is kernel independent, so a number of

other environments can be handled in a similar manner.

 Solving Eq. (5.1) is an essential step for iterative IE methods. As presented in

Section 2.2, in mixed-potential electric field IE solvers the summation in Eq. (2.16) can

be used directly. In this case, the summation is computed four times, for the scalar

potential  and the three components of the vector potential A . Computationally

inexpensive local corrections are used to account for the impedance matrix correspond-

ing to overlapping basis functions. For magnetic field IEs, the task of solving Eq. (5.1)

can be modified to include PGFs with a gradient. In addition, vector fields generated

by vector current sources can be found with dyadic PGFs, which can be important e.g.

in discrete dipole approximation approaches. The problem in Eq. (5.1) is also im-

portant in various physics and chemistry problems involving interactions between

collections of particles.

 The computational cost of computing ()mu r at N observers due to N sources

using direct evaluation of Eq. (5.1) scales as 2()O N . It requires 2N evaluations of the

PGF to fill the impedance matrix. For iterative IE solvers, the conventional approach

125

is to build an impedance matrix with tabulated impedance values in a preprocessing

stage and used merely matrix-vector multiplication for all subsequent iterations. This

approach requires 2()O N memory consumption and 2()O N floating point operations

for computation.

 This quadratic computational cost is very high even for a small problem size N

and even higher is the matrix-filling stage in which PGFs are evaluated. To allow

analyzing complex periodic unit cell problems, the summation in Eq. (5.1) needs to be

calculated rapidly with a reduced number of PGF evaluations. FPIM is designed to

reduce this high computational cost.

5.2 Fast Periodic Interpolation Method (FPIM)

126

 The idea of FPIM is based on splitting the PGF and field into the near- and

far-field components (see Figure 17). The PGF can be represented in the following form:

 near far(, 0) (, 0) (, 0)p p
pG G G r r r (5.4)

where near(, 0)pG r and far(, 0)pG r are the near- and far-field components of the PGF given

by

 near 0

far near

(, 0) (,),

(, 0) (, 0) (, 0)

d t

d

i jp
i

p p p

G e G

G G G

 




 

 ik r
ii

r r r

r r r
 (5.5)

 Here, near(, 0)pG r is given as a summation of the simple Green’s functions

0(,)G ir r around the prime unit cell, which is similar to the expression in Eq. (5.2) but

with a finite summation over a limited range determined by di (1di  can be chosen

Figure 17 An example periodic structure comprising an infinite 2D periodic array in
free space. 1D and 3D arrays in 3D space are also considered. The method is also
applicable to many other periodic structures for which a PGF can be computed and a
far-field PGF with smooth behavior can be defined.

127

for most cases). The far-field component of PGF, far(, 0)pG r , is given as the sum of

contributions from the infinite number of remaining unit cells.

 Based on the PGF decomposition, the field is also decomposed as

 near far() () ()m m mu u u r r r (5.6)

in terms of its near- and far-field components

 far far
1,

() (,)
N

p
m m n n

n
n m

u G q



 r r r (5.7)

 near near
1,

() (,)
N

p
m m n n

n
n m

u G q



 r r r (5.8)

 The task of evaluating the near-field field nearu is mostly identical to that of

evaluating the field in non-periodic structures using B-AIM or NGIM; some minor

modifications that may be required for the summation for nearu as in Eq. (5.8) are

outlined in Section 5.3. The rapid evaluation of the far-field faru as in Eq. (5.7) is a

more complicated task for general problems, which will be addressed in Section 5.4.

5.3 Evaluation of the near-field periodic field in FPIM

 To evaluate the near-field nearu as in Eq. (5.6) with the near-field PGF compo-

nent in Eq. (5.5), nearu can be recast in an alternative form as

128

 near 0 0
1 1

() (,) (,)
d d

t

d

N i N
j t

m m n n m n n
n i n
n m n m

u G q e G q 

  
 

   ik r

i

r r r r r (5.9)

 Here, the first summation is for N sources in (2 1)di
 units cells including the

unit cell of interest and its surrounding unit cells, where  is the dimensionality of the

array (1,2, 3  for 1D, 2D, 3D arrays). The second summation in Eq. (5.9) is over an

extended index running over all (2 1)d dN i N  sources in the (2 1)di
 (prime and

adjacent) unit cells with the sources exp()t
n n tq q j   ik r defined to include the phase

shift between the unit cells.

 The evaluation of the second summation in Eq. (5.9) for free-space problems is

a standard task that can be handled using any available fast methods, such ones pre-

sented in this thesis. For instance, if we use NGIM described in Section 4.2, the

computational domain (comprising (2 1)di
 cells) for computing nearu will be divided

into a multilevel hierarchy of levels of boxes. Interactions between “well separated”

boxes are accounted via spatial interpolations, whereas the interactions between the

neighboring boxes containing a small number of source-observer points are accounted

for via direct superposition. This results in a computational cost of ()O N or

(log)O N N , depending on the frequency domains of the calculation. Other methods are

extensively documented in literatures (see e.g. [35]) and therefore no further details are

provided.

129

5.4 Evaluation of the far-field periodic field in FPIM

 The far-field component of the PGF far
pG and the field faru observed in the

prime unit cell are generated by sources residing outside of the di -th unit cells. The far-

field PGF and the field itself have bounded spatial variations within the prime periodic

unit cell. This means that far
pG and faru at the observers can be calculated by interpo-

lation from a set of relatively sparse samples, called observer grid. Due to reciprocity,

the far-field PGF far
pG has bounded variations with respect to the source coordinates,

which can also be computed at the source locations by interpolating from a sparse

source grid. The sampling rates for the grids are determined by the Nyquist criterion,

which requires the grid step sizes x , y , and z to be less than 2 (in Cartesian

coordinates). To account for different electrical sizes of the cells, the step sizes are

chosen as min{ 2, }D  , where 1  is an oversampling ratio. Based on this un-

derstanding, the proposed FPIM is accomplished in three stages.

5.4.1 Stage 1: Evaluating p
farG at source and observer grids

 In this stage, the far-field PGF far
pG is evaluated at in the grid points of the

prime periodic unit cell (Figure 17). Let the grid 1{ (, ,)} gNs s s s
n n n n nx y z r be the source

grid and 1{ (, ,)} gNo o o o
m m m m mx y z r be the observation grid.

 In our FPIM implementation, we choose uniform Cartesian lattices (Figure 18)

because we will later use FFT to accelerate the calculation, as being done in B-AIM

130

discussed in Section 4.3. The number of grid points for both grids in the x , y , and z

directions is y
gN , x

gN , and y
gN , respectively, and the total number of possible grid

points is x y z
g g g gN N N N . The source and observation grid coordinates are staggered by

about half of the interval in all dimensions, so the relationship between the coordinates

is represented as () 2o s
n n x y z      r r x y z . This choice of grids assures a rapid

convergence of the PGF from the source grid points to the observation grid points via

simple Floquet summations [135], thus allowing using the latter with FPIM efficiently.

 For free-space problems with translation invariant PGFs, there are only ()gO N

different values of o s
m n r r , which leads to ()gO N evaluations of PGF (Figure 18).

Moreover, far
pG need to be evaluated only at the number g gN N  of grid points

around the sources and observers (gray samples in Figure 18). Here, due to the Nyquist

criterion, the number of relevant grid points is  2max{2 ,1}gN O D   or gN  

 3max{2 ,1}O D  for surface or volume charge distributions, respectively.

131

 The PGF between grid points, far(,)p o s
m nG r r , can be evaluated using any available

methods, including various acceleration techniques [13, 27, 83, 120, 162, 164]. However,

even simple spectral Floquet mode expansions can be very efficient for field calculations

(see Floquet expansions for arrays in free space in Appendix B). This is possible due to

both the grids and the interpolation procedure can be set up to avoid specific source-

observer arrangements for which the Floquet series convergence is slow. Additional

details are given in Section 5.5.

 The computational cost of this stage scales as PGF gc N  , where PGFc is the cost

of evaluating a single PGF far
pG . The evaluation of far

pG at the grids depends only on

Observer grid

Observer

Source

Source grid

Figure 18 The schematic illustration of the source and observer grids. The grids are
chosen as shifted Cartesian lattices to allow for using simple Floquet summations for
PGFs. The choice of grids, however, is flexible and other grid types can be used. The
grey dots represent the grid points around the computational domain for which PGFs
need to be computed.

132

the unit cell parameters and wavelength, and not on the source distribution. In the

framework of IE iterative methods, the far-field PGF on at the grids is therefore re-

quired to be tabulated only once.

5.4.2 Stage 2: Evaluating faru at the observation grid

 In this stage, the field far()o
mu r is evaluated at the observation grid points. Two

approaches can be followed.

Approach 1:

 The calculation of the field far()o
mu r can be accomplished in two steps. First, the

far-field component of the PGF far(,)p o
m nG r r from the actual source locations nr to the

observation grid points o
mr is calculated by locally interpolating from the source grid

points s
nr

 far far
1

(,) (,) (,)
qN

p o s s p o s
m n n n m n

n

G w G 


 r r r r r r (5.10)

where (,)s s
n nw r r are interpolation coefficients and q gN N is the number of grid

points used for interpolation. For example, 3(1)qN q  for Lagrange interpolation of

order q . Other interpolation approaches can be also used, including Chebychev or

simplex interpolations. Once far(,)p o
m nG r r is found, the far-field field far()o

mu r at the

observation grid is found via the summation similar to that in Eq. (5.1)

 far far
1

() (,)
N

o p o
m m n n

n

u G q


 r r r (5.11)

133

 The resulting computational cost is  1 2 3q q g gc N c N N c N N   with constants

1,2,3c , which includes the cost of ()qO N N for the interpolation coefficients (,)s s
n nw r r in

Eq. (5.10) (to be executed only once for an iterative IE solver), ()q gO N N N cost of

evaluating the far-field PGF far(,)p o
m nG r r in Eq. at required observer grid points from

all source points (to be executed only once), and ()gO N N cost of calculating far()o
mu r in

Eq. (5.11) (to be executed in each iteration for an iterative IE solver). Conceptually,

this procedure is similar to the evaluation of the local fields in the framework of the

NGIM in the Section 4.2. The computation cost in the above procedure is of ()gO N N ,

which can be much smaller than the cost of the direct approach but potentially still

may be significant. This cost can be further reduced as described next.

Approach 2:

 An alternative procedure for calculating the field far()o
mu r is by combining Eq.

(5.10) and Eq. (5.11) and extending the 'n summation to all possible gN source grid

points for the chosen uniform grid. The result is the following representation

 far far
1

1

() (,) ,

(,)

gN
o p o s
m m n n

n
N s s

n n n nn

u G Q

Q q w

 


 









r r r

r r

 (5.12)

 Here, each nQ  has the meaning of the surrounding qN sources projected onto

a sparse grid point at s
nr via the second expression in Eq. (5.12). This projection fol-

lows the same logic and operation as in B-AIM, described in Section 4.3. These

134

projected sources are obtained by superimposing the original sources weighted with the

interpolation coefficients (,)s s
n nw r r to gN  grid points (with qN grid points for each

source nr) and zero padding to the remaining g gN N  grid points. Using uniform

grids and defining the summation in Eq. (5.12) for all gN grid points, this summation

can be calculated via FFT, which significantly reduces the computational cost. The

resulting cost of computing far()o
mu r via Eq. (5.12) is 1 2 logq g gc N N c N N (for every

iteration of an IE solver), including the cost of ()qO N N for computing nQ  and

(log)g gO N N for computing far()o
mu r . So, conceptually, the whole approach in Eq. (5.12)

is similar to the B-AIM, but it allows using much sparser grids whose density can be

independent of the density of the source distribution. Furthermore, the interpolation

coefficients for projections are available in closed form, which reduces the computation-

al cost and memory requirements.

 Approach 1 is more efficient for very small N . However, for most practical

cases Approach 2 is more efficient and it is therefore implemented in the rest of the

paper.

5.4.3 Stage 3: Evaluating faru at the actual observers

 The far-field field far()mu r at all N observers mr is obtained by interpolating

from the field far()o
mu r at the observation grid:

far far

1

() (,) ()
qN

o o o
m m m m

m

u w u 


 r r r r (5.13)

135

where (,)o o
m mw r r are interpolations coefficients similar to those for the source grid. The

computational cost of this stage scales as  qO N N .

 The choice of uniform Cartesian (source and observation) grids (see Figure 18)

allows using FFT to accelerate computations in both low- and high-frequency regimes.

The choice of uniform grids still allows for a seamless handling of non-uniform source-

observer distributions (e.g. ,n nq r in Eq. (5.12) and mr in (5.13) can have any distribu-

tion).

5.5 Computational complexity

 The computational complexity of FPIM can be split into the cost of the prepro-

cessing, to be evaluated only once for an iterative solution of fields, and the cost of the

field evaluation, to be done at every iteration. The preprocessing cost is given by

interpPGF gc N c N , where interpc is the cost of evaluating the interpolation coefficients

for a single source or observer. The cost of interpc scales as (1)O (assuming (1)q O),

whereas the cost of PGFc scales differently in the low- and high-frequency regimes. The

cost of field evaluation is dominated by the cost of Stage 2, which is given by

1 2 logq g gc N N c N N , where 1,2c are constants of (1)O .

 Below we detail the computational cost of FPIM for the low- and moderate-

frequency regime (D  or ~D ), high-frequency regime (D ), and mixed-

136

frequency regime. The low- and moderate-frequency regimes are met in the majority of

applications of periodic structures related to radiation, scattering, and propagation.

High- and mixed-frequency regimes may be important for certain antenna array prob-

lems and random problems, e.g. where periodic continuations can be used instead of

truncating the domain of interest.

5.5.1 Low- and moderate-frequency regime

 For the low-frequency regime the PGF and field vary slowly and the grids can

be very sparse with , , (1)q g gN N N O  , resulting in the computation cost of ()O N . The

total number of grid points gN and the number of required grid points gN  can be

chosen to be the same.

 The far-field Green’s function far(,)p o s
m nG r r at the sparse grids can be evaluated

using any available methods including simple spectral Floquet mode expansions (see

Appendix B) or any accelerated techniques. The Floquet mode expansions can be

efficient because the grids are chosen such that all the source-observer pair has suffi-

cient separation, under which Floquet expansions become rapidly convergent. For

example, the choice of the shifted Cartesian grids as in Fig. 2 assures that the minimal

transverse separation between the source and observation grid points is

min{ , , } 2x y z   . As a result, the far-field PGF far(,)p o s
m nG r r can be evaluated effi-

ciently with ()xO L x terms in the Floquet summation for the case of 1D arrays and

 () ()x yO L L x y  terms for 2D and 3D arrays. For the low-frequency regime, x
gN ,

137

y
gN , z

gN are of (1)O , resulting in the minimal source-observation grid points separation

of ()xO L . This separation means the cost of evaluating the PGF using simple Floquet

expansions will be a constant.

 Summarizing, the preprocessing cost in the low-frequency regime scales as (1)O

and the computation cost scales as ()O N . Because of the simplicity of operations, the

total absolute cost is very low as shown in Section 5.6. This cost remains unchanged for

any source-observer distribution, including volumetric and surface uniform and non-

uniform distributions.

5.5.2 High-frequency regime

 The high-frequency regime is typically defined such that the computational

domain size is electrically large, i.e. , ,, x y zD L  , and the source distribution is

smooth so that the number of source-observer points is 2(())N O D  or

3(())N O D  for surface and volumetric distributions respectively. For such high-

frequency problems, , , 2x y z     according to the Nyquist criterion and the

number of the grid points at which the PGF is computed is ()gN O N  . The prepro-

cessing cost is dominated by the PGF tabulation, which scales as ()PGFO c N . The

evaluation of PGF for the high-frequency case may be time consuming. Using the

Floquet summation approach in Appendix B, it can be shown that ()PGFc O D  for

1D arrays and 2(())PGFc O D  for 2D and 3D arrays. Taking into account the

relation between N , gN  , and D  , this preprocessing cost is significantly higher than

138

that of the low-frequency regime. Currently there are no available methods that can

reduce this cost. (Other available approaches either cannot be used for the high-

frequency regime or lead to the same or even higher cost.)

 The computation cost of the high-frequency regime is dominated by the first

summation in Eq. (5.12), which can be evaluated via FFT. The use of FFT requires

extending the grids to cover the entire volume around the structure, which results in

different computational costs for volumetric and general surface source distributions.

The resulting computation cost scales as (log)O N N for volumetric and quasi-planar

surface problems and it scales as 3 2
(log)O N N for general surface problems.

 As clear from the above discussion, the preprocessing and computation times of

FPIM in the high-frequency regime are higher than those in the low-frequency regime.

However, these times are still much smaller than those required for direct evaluation of

Eq. (5.1).

5.5.3 Mixed-frequency regime

 In the mixed-frequency regime, the source distribution is electrically large, i.e.

, ,, x y zD L  , but the distribution also is dense in at least some parts of the domain.

The FPIM procedure remains unchanged. The grid density is chosen as in the high-

frequency regime such that , , 2x y z     , resulting in 2(())gN O D   or

3(())gN O D   grid points at which the PGF is computed for surface or volumetric

139

source distributions, respectively. The number of grid points for a single interpolation is

(1)qN O .

 The preprocessing and computation costs can be obtained based on the costs

derived for the low- and high-frequency regimes. Specifically, the preprocessing cost

scales as ()O N D  for 1D arrays and 2(())O N D  for 2D and 3D arrays. The compu-

tation cost scales as 3(() log())qO D D N N   for all array types. These costs are

much lower than those for the direct field evaluation, and are significantly lower than

the cost of B-AIM. In particular, FPIM makes the low-frequency part of a mixed-

frequency problem much faster.

5.6 Results

5.6.1 Computational times in various frequency regimes

 FPIM was implemented in FORTRAN, compiled with Intel Fortran v11.1 at –

O3 optimization, and run on a desktop with Intel i7-920 2.66GHz CPU on a single core.

The source and observer grids are shifted Cartesian grids as shown in Fig. 2. The

interpolation was chosen to be Lagrange type with the order ranging from linear to

sixth. The parameter di in Eq. (5.5) was chosen as 1di  .

 We start by considering a 1D periodic array in free 3D space in the low- and

moderate-frequency regime. The periodicity of the array is 2xL  and the phase

140

shift wave number is 0 (1.2 0.01)xk j k  . The sources are distributed randomly in a

cube of edge length xD L . The results in Figure 19 (as well as Figure 20 and Figure

21) are similar for various arrays and source distributions, including surface distribu-

tions and other highly non-uniform distributions, as further demonstrated in Table 15.

 For the 1D array, we have implemented two methods to compute the PGF. The

first method uses the simple Floquet mode expansion given in Appendix B (the first

equation in Eq. (8.3)) while the other uses the fast hybrid spatial-spectral representa-

tion introduced in [164]. The Floquet summation method is efficient only for

sufficiently large source-observer separations transverse to the array axis. For small

transverse source-observer separations it converges very slowly, and it diverges on the

array’s axis for 1D arrays. As a result, the Floquet expansion method is unacceptable

for directly computing the summation in Eq. (5.1). However, it can be used efficiently

in FPIM as the minimal off-axis separation between the grid points is fixed. The alter-

native PGF representation of [164] is applicable to virtually any source-observer

separations near the array axis with very robust performance. Both approaches for

obtaining the PGFs are used and compared with each other. It is demonstrated that

FPIM is very efficient even with the simple Floquet summation, with computational

times comparable to those of finite (non-periodic) electromagnetic N-body problems.

 Figure 19 shows the time for computing the far field component faru using

FPIM and the direct superposition of Eq. (5.1) in the low-frequency regime. The times

141

are shown separately for the pre-processing and the computational stages. The pre-

processing stage is to be executed only once in an IE code, consisting of tabulating the

PGF at the sparse grids (Stage 1 in Section 5.4.1) and calculating the interpolation

coefficients (Stage 2 in Section 5.4.2). The computation stage consists of computing the

field at the sparse grid via Approach 2 of Stage 2 as in Section 5.4.2 and calculating the

field at the observers in Stage 3 as in Section 5.4.3. This stage is to be executed at

every iteration step for an IE solver. The number of source and observer grid points

was 512o sN N  and cubic (Lagrange) interpolation was used resulting in an RMS

error at the level of 310 .

 The computation time of the direct summation (dashed curve) and fast FPIM

(solid curve) scale as 2()O N and ()O N , respectively. The absolute time of the FPIM is

significantly smaller than that of the direct summation for all considered problem sizes.

For example, for 64N  , the speed-up is 87x and for 2N  million the computa-

tional time of the FPIM is 13 seconds and the speed-up is 1.9e7 (with the time of the

direct approach extrapolated to this large N). Practically, the obtained computational

time for the far-field is comparable to the time of evaluating the field for a conventional

non-periodic problem of the same size.

 The preprocessing times shown in Figure 19 for small N saturate at the lower

end due to constant time of tabulating the PGF on the sparse grids (Stage 1 in Sec.

5.4.1). As expected, this saturation time is smaller for the faster alternative PGF

142

calculation approach of [164] (dotted curve). However, even for the conventional and

simple Floquet summation approach (dash-dotted curve), this saturation time is very

small. For larger N the times are nearly the same for both approaches since the pre-

processing stage is dominated by the construction of the interpolation coefficients of

Stage 2 in Sec. 3.C, which is unrelated to the PGF evaluations. The preprocessing time

is smaller than the direct time at 80N  for the PGF computed as in [164] and

200N  for the PGF computed via Eq. (8.3) . The computational time is much

smaller for larger N . Moreover, there is no significant benefits of using faster methods

for the PGF when N is greater than only a few hundreds. Therefore, FPIM is very

efficient, even with simple Floquet mode summations for evaluating PGFs.

143

 Figure 20 shows the preprocessing and computation time for a linear array in

the high-frequency regime. As in Figure 3, the sources are distributed in a cube of

linear size xD L . However, the number of sources N scales with the electrical size of

the computational domain as 3(16)N D  , i.e. there are 16 sources per wavelength.

For D in the range from 0.5 to 8 the number of sources N is in the range from

512 to 2 million.

100 102 104 106 108
10-6

10-4

10-2

100

102

FPIM Computation
FPIM Preprocessing
Floquet Computation
Direct Computation

N

T
im

e,
 (

se
cs

)

O(N2)

O(N)

Figure 19 The preprocessing and computational times vs. N in the low-frequency
regime for a linear (1D) array with  0 1.2 0.01xk j k  . The sources are distributed
randomly in a cube of linear size / 2xD L   . The times for two different methods
for the PGF are shown, including the Floquet summation in Eq. (8.3) and the alterna-
tive (faster) approach of [164] . The number of grid points is 38gN  and the cubic
interpolation is used. The RMS error is 31 10 .

144

 To account for the variation of high-frequency fields, the number of the grid

points gN also scales with the domain size, as 3(12)gN D  . The increased number

of the grid points leads to a noticeable increase of the preprocessing time as compared

to that in the low-frequency regime in Figure 19. While being slower in the high-

frequency regime as compared to the low-frequency regime, FPIM is still significantly

faster than the direct method for all practical problem sizes. For example, the speed-

ups in Figure 20 are in the range from 24 for 4096N  to 2000 for 2N  million.

FPIM Computation
FPIM Preprocessing
Direct Computation

N

T
im

e,
 (

se
cs

)

Figure 20 The preprocessing and computational times vs. N in the high-frequency
regime for a linear array with 0 (1.2 0.01)xk j k  . The size of the computational do-
main varies from 2 to 8 and 3(16)N D  . The number of grid points is chosen as

3(12)gN D  . The PGF is computed via the Floquet expansion in Eq. The cubic
interpolation is used. The RMS error is 33 10 .

145

 Figure 21 shows the computation time in the mixed-frequency regime for a 1D

array on the x axis with a quasi-planar computational domain. As described in Section

5.5.3, in the mixed-frequency regime the size of computational domain is large but at

least a part of the domain contains a dense source distribution. In our simulations, the

computational domain size is 8 8 0.1    with 8xL  and the number of grid

points is 96 96 4gN    . Lagrange cubic interpolation is used in all dimensions. The

preprocessing time is almost a constant since the number of grid points is relatively

large and is determined by the large electrical size of the computational domain. The

computation times are nearly identical to those of the low-frequency regime in Figure

19.

146

 The results in Figure 19, Figure 20 and Figure 21 show that the FPIM is effi-

cient for problems in a broad range of frequencies.

5.6.2 Computational times for various kernels

 Table 15 shows the tabulation time for different kernels, in the low- and high-

frequency regimes. In the low-frequency regime (second column), the number of the

grid points is 64gN  and the array parameters are chosen as x y zL L L  and

FPIM Comp.
FPIM Prep.
Direct Comp.

N

Ti
m

e,
 (

se
cs

)

Figure 21 The preprocessing and computational times vs. N in the mixed-frequency
regime for a linear array. The array is oriented along the x axis with 0xk 
(1.2 0.01)j k and a quasi-planar source distribution. The size of the computational
domain is 8 8 0.1    . The sources are arranged in four identical horizontal layers in
the x y plane. In each layer, the source distribution is a combination of two set of
sources, including a number of 128 128 16384  sources, which represent the high-
frequency regime with the uniform source density determined by the source-to-source
separation of 16 , and a number of (65536) 4N  sources, which represent the low-
frequency regime with a density increasing as 1 ()xy towards the origin. The number of
grid points is 24 (12)gN D   and the cubic interpolation is used. The simple Flo-
quet expansion in Eq. (8.3) is used for the PGF. The RMS error is 33 10 .

147

0 0x yk k 0 0zk  . The sources are distributed randomly in a cube of size xD L

2 . The 1D PGF is computed via the alternative approach in [164] and via the

Floquet expansion in Appendix B (the first equation in Eq. (8.3) The 2D and 3D PGFs

are computed via the Floquet expansion in Appendix B (the second and third equa-

tions in Eq. (8.3) .All results are given for an RMS error at the level of 310 . In this

low-frequency regime the tabulation time is independent of N since gN is a constant

of (1)O . The obtained times are comparable for all considered PGF cases, and are

lower than the time of direct evaluation for the 1D case via the fast alternative method

of [164] for all practical problem sizes (with 100N ). Any direct methods for the 2D

and 3D arrays, including those using PGF acceleration techniques such as the Ewald

approach, will be even slower. FPIM is therefore efficient for all demonstrated kernel

types. For large N , the tabulation time is small compared to the computation time,

and the total cost is essentially the same for all kernels.

 In the high-frequency regime (last column in Table 15), the computational

domain size is a cube of size 4xD L   and the number of sources is 262,144N  ,

i.e. there 16 sources per wavelength as in Figure 19. The grid density is also as in

Figure 19. Here, the PGF tabulation time depends on N as shown in Figure 19; the

high-frequency results in Table 15 are therefore shown for the specific N . The 1D, 2D,

and 3D PGF are computed via the Floquet expansions in Appendix B, which in the

framework of the FPIM in this case are as efficient as (or even more efficient than)

148

other methods for evaluating the PGFs. It is found that the evaluation of the 2D and

3D PGFs in this high-frequency regime is slower than the evaluation of the 1D PGF.

The tabulation time for the high-frequency regime is significantly larger for all shown

kernel types as compared to the low-frequency regime. This is because of the increased

grid density and increased cost of the PGF evaluation. However, the obtained compu-

tational times for all kernels are much smaller than the times of the direct field

evaluation.

5.6.3 Computational accuracy

 Figure 22 shows the RMS error and computational time versus the grid density

for different interpolation orders q and number of grid points gN for 2D  . From

Figure 22 (a), it is evident that the error can be reduced by increasing the grid density

Table 15 The PGF tabulation time of different computational kernels.

Kernel Time (High-frequency) Time (Low-frequency)

1D alternative [164] N/A 4.6e-3

1D Floquet 4.2e2 3.6e-2

2D Floquet 1.4e3 1.2e-2

3D Floquet 8.9e3 7.9e-2

Results are shown for both the low-frequency regime (second column) and high-
frequency regime (last column) for the RMS error below 310 . For the low-frequency
regime, 2D  , 64gN  ; the tabulation time is a constant for a given accuracy since
the grid density is fixed for any N . For the high-frequency regime, 4D  ,

110,592gN  , 262,144N  ; the tabulation time increases with N .

149

and/or interpolation order. Such an increase leads to an increase of the computation

or/and preprocessing times. Figure 22 (b) depicts the computational and preprocessing

time for the 1D array with the PGF computed via the approach of [164] for

524,288N  . Increasing q increases both the preprocessing and computation time,

while increasing the grid density increases only the preprocessing time. From our nu-

merical experiments, we found that using cubic interpolation is often most beneficial in

terms of a trade-off between accuracy and computational time, hence the results in are

given with the cubic interpolation. In particular, cubic interpolation with an over-

sampling ratio  in the range 6 to 8 leads to the RMS error at the level of 310 for all

the cases in the paper (and for many other practical cases).

FPIM Computation
FPIM Preprocessing

T
im

e,
 (

se
cs

)

Interpolation order, q

Linear
Cubic
6-th order

R
M

S
er

ro
r

Number of grid points, Ng

22 24 26 28 210 212

(a) (b)

Figure 22 NGIM performance vs. the interpolation order and number of grid points for
a linear (1D) array with 0 (1.2 0.01)xk j k  . The sources are distributed in a cube of
liner size 2xD L   . (a) Error vs. the number of grid points for different interpola-
tion orders; (b) The preprocessing and computation time vs. the interpolation order for

524,288N  . The PGF is computed using the approach of [164].

150

5.7 Discussions on extended applications of FPIM

 The results in Section 5.6 are presented for 1D, 2D, and 3D rectangular arrays

in 3D free-space. However, due to the separation of PGF evaluation and interpolations,

the FPIM can handle several other array types, as long as smoothly behaved far-fields

can be obtained and the PGF can be calculated. Several possible problem types and

details of the FPIM for them are listed.

(a) Periodic 1D and 2D arrays in 2D free-space

 For free-space problems in two dimensions, the elementary sources are line

sources and the free-space (non-periodic) Green’s function is 0(,) (4)G jir r

(2)
0 (| |)H k  ir r , where (2)

0H is the Hankel function of second kind. FPIM will be

unchanged as described in Section 5.4, with a difference being that the PGF is defined

for 2D space and the interpolations are done in 2D. The PGF can be calculated either

using Floquet expansions or using alternative spectral and spatial representations [164].

(b) Periodic 1D and 2D arrays in metal wall waveguides

 Another type of problem that can be handled involves 1D or 2D arrays in a

parallel metal plate waveguide as well as 1D arrays along the axis of a metal wall

rectangular waveguide. Consider a parallel plate waveguide with metallic walls at

0y  and 2yy L . Inside this waveguide consider a 1D array of periodicity xL

along the x direction with a phase shift wavenumber 0xk or a 2D array of periodicities

151

xL , zL along the ,x z directions with phase shift wavenumbers 0xk , 0zk . Assume that

the boundary conditions for the field u and the Green’s function pwG at the walls are

of Dirichlet type, i.e.
0, 2 0, 2

0
y y

pwy L y L
u G

 
  . Using the image representation, the

Green’s function for the waveguide can be given in terms of a superposition of PGFs

for two arrays

      , , , 2 'pw p pG G G y  r r' r r' r r' y (5.14)

 For the 1D array in the parallel plate waveguide, pG is the PGF for the 2D

array in free space as defined in Eq. (5.14) with the phase shift wavenumbers

0 0, 0x yk k  . For the 2D array in the parallel plate waveguide, pG is the PGF for the

3D array in free space with the phase shift wavenumbers 0 0 0, 0,x y zk k k .

 The representation in Eq. (5.14) can be further extended to the case of a linear

array along the x direction that resides in a rectangular waveguide of a cross-sectional

size of 2 2y zL L with Dirichlet boundary conditions. For this case, the Green’s

function of the waveguide is given as

     

    
, , , 2 '

 , 2 ' , 2 ' '
pw p p

p p

G G G y

G z G y z

  

    

r r' r r' r r' y
r r' z r r' y z

 (5.15)

where pG is the PGF for the 3D array in free space with the phase shift wavenumbers

0 0 0, 0, 0x y zk k k  . Similar representations can be given for walls with boundary

conditions of Neumann type.

152

 From the representations in Eq. (5.14) and Eq. (5.15) it follows that the task of

evaluating the convolution in Eq. (5.1) for arrays in metallic wall waveguides is accom-

plished by superposing the results for periodic arrays in free space. Therefore, the

computational time results in Section 5.6 apply here as well (but they need to be

multiplied by a factor of 2 or 4 for the cases of parallel plate and rectangular cross-

section waveguides, respectively).

(c) Periodic 1D and 2D arrays in layered media

 Consider a 1D or 2D periodic array of unit cells above and parallel to a layered

medium. In this case, the PGF is given similarly to Eq. (5.2) but with 0G replaced by

the layered medium Green’s function given via the Sommerfeld integral [36]. FPIM can

proceed but several modifications may be required. In particular, the layered medium

Green’s function may need to be regularized to result in slow spatial variations, e.g. by

extracting its quasi-static components. Further details on such regularizations are given

in [163]. In addition, the translation invariant property should be defined with respect

to the image of the unit cell defined relative to the layered medium top interface. Once

such a Green’s function is obtained, FPIM remains mostly unchanged.

 The situation is somewhat more complicated for unit cells embedded within a

multilayered medium, in which case PGF may lose the translation invariant property.

This may result in a higher computational cost for tabulation and interpolation. These

requirements are similar to those reported in recent works [163], where interpolations

153

were used to compute PGFs for layered media. Methods developed in these works can

be used here as well. Further research is required to fully implement these ideas for

general periodic layered media problems.

5.8 FPIM on GPUs

 Implementing FPIM on GPUs would be very similar to B-AIM without the

near-field correction stage. The near-field component of the FPIM can be separated

accelerated by either B-AIM or NGIM and the far-field component consists of projec-

tion, FFT transformation and interpolation. The computational time and accuracy

behavior would be very similar to those of B-AIM.

 The results of GPU FPIM is shown in the Table x, and Figure x. The speed-ups

are around 150x for sufficiently large problems. This speed-up is similar to what GPU

B-AIM provides while accelerating the CPU sequential B-AIM.

154

5.9 Summary

Table 16 Computational time for FPIM on CPUs and GPUs

N CPU
Direct

CPU Prepro-
cessing

CPU
Execution

GPU Prepro-
cessing

GPU
Execution

Speed-
up

212 3.54e+02 4.54E-01 2.12E-02 8.90E-01 1.17E-03 18.1

215 2.26E+04 6.88E-01 1.75E-01 3.07E+00 1.93E-03 90.6

218 1.45E+06 9.23E+00 1.83E+00 1.19E+01 1.16E-02 157.7

220 2.32E+07 1.31E+01 7.65E+00 4.83E+01 5.28E-02 144.9

The time shown in the table is in seconds. The CPU version of FPIM is sequential
running on a single core of Intel i7-920 CPU. The GPU version runs on NVIDIA
Geforce GTX 480 GPU. Only far-field computational time is shown in this paper.

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

1.E+07

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

CPU Direct
CPU
GPU

Figure 23 The computational time of FPIM on CPUs and GPUs. The execution
times are shown and compared to the CPU direct evaluation time. The asymptotic
complexity of FPIM decreases from  2O N to  logO N N and the speed-ups are
around 150x for problems larger than approximately 30 K.

155

 We have presented a FPIM for the rapid evaluation of electromagnetic potential

field at N observers generated by N sources in a general periodic unit cell. FPIM is

based on splitting the field into its near- and far-field components. The near-field

component represents the field generated by a finite number of sources in and around

the prime cell. This component can be evaluated rapidly using any hierarchical or FFT-

based method. The far-field component of the field, which has slow spatial variations

within the unit cell, is found via three steps: tabulating the PGF at sparse source and

observer grids, using these tabulated PGFs to calculate the field at a sparse observation

grid, and interpolating from the observation grid to the actual observers. In the low-

and moderate frequency regimes, i.e. for small and moderate periodicities, FPIM has

the computational cost of ()O N with (1)O evaluations of PGF. In the high- or mixed-

frequency regimes, i.e. for electrically large computational domains with dense source

constellation regions, FPIM has the computational cost scales of

3(() log())qO D D N N   with ()O N evaluations of the PGF.

 The innovations brought by FPIM are summarized:

1) The computational time of FPIM is much smaller than that of the direct evalu-

ation. Significant speed-ups over the direct method are obtained, starting from

N as small as 60 and up to any limit determined by the available memory (e.g.

sizes up to 2N  million are shown in Sec. 5.6). This performance is obtained

156

for a wide range of source-observer distributions, including volumetric and sur-

face distributions that can be uniform and highly non-uniform.

2) The PGF evaluations in the FPIM can be done via any existing method. In

many practical cases, simple spectral Floquet expansions can be used. This

makes implementing complicated acceleration techniques for the PGF evalua-

tion unnecessary.

3) The method is kernel (i.e. PGF) independent, and the preprocessing and field

evaluation stages are completely separated. Therefore, FPIM can handle many

problem types, which a certain type of PGF is available, including arrays in free

space, metal wall waveguides, and layered media. The reason is that only the

first step of the algorithm (PGF tabulation) in Section 5.4.1 is kernel dependent.

Once the PGF is tabulated at a sparse grid, the rest of the algorithm remains

mostly unchanged.

4) FPIM is simple to implement and can be incorporated into existing IE solvers,

provided a conventional fast code for the near-field field evaluation is available.

5) GPU acceleration of FPIM is very similar to B-AIM and much simpler as the

most time-consuming near-field correction stages in B-AIM is unnecessary for

FPIM.

 FPIM can be used to accelerate IEs for various periodic unit cell problems with

many applications in the microwave engineering and optics, including frequency-

157

selective surfaces, artificial impedance surfaces, periodic leaky wave antennas, periodic

grating filters and couplers, waveguides, and photonic bandgap structures.

5.10 Acknowledgement

 This chapter is a reprint, with some minor modifications, for the clarity reasons,

of the materials appeared in

• S. Li, D. A. Van Orden, and V. Lomakin, “Fast periodic interpolation method

for periodic unit cell problems,” Antennas and Propagation, IEEE Transactions

on, vol. 58, no. 12, pp. 4005-4014, 2010.

158

6 Electromagnetic and micromagnetic simulators on GPUs

6.1 The micromagnetic simulator (FastMag)

 The micromagnetic simulator that utilizes the fast methods described in Chap-

ter 4 for field evaluation is called FastMag [31]. FastMag takes various kinds of meshes

that model the geometries of objects. Meshes may consist of tetrahedrons or hexahe-

drons for general-purpose simulations or various other elements such as Voronoi cells,

for specialized granular magnetic recording media simulation. The solver is modular, so

different third-party function units can be added or removed from the solver with ease.

It uses the CUBIT meshing application for mesh generations, open source CVODE

package to do the time integration, and Paraview for post-processing and visualizing

results. The arrangement and relations between components is shown in the Figure 24.

159

 FastMag is distinct in that it has a very high computational performance and it

can handle complex and realistic magnetic devices and systems. An important compo-

nent enabling the high performance of FastMag is the use of GPUs to overcome a

number of computational bottlenecks [30, 31].

 Fastmag has been used to design advanced magnetic recording systems [49] as

well as investigate complex physical phenomena inside magnetic materials [111-113]. e.

g. a magnetic recording head meshed to approximately 126 million tetrahedrons could

be simulated [31]. Here we listed several sample micromagnetic simulations that have

been run on the platform and performance the solvers achieve.

6.1.1 Large scale bit patterned media array simulations

Magnetization M

Magnetostatic Field
• GPU NGIM / GPU B-AIM

Right-hand Side

Anisotropy / Applied Field
• GPU

Exchange Field
• GPU SpMV

FastMag
Tetrahedron Mesh Hexagonal Mesh

 
 

2 21 1 sM

 

 
    

 
eff effM H M M H

CVODE

Figure 24 Block diagram of FastMag. The meshing and visualization component
are third-party open source packages.

160

 Table 17 demonstrates the performance of the FastMag micromagnetic solver

on bit patterned media array simulations. In this series of simulations, a large number

of cubic magnetic elements staggered to form a large planar array. Each of the magnet-

ic elements are of single layer with the average saturation magnetiza-

tion 700 emu ccsM  , anisotropy field 25kOeKH  , lateral length 12nmw  . The

array has inter-element spacing 12b nm and parameter fluctuation of 15%
KH 

and 10%b  . FEM-based solver might have reduced efficiency while tackling this

kind of problems because because of many surface nodes, whereas finite difference

based solvers would reduce the efficiency because of the white space between the array

elements. Moreover, the problem is stiff, so that efficient implicit time integration

techniques are required. However, since FastMag evaluates long range magnetostatic

fields using integral equation methods and uses implicit time integration methods, so it

handles this structure efficiently.

Table 17 The computational times of the bit patterned media array simulation

Array size Number of tetrahedron
Time

(System 1)

Time

(System 2)

20x20 14.4K 5e-3 s 1.1e-2 s

200x200 1.44M 0.284 s 0.573 s

300x300 3.24M 0.560 s 1.29 s

800x800 23.04M N/A 9.35 s

1600x1600 92.16M N/A 40.8 s

161

 Computational times shown in Table 17 are those required to progress one time

step in our ODE solver. The system 1 is a workstation with Intel i7-920 CPU and

NVIDIA Geforce 480 GPU. The system 2 is a workstation with Intel Xeon X5482 CPU

and NVIDIA TESLA C1060 GPU. The larger graphics memory available on the TES-

LA board extends the capability of our FastMag solver close to problems with 100M

tetrahedron.

6.1.2 Magnetic recording head simulations

 We have also tested our FastMag solver on objects with more complex geomet-

ric shape, such the magnetic recording head. Figure 25 (a) shows a typical structure of

a magnetic recording write head. It is a very challenging task to simulate the dynamics

in a recording head as the size of the geometric features varies greatly across different

parts.

 Differences in the magnetization dynamics are found using meshes with different

discretization rate. For example, the maximal recording fields generated by the head

are shown to be lower than actual field if the coarsest mesh is used. Proper discretiza-

tion is also required to reveal the interaction between the shields (the gray component)

and the soft under layer (the magenta component) [49].

162

6.2 The electromagnetic simulator

 The electromagnetic solver in the author’s research group follows a similar

structure as other iterative integral equations solvers using the GMRES iterative algo-

rithm. The solver has several revisions, using different basis functions such as RWG

basis for surface problems or SWG for volumetric problem and may solve for different

unknown sources, fields or potentials. The electromagnetic solver utilizes the fast meth-

ods discussed in Chapter 4 for field evaluations, so it runs much faster than its

sequential counterparts on CPUs. The small memory footprint of NGIM also gives the

5 mµ

3 mµ

5 mµ

31270emu cmsM =

31580emu cmsM =

(a) A typical magnetic write head

(b) Time used to simulate the
dynamics inside the head with
different discretization

Largest
element

of
tetrah.

Time
per 1 ns

130 nm 130 K 1.75 min

57 nm 1.2 M 17 min

33 nm 4.8 M 107 min

10 nm 126 M ~3 days

Figure 25 (a) Model of a state-of-the-art magnetic recording head and its geo-
metrical dimensions. (b) The computational time for 1 nanosecond of simulation
time using different meshes.

163

solver ability to handle problems with millions of degrees of freedom or problems in

high-frequency domain on a desktop workstation. This solver can also handle periodic

problems utilizing the FPIM discussed in Chapter 5. In this section, the author would

also like to show several example simulations and the performance of the solver. In all

examples, the simulations were done on the same desktop computer as in Section 6.1,

with Intel i7-950 CPU, 24 GB of system memory and NVIDIA GeForce GTX 570 GPU

with 1.2 GB of global memory.

6.2.1 Scattering from free-standing spheres

 Figure 26 shows the radar cross-section (RCS) of a free-standing sphere of

diameter D and permittivity 14 8j at the wavelength / 3.8D  . RCS obtained

via the Mie scattering approach and via the volumetric integral equations accelerated

by GPUs using B-AIM are shown and compared. The number of Mie series terms was

chosen to achieve a full convergence. The number of SWG basis functions was

1,320,198. The process of solution contains 174 iterations with a 1e-2 RMS convergence

error. The preprocessing time was 9 seconds and the solution time was 36.7 minutes.

164

6.2.2 Scattering from human upper body

 Figure 27 demonstrates the performance of the solver on human body scattering

problem. In Figure 27, current density is shown on a highly detailed human body being

exposed to incident EM waves. The permittivity of human tissue is 15 10j . The

mesh resolution in the left sub-figure is 4 mm which leads to 1.3M tetrahedrons and the

right sub-figure has 2 mm resolution leading to 8.4 tetrahedrons. The incident wave is a

plane wave coming from the top with a wavelength of 0.2 m. The figure shows the real

0 20 40 60 80 100 120 140 160 180
-30

-20

-10

0

10

20

30

θ (degree)

R
C

S
(d

B
S

W
)

Mie
MOM

Figure 26 The RCS of a free-standing sphere. The red curves are generated using
the IE solver with GPU accelerated fast methods.

165

part of the x-component of the current. The results were compared against those from

other EM solvers with different basis functions and variables. The simulation involves

around 100 iterations. The smaller problem takes about 10 minutes and the larger

problem takes about 48 minutes.

6.2.3 Scattering from periodic meta-materials

 The volume integral equation solver shown above also works for problems with

periodic boundary conditions using appropriate Green’s function and acceleration

schemes.

Mesh 1: Num of tetrahedra: 1.3M
4mm resolution
λ = 1.67m, εr = 41.4 – j18

Mesh 2: Num of tetrahedra: 8.4M
2mm resolution
λ = 1.25m, εr = 41.4 – j18

|Jx| |Jx|

Credit : Human meshes provided by Prof. Ali Yilmaz,
http://web2.corral.tacc.utexas.edu/AustinManEMVoxels/

inc. wave
x polarization

inc. wave
x polarization

xy

z

Figure 27 Electrical current distributions along x axis on human body excited by
an incident wave above the head.

166

 Figure 28 shows the reflection coefficients of a doubly periodic array consists of

dielectric cubes, illuminated by a normal incident wave along the z-axis. Each unit cell

comprises a cube of size 1mm and is made of material of the permittivity 4. The total

number of basis functions for this structure is 309,741. From the figure we can observ-

er an obvious resonant behavior around / 1.07xd  , which is a typical Wood

anomaly property of periodic gratings [173]. The total computation time of the VIE

solver was 50 min per data point using 450 iterations plus the preprocessing.

 Finally, Figure 29 shows a larger scale simulation of a doubly periodic structure

with a complex unit cell comprising multiple split ring resonators; such structure can

0.9 0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

R
ef

le
ct

io
n

C
oe

ffi
ci

en
t

λ/dx

VIE-PGF

2.5mm

2.5mm 1mm

x
y

z
…

Figure 28 The normal reflection coefficient of a doubly periodic array. The Wood
anomaly is achieved around / 1.07xd 

167

be used as an isotropic negative index meta-material. It has a permittivity of

4.06 2.48j  , which is a very popular topic in both academic and industrial world

nowadays. The number of iterations required to generate a single data point in this

figure is around 11. The total time to generate a data point is about 6 minutes with the

preprocessing time included. Again a resonant behavior is observed in agreement with

anticipated behavior.

6.3 Acknowledgement

 Chapter 6 contains results, figures and tables from:

0.9 0.95 1 1.05 1.1
0.01

0.015

0.02

0.025

0.03
R

ef
le

ct
io

n
C

oe
ffi

ci
en

t

λ/dx

PGF-VIE

Figure 29 The reflections coefficient of a doubly periodic metamaterial structure

168

• M. A. Escobar, M. V. Lubarda, S. Li, R. Chang, B. Livshitz, and V.

Lomakin, “Advanced Micromagnetic Analysis of Write Head Dynamics Us-

ing Fastmag,” Magnetics, IEEE Transactions on, no. 99, pp. 1-1, 2012.

• R. Chang, S. Li, M. Lubarda, B. Livshitz, and V. Lomakin, “FastMag: Fast

micromagnetic simulator for complex magnetic structures,” Journal of Ap-

plied Physics, vol. 109, no. 7, pp. 07D358-07D358-6, 2011.

169

7 Micromagnetic simulations of advanced magnetic record-

ing media and systems

 In this chapter, we show several important simulations done using our micro-

magnetic solvers. In Section 7.1, simulations are used to investigate physical

phenomena within a newly proposed bit patterned media (BPM) configuration, called

the capped bit patterned media (CBPM). CBPM is thought to have multiple ad-

vantages over BPM with fully uncoupled elements and are being investigated by both

simulations and experiment [25, 58, 112, 113]. In Section 7.2, a proposed new recording

system that uses ferromagnetic resonance to switch magnetic recording materials with

high anisotropy is proposed and investigated. This magnetic recording system is called

microwave-assisted magnetic recording (MAMR) and it is considered as one of the

energy-assisted recording schemes that can extend the limit of aerial recording [19, 95,

97, 170, 171, 181].

7.1 High density capped bit patterned media

7.1.1 Introduction

 Bit patterned media (BPM) comprise arrays of separated magnetic islands.

They are expected to provide solutions to the superparamagentic effect [159, 169] that

physically limits the magnetic recording density of modern hard disk drives. The array

170

elements of BPM can be made of different materials and in different geometric shapes.

For example, exchange-coupled (composite) elements may be used to achieve reduced

reversal fields while keep the energy barrier the same [151, 156]. However, this array of

closely situated discrete islands made of magnetic material inevitable introduces signifi-

cant stray field, which increases the switching field distribution (SFD) across the

islands. These distributions lead to bit-errors and can significantly limit the BPM

recording densities [1, 72, 142]. In addition, the stray fields lead to a significant loss of

the thermal stability.

 In this section, we describes a BPM configuration that consists of an array of

hard elements and a continuous soft layer, referred to as a “cap layer”, which is placed

at the bottom of the array and is ferromagnetically coupled to the array’s elements

through their common interfaces (Figure 30) [58, 96]. The motivation to introduce this

structure is to use the exchange interaction in the soft cap layer to counter the magne-

tostatic interaction between the hard elements thus reducing the distributions of the

switching fields as well as improving thermal stability. This concept is conceptually

similar to coupled continuous-granular (CGC) perpendicular recording media [122, 153].

7.1.2 Structure configuration

 The CBPM comprises hard elements that are arranged into an array and are

coupled to a continuous soft layer with a surface energy sJ through the common

interfaces. The hard elements have a vertical uniaxial anisotropy of energy density hK ,

171

length xa , width ya , and thickness ht . The cap layer has thickness st and is assumed

to be perfectly soft. All materials have a damping constant , saturation magnetiza-

tion sM , and exchange length . ex sl A M w  . with A the exchange constant. The

spacing between the hard elements in the BPM array is B . The geometric structure is

shown in Figure 30

 The switching behavior of the media is simulated with an applied field ex-

pressed as   2 / cos sinext aH H erf t     y x . This field is applied with an

angle to the vertical axis to simulate the field off the edge of a recording head pole.

The reversal field rH is defined as the threshold field that switches magnetization in the

hard elements from the initial y to the -y direction.

ax

ay

B Js Ms, Kh

th

ts

Figure 30 The geometrical structure of CBPM. The structure is shown as a two-
dimensional periodic structures.

172

 The switching fields of the CBPM structure are studied by numerically solving

the Landau-Lifshitz-Gilbert equation with discretization chosen to obtain convergence.

In all simulations,
31250 emu/cmsM  and 611.25 10s hJ t  , 0.1ns  ,

60 kOeKH  . The damping constant varies in the range between 1  and 0.1  ,

which with a chosen field rise time  corresponds to damping and precessional reversal

regime, respectively [104, 105]. To exemplify the operation of the proposed structure,

we considered an array of three hard elements arranged into a linear array and coupled

to continuous cap layer.

7.1.3 Switching field distributions

 We did a series of simulations to test our hypothesis that the continuous cap

layer can compensate the magnetostatic interaction. Figure 31 shows the switching field

as a function of inter-element spacing for three different types of BPM. The solid line is

obtained when the initial magnetization in three hard elements is set to be in the same

direction (i.e. parallel configuration) and the dash line is obtained when the initial

magnetization of the center element is opposite to the neighboring elements.

 As expected, due to magnetostatic interactions, the reversal fields are smaller

for the parallel configuration and the gap between the reversal fields in the two scenar-

ios decreases with increasing element separation. This gap can be significant for smaller

separations between the elements and restrict the achievable recording densities due to

173

the resulting reversal field distributions and inability to provide a proper writing win-

dow.

However, the reversal field behavior is very different for the CBPM. From Figure 31 (c),

it can be seen that for this specific setting, rH is larger under the opposite configura-

tion when the separation is small. This behavior, which is opposite to that seen in

Figure 31 (a) and (b), is a manifestation of the influence of exchange interactions

through the cap layer. The exchange field tends to align nearby spins in the same

direction and transfers this influence to the hard elements via their ferromagnetically

coupled common interfaces. This exchange influence reduces with increasing separations

and a balancing point can be found where there is no distribution of the reversal field is

present. For the scenario shown in Figure 31 (c), this is achieved at () / 1B w w  .

For larger separations, some distribution is present, but this distribution is much

smaller than that of the disconnected (homogeneous and composite) arrays.

174

 The behavior of the reversal curves, the balancing point, and the distributions

of the reversal field can be tuned by carefully choosing the structure parameters. In

addition to the coupling strengths and layer thickness, and we have also considered the

10%+10%+

10%−10%−

00

10%+10%+

10%−10%−

00

10%−10%−

00

1.6%1.6%

3.3%3.3%

00

0 0.5 1 1.5 2
0.48

0.49

0.5

0.51

0.52

(B-w)/w

H
r/H

k

0 0.5 1 1.5 2
0.26

0.28

0.3

(B-w)/w

H
r/H

k

0 0.5 1 1.5 2

0.3

0.32

0.34

(B-w)/w

H
r/H

k

0 0.5 1 1.5 2
0.48

0.49

0.5

0.51

0.52

(B-w)/w

H
r/H

k

0 0.5 1 1.5 2
0.26

0.28

0.3

(B-w)/w

H
r/H

k

0 0.5 1 1.5 2

0.3

0.32

0.34

(B-w)/w

H
r/H

k

10%+10%+

opposite configuration

parallel configuration

opposite configuration

parallel configuration

opposite configuration
parallel configuration

opposite configuration
parallel configuration

B

w

www

opposite configuration
parallel configuration

B
www

w/2
w/2

B
www

www

B

w/2

w/2

w/4

w/4

1.6%

3.3%

0

(a)

(b)

(c)

Figure 31 Normalized reversal field /r kH H vs. the hard element spacing

  /B w w for three BPM structures and two magnetization configurations for
each structure.

175

influence of a finite anisotropy in the soft capping layer. The details can be found in

Ref. [96] and the obtained behavior was qualitatively similar with some quantitative

differences. In addition, we studied the CBPM in the regime of precessional reversal,

which is obtained for under sufficiently short (but practical for the composite elements)

rise times [96]. Similar compensation phenomena were obtained apart from an addi-

tional reduction of the reversal field associated with precessional mechanisms. Again,

there are only quantitative differences. So as summary, for all consider CBPM, availa-

ble “knobs” for tuning the balancing point includes sJ , st and the anisotropy of the

capping layer.

7.1.4 Readback process

 In addition to altering the writing process the introduction of the capping layer

is also expected to affect the readback signal. The readback signal was calculated using

reciprocity and approximate expressions for the head field [96]. We find pronounced

differences for CBPM with the capping layer on the top and at the bottom of the hard

element array and for different bit separations.

 Figure 32 shows the readback voltage of a interleaved bit pattern of six ele-

ments for a conventional composite (dual-layer) media, CBPM with capping layer on

top, and capped media with capping layer at the bottom (“reverse cap”). For conven-

tional composite media, the readback signal is nearly insensitive to whether the soft

section on the top or at the bottom.

176

-5 0 5 10 15
-20

-15

-10

-5

0

5

10

15

20

x/w

V

Cap Media
Inverse Cap Media
Composite Media

-5 0 5 10 15
-15

-10

-5

0

5

10

15

x/w

V

Cap Media
Inverse Cap Media
Composite Media

g

(a)

(b)

shield shield

read sensord

Figure 32 The readback signal of an interleaved bit pattern from a double shielded
reading head (shown in inset), for three different material structures: conventional
patterned media, the “cap” media and the “inverse cap” media. The spacing between
the elements in (a) is the same of the hard element width; (b) 60% of the hard
element width. The parameters of the read head defined in the inset are hd t ,

0.4 ht t , 1.5 hg t

177

 For bit spacing greater than 2B w (2B w in Figure 32 (a)), the readback

signals for all considered cases are similar with some differences at the left and right

edges. For smaller spacing between the elements (1.6B w in Figure 32 (b)), the

readback signal decreases noticeably for the CBPM with the capping layer on top. This

is due to the broadening of signal by the soft layer. For the inverse cap media, the

readback signal slightly increases with the approximately the same transition width.

Putting the soft layer away from the head might increase the minimal switching field

so optimal medium parameters should be found as a trade-off between read-and write-

field requirements.

 Finally, it should be mentioned that the capping layer does not directly intro-

duce transitional noise as in conventional granular media since it is assumed to be

made of perfectly soft continuous material. However, noise can be introduced by distri-

butions of the hard elements’ position, material properties, and shape as in

conventional BPM.

7.1.5 Summary

 In this section we introduce a CBPM configuration that comprises an array of

hard elements coupled to a continuous soft layer. There are three benefits brought by

this additional layer of soft material. While it substantially lowers the switching field, it

also provides a mechanism of to compensate the effects of magnetostatic field interac-

tions between the array elements. Optimal structure parameters can be chosen to

178

minimize the distributions of switching field brought by the different magnetization

states in a BPM array. This can allow for lower bit-error rates and can improve the

BPM performance. The readback signal is not noticeably degraded compared to con-

ventional media.

7.2 Microwave assisted magnetic recording

7.2.1 Introduction

 A major limitation to the continued evolution of high-density magnetic record-

ing is the superparamagnetic effect, which leads to spontaneous reversal when magnetic

particles become too small [159, 169]. Overcoming the superparamagnetic effect requires

using materials with increase thermal stability which is often achieved through in-

creased anisotropy. However, high anisotropy often translates into excessively high

reversal fields, which are hard to achieve using a traditional recording head. Several

methods including heat-, precessional-, and microwave-assisted magnetic recording

schemes have been proposed to solve this writability problem [105, 115, 145, 158, 181].

Microwave-assisted magnetic reversal (MAMR) significantly reduces the reversal field

when the microwave field frequency matches the ferromagnetic resonance (FMR)

frequency of the media elements [149, 157]. Applying this MAMR scheme on ECC

media would further pushes the limit of anisotropy of materials that we can write to. In

179

addition to solving the writability and thermal stability problems, exploiting the reso-

nant properties of the reversal fields may also suggest novel approaches for high density

magnetic recording.

 In this section, we show result for MAMR in composite media comprising

magnetic elements composed of soft and hard sections coupled ferromagnetcally. Such

composite elements have been recently shown to be attractive for magnetic recording

due to their reversal and thermal stability properties [53, 156, 166]. We show that

composite elements have several unique properties important for MAMR. Composite

elements with high anisotropy hard sections can be reversed with relatively low reversal

fields, microwave fields, and microwave frequencies. We demonstrate that reversal field

dependences in composite elements are completely different in the regimes of coherent

and incoherent (domain wall) reversal and reversal dynamics may exhibit surprising

behaviors. In addition, we show that fluctuations of the reversal fields caused by fluc-

tuations of the hard layer anisotropy field are substantially reduced compared to those

for homogeneous elements. Finally, we also show that MAMR schemes can be used for

multilevel recording, in which each layer has a distinct FMR frequency and is ad-

dressed by tuning the microwave frequency.

7.2.2 Experiment configuration

 The elements investigated comprise exchange-coupled soft (top) and hard

(bottom) sections (see the inset in Figure 33). The (bottom) hard section is of size

180

, , hw w d in the , ,x y z dimensions, with vertical uniaxial anisotropy energy density hK .

The (top) soft section is of size , , sw w d with vanishing anisotropy. Both sections have a

damping constant 0.1  , saturation magnetization sM , and exchange length

ex sl A M where A is the exchange constant. For all presented results in the

following sections, 610 erg cmA  , 0.1  , 31250 emu/cmsM  and 0.1ns  .

The sections are coupled ferromagnetically over their common interface with surface

energy sJ . An external magnetic field simultaneously comprises a switching field and a

microwave field. The switching field is applied with an angle o45 to the vertical (z)

axis in the x z plane and it has the time dependence  erf 2rH t  , where rH is the

reversal field and  is the switching field rise time. The microwave field is applied

along the x axis and it has an amplitude mwH and frequency mwf . For given mwH and

mwf , there is a minimal bias field amplitude, referred to as reversal field rH , that leads

to the reversal of the element over a reversal time rt .

 All results are obtained by numerically solving the Landau-Lifshitz-Gilbert

equation as described in Section 2 with discretization chosen to obtain full convergence.

More simulations with a wide range of  ,  , and sJ were also done but leads to very

similar results so are not shown in this thesis. For example, a bit patterned media with

pitch of 8nm and 5nmhw d  results in a recording density of 210Tbit in with

thermal stability above 70 Bk T with the Bolztman constant Bk and temperature

181

400T K . The chosen parameters are representative of practical materials for high-

density recording, such as FePt.

7.2.3 Reversal mechanism for homogeneous and composite media

 First, we compare rH , mwH , and mwf for homogenous elements and composite

elements with different thickness of the soft layer. Figure 33 depicts rH vs. mwf for

different type of BPM dots with the same hard layer (60kOeKH  , 1.5ht w) but

different soft layer. The reversal field dependences for all elements exhibit deep minima.

The homogeneous element and composite element with a thin soft section exhibit a

typical behavior attributed to MAMR, i.e. resonant curves with deep minima are

obtained and reversal occurs for any values of aH greater than the reversal field rH

(this is visualized by the shadowed areas Figure 33). For the composite element with a

thicker soft section, the behavior is completely different. For this type of dots, reversal

is only possible in a certain areas in the a mwH f plane. Two areas are observed. The

top area is the same obtained without any microwave field. The bottom (relatively

small) area only exists under microwave field and exhibits resonant properties. Surpris-

ingly, there is a gap between these two areas in which no reversal occurs.

182

 From the Figure 33, we can also see the reduction of resonance frequency when

the thickness of the soft layer increases. This is due to the different resonant mecha-

nism in respective types of media. For homogeneous elements, the FMR frequencies

are determined mainly by the anisotropy field KH , but for composite elements, the

FMR frequencies are determined by the properties of the soft layer and the inter-layer

coupling field, which is smaller than KH , thus leading to FMR frequency reduction. For

thick composite elements with layers thicker than the domain wall length, the reversal

in the soft layer is incoherent. The reversal starts in the top part of the soft section and

50 100 150
0

5

10

15

20

25

30

H
r(k

O
e)

 f (GHz)
14 16 18 20 22 24
0

5

10

15

20

25

30

H
r(k

O
e)

 f (GHz)

ts=1.5w

homogeneous

ts=0.75w(a) (b)

st

ht
w

sJ
hard

soft

fmw, (GHz) fmw, (GHz)

H
r,

(k
O

e)

Figure 33 Reversal field vs mwf for different elements with the coercivity
60kOeKH  , damping constant 0.1  , exchange field 1.6exl w and thickness

of the hard layer 1.5ht w . For the composite elements, in (a) the amplitude of
microwave 0.05mw KH H , the thickness of the soft layer 1.5st w ; in (b)

0.07mw KH H , 0.75st w . Gray areas represent the conditions under which the
reversal occurs.

183

then a domain wall is formed in the soft section. The domain wall propagates though

the soft and subsequently through the hard section. The resonant frequency in this case

is mainly determined by the external field with the exchange field. These two fields are

much smaller than the anisotropy field KH thus leading to a significant FMR frequen-

cy reduction. In addition, since the influence of ferromagnetic coupling through

common interface is weak on the spins in upper part of soft layer, they can be easily

switched under a weak bias field resulting in a lower reversal field. Time evolution of

the spins in the two regimes is shown schematically in Figure 34 (a), (b), and (c).

184

7.2.3 Reversal mechanism for homogeneous, composite media

 The performance of the MAMR system may be restricted not only by the

limitation on maximally achievable head fields and microwave frequencies but also by

deviations of the reversal field rH caused by random distributions of the element

(a)

(b)

(c)

Figure 34 Schematic representation of the spin time evolution in the regime of (a)
uniform and (b) non-uniform (microwave assisted domain wall) reversal. In (c), the
thickness of soft layer is too large that the domain wall stops before move into hard
layer.

185

parameters. Among them, random distributions of the anisotropy field KH can have a

crucial influence as they may lead to significant deviations of res
mwf and rH . For homo-

geneous elements, deviations of res
mwf scale proportionally with deviations of KH , but

for composite elements, this deviation of res
mwf with respect to KH might be alleviated.

 Figure 35 compares the dependence of rH versus mwf and KH for composite

elements of different st and a homogeneous element. For the homogenous element

(shown in Figure 35(b)), res
mwf is proportional to KH , e.g. 10% deviations of KH lead to

about 10% deviations of res
mwf . Deviations of rH are substantially more significant, e.g.

10% deviations of KH lead to more than 50% deviations of rH . The situation is very

different for composite elements, where deviations of rH and res
mwf are substantially

reduced and the area of reversal of these two cases overlap with each other for a major

part on the phase graphs. For the composite element with 1.5st w , deviations of res
mwf

are only 3% for 10% deviations of KH , which represents a five-fold improvement over

the homogeneous element. The reduction of the deviations of res
mwf has a physical source

similar to that leading to the reduction of res
mwf itself, i.e. res

mwf are significantly affected

by the soft section where the field is mostly given by the external and exchange fields

but not by KH . This significant improvement correlates with results obtained for

conventional domain wall assisted reversal. Due to the potential improvements to bit

error rates, this insensitivity to the anisotropy field distribution is a crucial advantage

of composite elements over homogeneous elements.

186

 It is important to mention that the advantages of the composite elements are

obtained without compromising the thermal stability. The maximally achievable energy

barrier for the given cross-section is determined by the hard section height ht related to

18 20 22 24 26
0

5

10

 f (GHz)

H
r(k

O
e)

Hk=60 kOe
Hk=66 kOe

20 30 40 50 100 200

5

10

20

H
r(k

O
e)

 f (GHz)

Hk=60 kOe
Hk=66 kOe

18 20 22 24 26
0

5

10

 f (GHz)

H
r(k

O
e)

Hk=60 kOe
Hk=66 kOe

20 30 40 50 100 200

5

10

20

H
r(k

O
e)

 f (GHz)

Hk=60 kOe
Hk=66 kOe

(a)

(b)

fmw, (GHz)

H
r,

(k
O

e)
H

r,
(k

O
e)

fmw, (GHz)

Figure 35 Reversal field vs. mwf for different KH for composite and homogeneous
elements. The damping constant  is always 0.1. In (a) 3kOemwH  , the thickness
of the soft layer is 1.5st w ; In (b), the right curves are homogeneous element with

1.5t w , under the microwave strength 8.4kOemwH  , and the left curves are
composite elements with 0.75st w , 1.5ht w , under the microwave strength

4.2kOeH  .

187

the domain wall length dwt . The horizontal domain wall length and energy in the hard

sections is given by 4 4 2dw h ex s Kt A K l M H  and 2 24dw h dw hE w AK t w K  .,

respectively. For the elements used to generate in Figure 1, 6.5nm 1.3dwt w  ,

which means that the maximal barrier is obtained for approximately ht w . For this

height, the energy barrier is estimated as 88dw BE k T (with 400T K) and this

value approximately matches that obtained numerically via the elastic band method

[46]. Further increase of ht in the composite or homogeneous elements has minor effect

on the barrier.

7.2.4 MAMR for multilevel recording

 From the results shown in Figure 36, it is clear that the FMR frequencies can

be tuned in a wide range by either changing the anisotropy field in the case of homoge-

neous elements or by changing the anisotropy field, coupling, and geometrical

parameters in the case of composite elements. The possibility to tune the FMR and

reduce the reversal field near this frequency suggests a novel multilevel recording

scheme.

188

 The proposed media comprise several layers, where each layer has a different

FMR frequency (Figure 36 (a)). The microwave field is used to assist reversing ele-

ments in different levels by tuning the microwave frequency to the FMR frequency of

the layer being recorded. This method is anticipated to lead to a reliable multilevel

10 20 30 40 50 60 70
0.5

1

1.5

2

fmw(GHz)

H
a(K

O
e)

0

0.5

1

1.5

2

2.5

3

I

II
III

I

III
IV

1f2f

 cos 2mw
mw a mwH H f t

aH

1 1, res
anis K mwH H f f 

2 2, res
anis K mwH H f f 

Microwave
Generator

Head
Pole

2.25 kOemw
aH 

0.1 

hd w

1 15 kOeKH 

2 12 kOeKH 

(a)

(b)

w

w

Figure 36 (a) Schematic representation of a multi-layer microwave-assisted magnetic
recording system; (b) A reversal pattern of double layer recording system. Four
different areas represent different magnetization states of in a two-layer structure
comprising homogeneous elements for different microwave frequencies. Area I corre-
sponds to no-switching of any layer. Area II corresponds to switching of both layers.
Area III corresponds to switching of the lower layer only. Area IV corresponds to
switching of the upper layer only.

189

recording scheme with a number of advantages over currently considered multilevel

recording methods. For example, there expected to be no need in multi-pass recording

since every level can be addressed independently. This scheme does not require address-

ing the elements in different layers by different strength of the reversal field and can

allow for a smaller separation between the layers. In addition, a recording system that

can generate microwave fields at several frequencies potentially can address several

levels simultaneously thus increasing the recording speed.

 To demonstrate the possibility of recording elements with different FMR fre-

quencies independently, we consider an example of a two-level system comprised of

homogeneous elements (Figure 36 (a)). In this system, the element in Layer 1 and

Layer 2 have anisotropy 1 15KOeKH  and. 2 12KOeKH  ., respectively. All elements

are of size w w w  with 10nmw  and have 3500 emu/cmsM  . The separation

between the layers is w . The microwave and bias fields are applied simultaneously to

both layers. Figure 36 (b) shows the final magnetization states in the two layers as a

function of microwave frequency and the bias field. Area I and II respectively repre-

sent regimes of non-reversal and reversal of both layers. Area III and Area IV

respectively represent regimes where Layer 1 and Layer 2 can be reversed individually.

In practical systems, due to the gradient of head fields, the field is weaker on the layer

farther from the head pole and it is reasonable to put the layer with lower anisotropy

farther than the layer with higher anisotropy. From Figure 36, it is shown that the

190

field and element parameters can be found that lead to individual switching of the

layers with different resonant frequency. Various media elements can be used. As for

the generation of local microwave fields with sufficiently high frequency and strength

generated, devices such as the spin-torque driven oscillators might fulfill the require-

ment. Combined with a conventional recording head, they can result in a system that

generates both switching fields and assisting local microwave fields.

7.2.5 Summary

 In this section, we investigated reversal properties of homogenous hard magnetic

elements and exchange-coupled composite elements with different soft layer thickness

under the influence of a local microwave field. Composite elements allow for a signifi-

cant reduction of the reversal field, the microwave field, and the FMR frequency as

compared to homogeneous elements. MAMR behavior in composite and homogeneous is

found to be completely different due to the phenomena associated with domain wall

formation and propagation. In addition, the reversal field for composite elements can be

much less sensitive to the element anisotropy field distributions than for homogeneous

elements, which is crucial to allow reducing bit error rates. However, there are also

several obstacles that may complicate practical implementations of MAMR schemes

and the most critical one is the microwave source. High anisotropy materials may

require microwave field strength and frequency may be very high. Such strong fields

191

and high frequencies are hard to achieve in practical recording systems even using spin-

torque driven devices [76, 134, 180].

7.3 Acknowledgement

 Chapter 7 consists of results and discussions from papers:

• S. Li, B. Livshitz, H. N. Bertram, E. E. Fullerton, and V. Lomakin, “Micro-

wave-assisted magnetization reversal and multilevel recording in composite

media,” Journal of Applied Physics, vol. 105, no. 7, pp. 07B909-07B909-3, 2009.

• S. Li, B. Livshitz, H. N. Bertram, A. Inomata, E. E. Fullerton, and V. Lomakin,

“Capped bit patterned media for high density magnetic recording,” Journal of

Applied Physics, vol. 105, no. 7, pp. 07C121-07C121-3, 2009.

192

8 Summary and future directions

8.1 Summary

 The contributions of this thesis are mostly in three different areas: a) the devel-

opment of fast methods for field evaluations in computational electromagnetics and

micromagnetics on massively parallel GPU architectures; b) highly efficient micromag-

netic and electromagnetic solvers built up on those fast methods; c) analysis and design

of complex magnetic systems using the fast solvers.

 The thesis reviewed the current status of newly emerged massively parallel

processors and their impacts on scientific computing. Massively parallel processors,

GPGPUs being one of such type, are serious contenders in the field of high performance

computing recently. Though different in architecture and slightly more difficult to

program than traditional CPUs, they provide extremely high computational and

memory access throughput. GPUs also have higher performance-power ratio and lower

cost. As many real world phenomena are intrinsically parallel, most scientific models

are adaptable to these highly parallel processor architectures.

 Several fast algorithms for field evaluations in the computational electromagnet-

ic and micromagnetic simulations, targeting the GPGPUs are described and analyzed.

Though built based on similar mathematical principles, the GPU version of these

193

algorithms adopt different approaches for data arrangement as well as the flow of the

operations. After a substantial effort of redesigning, redistributing and rerouting the

computational tasks, the achieved speed-ups over sequential versions are significant.

Over 100x of speed-ups are common for all three algorithms, namely NGIM, B-AIM

and FPIM, for problems started from several thousand of degrees of freedom. Moreover,

the memory usage is merely 1% to 2% of the sequential version.

 Built on the fast methods described in Chapter 4, a high-performance micro-

magnetic solver, FastMag are developed as a collaborative work. FastMag significantly

extends the range of micromagnetic problems that researchers can solver using regular

desktop computers. Ultra-large magnetic systems such as a complete recording head

uniformly discretized are simulated, showing unobserved physical phenomena that

might affect the future head design. FastMag is currently used by many internal and

external users to simulate highly complex magnetic systems.

 In chapter 7, two novel magnetic recording mechanisms are discussed. They aim

at helping the next generation ultra-high density magnetic recording systems. The

capped bit pattered media (CBPM) is thought to have better switching field distribu-

tion properties as well as lower reversal field and these hypotheses have been proven by

simulations and further by follow-up experiments from other research groups. The

microwave-assisted magnetic recording (MAMR) is a potentially revolutionary magnet-

ic recording method. It is found, by computer simulations, that many factors, including

194

the geometric design of the media and the coupling strength might affect the reversal

mechanism inside the recording media while exposed to high frequency microwaves.

8.2 Future directions

8.2.1 Further development of NGIM

 The NGIM algorithm described in the Section 4.2 is highly efficient in handling

scalar as well as vector fields generated by a randomly distributed set of sources. How-

ever, it still has room to be improved to meet the theoretically efficiency on handling

extremely non-uniform source/observer distribution. Unbalanced tree structures are

required to accelerate the computation of fields generated by highly non-uniform

sources. This task might be more feasible on GPUs when the next generation NVIDIA’s

Kepler GK110 GPUs become available. The new “dynamic parallelism” technology is

proposed to make the GPU handle multiple layers of parallelism in more efficient

manner.

8.2.2 FastMag on GPUs

 Even though the field evaluation, which is the most time consuming part of

FastMag, has been successfully implemented on GPUs, currently FastMag still relies on

CPUs to handle several essential tasks such as the time integration. Those once negli-

gible computational processes now cost significant portion of overall time as the

195

original bottlenecks are already removed by GPUs. According to the famous Amdahl's

Law [75], even if only 10% of the original sequential code are not efficiently parallelized,

the upper limit of overall acceleration would be less than 10x. Therefore, porting as

many operations as possible to GPUs is critical for further improvement of the efficien-

cy of the FastMag simulator.

8.2.3 Parallelization across multiple computing nodes

 The computational results presented in the thesis are obtained on a single

computing node with single or multiple GPUs. Though NGIM and B-AIM are designed

to be easily scalable to multiple computing nodes with multi-million or even billions of

threads, multi-node parallel versions are still under development. One significant chal-

lenge that can be anticipated is the adverse impact of the much slower inter-node

communication. Under these circumstances, exploring the opportunities of overlapping

the communication and computation would be critical for further scaling the fast

algorithms as well as the solvers as a whole.

 NGIM is particularly attractive for multi-GPU systems, especially for high-

frequency problems when only outgoing NG grids are contracted and each such grid is

independent of each other at the same level. Moreover, the memory consumption is of

 O N as only two levels are needed to be kept in memory at any moment. These

properties can eliminate the need for any data exchange between different GPUs in a

multi-node computing cluster, which is crucial for achieving high-performance.

196

 The B-AIM is generally harder to be extended to multi-GPU systems. This is

because the FFT used in B-AIM has relative low arithmetic density and are prone to

slow inter-node communication.

197

Appendix A The big-O notation

 The big-O notation is usually used in the computer science and specifically the

algorithm design and analysis field to indicate the asymptotic behavior of a computer

algorithm when the problem size grows large. The big-O notation is called the “asymp-

totic upper bound” and is defined as follows: [40]

 For a given function  g n , we denote by     f x O g n if and only if there

is a positive constant c such that for all sufficiently large values of x that  f x 

 c g x .

 There are several points that worth mentioning for using this big-O notation.

 a) The big-O notation does not tell the exact running time of any given algo-

rithm. It only shows how the running time of a given algorithm, with all other

conditions kept the same, responds to the change of the problem size

 b) When write equation     f x O g n to reflect the statement “  f x is

  O g n ”, we should be aware that it is an abuse of notation and this equation cannot

be swapped. One simple example is that    2O x O x is true, but    2O x O x

is

not.

 c) The asymptotic complexity of an algorithm is determined by the most “com-

plex” part of it. For example, if a function  f n that represents the number of

operations required to accomplish a certain task can be express as

198

    3
0 1 2 logf n C n C n C n n   , (8.1)

The “big-O” of  f n would be    3f n O n .

 There are several other related but different notations that are commonly used

by people to describe the complexity of an algorithm, such as the theta-notation and

the omega-notation. They are used to represent the asymptotically tight bound and

asymptotic lower bound of functions. Detailed explanation can be found in Ref. [40].

199

Appendix B Periodic Green’s function

 The PGFs for 1D, 2D, and 3D infinite arrays residing in free-space can be

calculated via single, double, and triple spatial summations, respectively, over the

integers xi , yi , and zi , which represent the general index i in Section 5.2:

 

 

0

0 0

0 0 0

| |
1

| |
2

,

| |
3

(, 0) ,
4 | |

(, 0) ,
4 | |

(, 0)
4 |

x x x x x

x

x x x y y y x x y y

x y

x x x y y y z z z x x y y z z

jk i L jk i L
D

i x x
j k i L k i L jk i L i L

D

i i x x y y

j k i L k i L k i L jk i L i L i L
D

x x y y

e e
G

i L

e e
G

i L i L

e e
G

i L i L







   


    



      





 


 





r x

r x y

r x y z

r
r x

r
r x y

r
r x, ,

.
|

x y zi i i z zi L



  y z

 (8.2)

 Alternatively, the PGF’s may be found via the following Floquet mode expan-

sions

 

0 0

0

(2)1 2 2
0

| |
2

,

3

,
() (

| |
()

1 1
(, 0) ,

4

1
(, 0) ,

2

1
(, 0)

2

(1)

xm

xm yn zmn

xm yn

zmn z z zmn z z
zmn

zmn z z

jk xD
m

mx
jk x jk y jk z

D

m nx y zmn
jk x jk y

D

m nx y zmn
j k k L jk z j k k

jk z
j k k L

G e H k y z
L j

e
G

L L jk

e
G

L L jk

e e e
e

e







  


 


    


 

 



 

  








r

r

r

0

)

()
,

(1)

mn z zmn

zmn z z

L jk z

j k k L

e

e 

      

 (8.3)

where xmk  0 2 /x xk m L , ymk  0 2 /y yk n L , mk   1/22 2
xmk k , and zmnk

 1/22 2 2
xm ymk k k   . The square root for mk and zmnk is defined with

 Im ,m zmnk k 0 on the top Riemann sheet of the complex 0xk plane for most m ;

however, a certain (typically small) number of square roots can be defined on the lower

Riemann sheet with  Im 0mk  . The expression for the 3D PGF is obtained from

200

that for the 2D PGF using 03 2(, 0) (,) z z z

z

jk i LD D
z z

i

G G i L e






 r r z

with 2DG found by

Floquet expansion.

 These expressions are rapidly convergent provided z is not too small. Specifi-

cally, the number of terms required to achieve a prescribed error of  is estimated as

1log() (2)xL z  for 1D arrays and
22 1log () (2)x yL L z  for 2D and 3D arrays (for

the case x y zL L L ).

201

References

[1] M. Albrecht, C. T. Rettner, A. Moser, M. E. Best, and B. D. Terris, “Recording
performance of high-density patterned perpendicular magnetic media,” Applied
Physics Letters, vol. 81, no. 15, pp. 2875-2877, 2002.

[2] AMD Inc., AMD Accelerated Parallel Processing OpenCL programming guide,
2012.

[3] AMD Inc., AMD Accelerated Processing Units, 2012.

[4] AMD Inc., Southern Islands series instruction set architecture, 2012.

[5] P. L. Arlett, A. K. Bahrani, and O. C. Zienkiewicz, “Application of finite
elements to the solution of Helmholtz's equation,” Proceedings of the Institution
of Electrical Engineers, vol. 115, no. 12, pp. 1762-1766, 1968.

[6] S. S. Baghsorkhi, I. Gelado, M. Delahaye, and W.-m. W. Hwu, “Efficient
performance evaluation of memory hierarchy for highly multithreaded graphics
processors,” in Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, New Orleans, Louisiana, USA,
Year, pp. 23-34.

[7] J. M. Bahi, R. Couturier, and L. Z. Khodja, “Parallel GMRES implementation
for solving sparse linear systems on GPU clusters,” in Proceedings of the 19th
High Performance Computing Symposia, Boston, Massachusetts, Year, pp. 12-
19.

[8] J. Barnes, and P. Hut, “A hierarchical O(NlogN) force-calculation algorithm,”
Nature, vol. 324, no. 6096, pp. 446-449, 1986.

[9] J. Bedorf, E. Gaburov, and S. P. Zwart, “A sparse octree gravitational N-body
code that runs entirely on the GPU processor,” Journal of Computational
Physics, vol. 231, no. 7, pp. 2825-2839, 2012.

[10] N. Bell, and M. Garland, “Implementing sparse matrix-vector multiplication on
throughput-oriented processors,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, Portland, Oregon,
Year, pp. 1-11.

202

[11] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: adaptive integral
method for solving large-scale electromagnetic scattering and radiation
problems,” Radio Science, vol. 31, no. 5, pp. 1225-1251, 1996.

[12] D. Blythe, “Rise of the graphics processor,” Proceedings of the IEEE, vol. 96, no.
5, pp. 761-778, 2008.

[13] A. Boag, and Y. Leviatan, “Analysis of electromagnetic scattering from linear
periodic arrays of perfectly conducting bodies using a cylindrical-current model,”
Antennas and Propagation, IEEE Transactions on, vol. 39, no. 9, pp. 1332-1337,
1991.

[14] A. Boag, and B. Livshitz, “Adaptive nonuniform-grid (NG) algorithm for fast
capacitance extraction,” IEEE Transactions on Microwave Theory and
Techniques, vol. 54, no. 9, pp. 3565-3570, 2006.

[15] A. Boag, V. Lomakin, and E. Michielssen, “Nonuniform grid time domain
(NGTD) algorithm for fast evaluation of transient wave fields,” IEEE
Transactions on Antennas and Propagation, vol. 54, no. 7, pp. 1943-1951, 2006.

[16] A. Boag, E. Michielssen, and A. Brandt, “Nonuniform polar grid algorithm for
fast field evaluation,” IEEE Antennas and Wireless Propagation Letters, vol. 1,
pp. 142-145, 2002.

[17] J. Bolz, I. Farmer, E. Grinspun, and P. Schrooder, “Sparse matrix solvers on
the GPU: conjugate gradients and multigrid,” ACM Transactions on Graphics,
vol. 22, no. 3, pp. 917-924, 2003.

[18] K. Bondalapati, and V. K. Prasanna, “Reconfigurable computing systems,”
Proceedings of the IEEE, vol. 90, no. 7, pp. 1201-1217, 2002.

[19] C. Boone, J. A. Katine, E. E. Marinero, S. Pisana, and B. D. Terris,
“Microwave-assisted magnetic reversal in perpendicular media,” IEEE Magnetics
Letters, vol. 3, 2012.

[20] A. Breitling, T. Bublat, and D. Goll, “Exchange-coupled L10-FePt/Fe composite
patterns with perpendicular magnetization,” physica status solidi (RRL) –
Rapid Research Letters, vol. 3, no. 5, pp. 130-132, 2009.

[21] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli,
“State-of-the-art in heterogeneous computing,” Scientific Programming, vol. 18,
no. 1, pp. 1-33, 2010.

203

[22] W. F. Brown, Jr., Micromagnetics: Interscience Publishers, 1963.

[23] R. Buchty, V. Heuveline, W. Karl, and J.-P. Weiss, “A survey on hardware-
aware and heterogeneous computing on multicore processors and accelerators,”
Concurrency and Computation: Practice and Experience, vol. 24, no. 7, pp.
663-675, 2012.

[24] M. Burtscher, and K. Pingali, "Chapter 6 - An efficient CUDA implementation
of the tree-based Barnes Hut n-body algorithm," GPU Computing Gems
Emerald Edition, W. H. Wen-mei, ed., pp. 75-92, Boston: Morgan Kaufmann,
2011.

[25] F. Casoli, F. Albertini, L. Nasi, S. Fabbrici, R. Cabassi, F. Bolzoni, C. Bocchi,
and P. Luches, “Role of interface morphology in the exchange-spring behavior of
FePt/Fe perpendicular bilayers,” Acta Materialia, vol. 58, no. 10, pp. 3594-3601,
2010.

[26] M. F. Catedra, R. F. Torrs, J. Basterrechea, and E. Gago, The CG-FFT
Method: application of signal processing techniques to electromagnetics,
Norwood, MA: Artech House, Inc., 1994.

[27] F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing
splitting parameters and summation limits in the numerical evaluation of 1-D
and 2-D periodic Green's funcstions with the Ewald method,” Radio Science,
vol. 43, pp. RS6S01, 2008.

[28] A. Cevahir, A. Nukada, and S. Matsuoka, “Fast conjugate gradients with
multiple GPUs computational science – ICCS 2009,” in, Year, pp. 893-903.

[29] A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, and R.
Vuduc, “Optimizing and tuning the fast multipole method for state-of-the-art
multicore architectures,” in Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on, Year, pp. 1-12.

[30] R. Chang, M. A. Escobar, S. Li, M. V. Lubarda, and V. Lomakin, “Accurate
evaluation of exchange fields in finite element micromagnetic solvers,” Journal
of Applied Physics, vol. 111, no. 7, pp. 07D129-123, 2012.

[31] R. Chang, S. Li, M. Lubarda, B. Livshitz, and V. Lomakin, “FastMag: Fast
micromagnetic simulator for complex magnetic structures,” Journal of Applied
Physics, vol. 109, no. 7, pp. 07D358-307D358-356, 2011.

204

[32] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A
performance study of general-purpose applications on graphics processors using
CUDA,” Journal Parallel and Distributed Computing, vol. 68, no. 10, pp. 1370-
1380, 2008.

[33] Y. Chen, X. Cui, and H. Mei, “Large-scale FFT on GPU clusters,” in
Proceedings of the 24th ACM International Conference on Supercomputing,
Tsukuba, Ibaraki, Japan, Year, pp. 315-324.

[34] H. W. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge,
J. F. Huang, V. Rokhlin, N. Yarvin, and J. S. Zhao, “A wideband fast multipole
method for the Helmholtz equation in three dimensions,” Journal of
Computational Physics, vol. 216, no. 1, pp. 300-325, 2006.

[35] W. C. Chew, B. Hu, Y. C. Pan, and J. S. Zhao, “Fast algorithm for complex
structures,” in Asia-Pacific Microwave Conference, 2001, Year, pp. 75-78 vol.71.

[36] W. C. Chew, J.-M. Jin, C.-C. Lu, E. Michielssen, and J. M. Song, “Fast solution
methods in electromagnetics,” Antennas and Propagation, IEEE Transactions
on, vol. 45, no. 3, pp. 533-543, 1997.

[37] S. Cohen, and C. Hindmarsh, “CVODE, A Stiff/nonstiff ODE Solver In C,”
Computers in Physics, vol. 10, no. 2, pp. 138-143, 1996.

[38] K. Compton, and S. Hauck, “Reconfigurable computing: a survey of systems
and software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171-210, 2002.

[39] J. W. Cooley, and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Mathematics of Computation, vol. 19, pp. 297-301, 1965.

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms: MIT Press, 2009.

[41] M. Cwikla, J. Aronsson, and V. Okhmatovski, “Low-frequency MLFMA on
graphics processors,” Antennas and Wireless Propagation Letters, IEEE, vol. 9,
pp. 8-11, 2010.

[42] C. P. da Silva, L. F. Cupertino, D. Chevitarese, M. A. C. Pacheco, and C.
Bentes, “Exploring data streaming to improve 3D FFT implementation on
multiple GPUs,” in Computer Architecture and High Performance Computing
Workshops (SBAC-PADW), 2010 22nd International Symposium on, Year, pp.
13-18.

205

[43] E. Darve, C. Cecka, and T. Takahashi, “The fast multipole method on parallel
clusters, multicore processors, and graphics processing units,” Comptes Rendus
Mécanique, vol. 339, no. 2–3, pp. 185-193, 2011.

[44] D. De Donno, A. Esposito, G. Monti, and L. Tarricone, “Parallel efficient
method of moments exploiting graphics processing units,” Microwave and
Optical Technology Letters, vol. 52, no. 11, pp. 2568-2572, 2010.

[45] D. De Donno, A. Esposito, G. Monti, and L. Tarricone, “Efficient acceleration
of sparse MPIE/MoM with graphics processing units,” in 41st European
Microwave Conference (EuMC), 2011, Year, pp. 175-178.

[46] R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, and J. Fidler, “A path
method for finding energy barriers and minimum energy paths in complex
micromagnetic systems,” Journal of Magnetism and Magnetic Materials, vol.
250, no. 0, pp. 12-19, 2002.

[47] B. Duan, W. Wang, X. Li, C. Zhang, P. Zhang, and N. Sun, “Floating-point
mixed-radix FFT core generation for FPGA and comparison with GPU and
CPU,” in Field-Programmable Technology (FPT), 2011 International
Conference on, Year, pp. 1-6.

[48] J. W. Eastwood, R. W. Hockney, and D. N. Lawrence, “P3M3DP-the three-
dimensional periodic particle-particle/particle-mesh program,” Computer
Physics Communications, vol. 35, no. 0, pp. C-618-C-619, 1984.

[49] M. A. Escobar, M. V. Lubarda, S. Li, R. Chang, B. Livshitz, and V. Lomakin,
“Advanced micromagnetic analysis of write head dynamics using fastmag,”
IEEE Transactions on Magnetics, no. 99, pp. 1-1, 2012.

[50] M. A. Francavilla, E. A. Attardo, F. Vipiana, and G. Vecchi, “A GPU
acceleration for FFT-based fast solvers for the integral equation,” in
Proceedings of the Fourth European Conference on Antennas and Propagation
(EuCAP), 2010, Year, pp. 1-4.

[51] M. A. Francavilla, F. Vipiana, and G. Vecchi, “FFT-based solvers for the EFIE
on graphics processors,” in IEEE Antennas and Propagation Society
International Symposium (APSURSI), 2010, Year, pp. 1-4.

[52] F. Franchetti, M. Puschel, Y. Voronenko, S. Chellappa, and J. M. F. Moura,
“Discrete fourier transform on multicore,” IEEE Signal Processing Magazine, vol.
26, no. 6, pp. 90-102, 2009.

206

[53] E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader,
“Exchange-spring behavior in epitaxial hard/soft magnetic bilayers,” Physical
Review B, vol. 58, no. 18, pp. 12193-12200, 1998.

[54] N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha, “LU-GPU:
Efficient algorithms for solving dense linear systems on graphics hardware,” in
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, Year, pp.
3.

[55] P. Gepner, and M. F. Kowalik, “Multi-core processors: New way to achieve high
system performance,” in Parallel Computing in Electrical Engineering, 2006.
PAR ELEC 2006. International Symposium on, Year, pp. 9-13.

[56] T. L. Gilbert, “A phenomenological theory of damping in ferromagnetic
materials,” IEEE Transactions on Magnetics, vol. 40, no. 6, pp. 3443-3449, 2004.

[57] T. L. Gilbert, and J. M. Kelly, “Anomalous rotational damping in ferromagnetic
sheets,” in Magnetism and Magnetic Materials Conference, Pittsburgh, PA,
Year, pp. 253 - 263.

[58] D. Goll, and S. Macke, “Thermal stability of ledge-type L10-FePt/Fe exchange-
spring nanocomposites for ultrahigh recording densities,” Applied Physics
Letters, vol. 93, no. 15, pp. 152512-152513, 2008.

[59] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli, “High
performance discrete Fourier transforms on graphics processors,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, Austin, Texas, Year,
pp. 1-12.

[60] A. Greenbaum, Iterative methods for solving linear systems, Philadelphia, PA:
Society of Industrial and Applied Mathematics, 1987.

[61] L. Greengard, and V. Rokhlin, “A fast algorithm for particle simulations,”
Journal of Computational Physics, vol. 73, no. 2, pp. 325-348, 1987.

[62] N. A. Gumerov, and R. Duraiswami, “Fast multipole methods on graphics
processors,” Journal of Computational Physics, vol. 227, no. 18, pp. 8290-8313,
2008.

[63] E. Gutierrez, S. Romero, M. Trenas, and E. Zapata, “Memory locality
exploitation strategies for FFT on the CUDA architecture high performance
computing for computational science - VECPAR 2008,” in, Year, pp. 430-443.

207

[64] W. Hackbusch, and B. Khoromskij, “A sparse matrix arithmetic based on H-
matrices. Part I: Introduction to H-matrices,” Computing, vol. 62, pp. 89-108,
1999.

[65] W. Hackbusch, and B. Khoromskij, “A sparse H-matrix arithmetic. Part II:
Application to multi-dimensional problems,” Computing, vol. 64, no. 21 - 47,
2000.

[66] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and M. Taiji, “42
TFlops hierarchical N-body simulations on GPUs with applications in both
astrophysics and turbulence,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, Portland, Oregon,
Year, pp. 1-12.

[67] D. J. Hardy, J. E. Stone, K. L. Vandivort, D. Gohara, C. Rodrigues, and K.
Schulten, "Chapter 4 - Fast molecular electrostatics algorithms on GPUs," GPU
Computing Gems Emerald Edition, W. H. Wen-mei, ed., pp. 43-58, Boston:
Morgan Kaufmann, 2011.

[68] R. F. Harrington, Field Computation by Moment Methods: Wiley-IEEE Press,
1993.

[69] M. J. Harris, “Real-time cloud simulation and rendering”, University of North
Carolina at Chapel Hill, Chapel Hill, 2003.

[70] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, “Physically-based
visual simulation on graphics hardware,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, Saarbrucken,
Germany, Year, pp. 109-118.

[71] R. Helfenstein, and J. Koko, “Parallel preconditioned conjugate gradient
algorithm on GPU,” Journal of Computational and Applied Mathematics, vol.
236, no. 15, pp. 3584-3590, 2012.

[72] O. Hellwig, A. Berger, T. Thomson, E. Dobisz, Z. Z. Bandic, H. Yang, D. S.
Kercher, and E. E. Fullerton, “Separating dipolar broadening from the intrinsic
switching field distribution in perpendicular patterned media,” Applied Physics
Letters, vol. 90, no. 16, pp. 162516-162513, 2007.

[73] G. Henkelman, and H. Jonsson, “Improved tangent estimate in the nudged
elastic band method for finding minimum energy paths and saddle points,”
Journal of Chemical Physics, vol. 113, no. 22, pp. 9978-9985, 2000.

208

[74] J. Hennessy, and D. Patterson, Computer Architecture: A Quantitative
Approach, 5th Edition, Waltham, MA: Morgan Kaufmann, 2011.

[75] M. D. Hill, and M. R. Marty, “Amdahl's Law in the multicore era,” Computer,
vol. 41, no. 7, pp. 33-38, 2008.

[76] D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F.
Ponthenier, M. Brunet, C. Thirion, J. P. Michel, L. Prejbeanu-Buda, M. C.
Cyrille, O. Redon, and B. Dieny, “Spin-torque oscillator using a perpendicular
polarizer and a planar free layer,” Nature Materials, vol. 6, no. 6, pp. 447-453,
2007.

[77] Q. Hu, N. A. Gumerov, and R. Duraiswami, “Scalable fast multipole methods
on distributed heterogeneous architectures,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, Seattle, Washington, Year, pp. 1-12.

[78] W.-m. Hwu, K. Keutzer, and T. G. Mattson, “The concurrency challenge,”
IEEE Design & Test of Computers, vol. 25, no. 4, pp. 312-320, 2008.

[79] Intel, “Many Integrated Core (MIC) Architecture -
Advanced,” http://www.intel.com/content/www/us/en/architecture-and-
technology/many-integrated-core/intel-many-integrated-core-architecture.html,
vol. 2012, no. 8/19, 2012.

[80] P. Jetley, L. Wesolowski, F. Gioachin, Kale, x, L. V., and T. R. Quinn, “Scaling
hierarchical n-body simulations on GPU clusters,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2010 International
Conference for, Year, pp. 1-11.

[81] J.-m. Jin, The Finite Element Method in Electromagnetics, Second Edition ed.:
Wiley-IEEE Press, 2002.

[82] Khronos Group, “The OpenCL Specification - Khronos Group,” 2011.

[83] G. Kobidze, B. Shanker, and D. P. Nyquist, “Efficient integral-equation-based
method for accurate analysis of scattering from periodically arranged
nanostructures,” Physical Review E, vol. 72, no. 5, pp. 056702, 2005.

[84] C. Kraemer, N. Nikseresht, J. O. Piatek, N. Tsyrulin, B. D. Piazza, K. Kiefer,
B. Klemke, T. F. Rosenbaum, G. Aeppli, C. Gannarelli, K. Prokes, A.
Podlesnyak, T. Strässle, L. Keller, O. Zaharko, K. W. Krämer, and H. M.

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html

209

Rønnow, “Dipolar antiferromagnetism and quantum criticality in LiErF4,”
Science, vol. 336, no. 6087, pp. 1416-1419, 2012.

[85] K. S. Kunz, and R. J. Luebbers, The Finite Difference Time Domain Method
for Electromagnetics, pp. 464 Pages: CRC Press, 1993.

[86] L. D. Landau, and E. M. Lifshitz, “On the theory of the dispersion of magnetic
permeability in ferromagnetic bodies,” Phys. Z. Sowietunion, vol. 8, no. 153,
1935.

[87] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,
A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros, “A massively
parallel adaptive fast-multipole method on heterogeneous architectures,” in
Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, Portland, Oregon, Year, pp. 1-12.

[88] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey,
“Debunking the 100X GPU vs. CPU myth: an evaluation of throughput
computing on CPU and GPU,” ACM SIGARCH Computer Architecture News,
vol. 38, no. 3, pp. 451-460, 2010.

[89] E. Lezar, “GPU acceleration of matrix-based methods in computational
electromagnetics”, Stellenbosch University, Stellenbosch, 2011.

[90] E. Lezar, and D. B. Davidson, “GPU-Accelerated method of moments by
example: monostatic scattering,” Antennas and Propagation Magazine, IEEE,
vol. 52, no. 6, pp. 120-135, 2010.

[91] E. Lezar, and D. B. Davidson, “GPU-based LU decomposition for large method
of moments problems,” Electronics Letters, vol. 46, no. 17, pp. 1194-1196, 2010.

[92] E. Lezar, and D. B. Davidson, “GPU acceleration of electromagnetic scattering
analysis using the method of moments,” in Electromagnetics in Advanced
Applications (ICEAA), 2011 International Conference on, Year, pp. 452-455.

[93] S. Li, R. Chang, and V. Lomakin, "Chapter 19 - Fast electromagnetic integral
equation solvers on graphics processing units," GPU Computing Gems Jade
Edition, W. H. Wen-mei, ed., pp. 243-266, Boston: Morgan Kaufmann, 2012.

[94] S. Li, R. Chang, and V. Lomakin, “Fast integral equation solvers on Graphics
Processing Units for Electromagnetics,” Ieee Antennas and Propagation
Magazine, to appear in 2013.

210

[95] S. Li, B. Livshitz, H. N. Bertram, E. E. Fullerton, and V. Lomakin,
“Microwave-assisted magnetization reversal and multilevel recording in
composite media,” Journal of Applied Physics, vol. 105, no. 7, pp. 07B909-
907B909-903, 2009.

[96] S. Li, B. Livshitz, H. N. Bertram, A. Inomata, E. E. Fullerton, and V. Lomakin,
“Capped bit patterned media for high density magnetic recording,” Journal of
Applied Physics, vol. 105, no. 7, pp. 07C121-107C121-123, 2009.

[97] S. Li, B. Livshitz, H. N. Bertram, M. Schabes, T. Schrefl, E. E. Fullerton, and
V. Lomakin, “Microwave assisted magnetization reversal in composite media,”
Applied Physics Letters, vol. 94, pp. 202509, 2009.

[98] S. Li, B. Livshitz, and V. Lomakin, “Fast evaluation of Helmholtz potential on
graphics processing units (GPUs),” Journal of Computational Physics, vol. 229,
no. 22, pp. 8463-8483, 2010.

[99] S. Li, B. Livshitz, and V. Lomakin, “Graphics Processing Unit Accelerated O(N)
Micromagnetic Solver ” IEEE Transactions on Magnetics, vol. 46, no. 6, pp.
2373-2375, 2010.

[100] S. Li, D. A. Van Orden, and V. Lomakin, “Fast periodic interpolation method
for periodic unit cell problems,” Antennas and Propagation, IEEE Transactions
on, vol. 58, no. 12, pp. 4005-4014, 2010.

[101] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: a
unified graphics and computing architecture,” IEEE Micro, vol. 28, no. 2, pp.
39-55, 2008.

[102] B. Livshitz, A. Boag, H. N. Bertram, and V. Lomakin, “Non-uniform grid
algorithm for fast magnetostatic interactions calculation in micromagnetics,”
Journal of Applied Physics, vol. 105, 2009.

[103] B. Livshitz, A. Boag, H. N. Bertram, and V. Lomakin, “Nonuniform grid
algorithm for fast calculation of magnetostatic interactions in micromagnetics,”
in Proceedings of the 53rd Annual Conference on Magnetism and Magnetic
Materials, Austin, Texas (USA), Year, pp. 07D541-543.

[104] B. Livshitz, R. Choi, A. Inomata, H. N. Bertram, and V. Lomakin, “Fast
precessional reversal in perpendicular composite patterned media,” Journal of
Applied Physics, vol. 103, no. 7, pp. 07C516-513, 2008.

211

[105] B. Livshitz, A. Inomata, H. N. Bertram, and V. Lomakin, “Precessional reversal
in exchange-coupled composite magnetic elements,” Applied Physics Letters, vol.
91, no. 18, pp. 182502-182503, 2007.

[106] V. Lomakin, R. Choi, B. Livshitz, S. Li, A. Inomata, and H. N. Bertram, “Dual-
layer patterned media "ledge" design for ultrahigh density magnetic recording,”
Applied Physics Letters, vol. 92, no. 2, pp. 022502-022503, 2008.

[107] V. Lomakin, S. Li, B. Livshitz, A. Inomata, and H. N. Bertram, “Patterned
media for 10 Tb/in2 utilizing dual-section "ledge" elements,” IEEE Transactions
on Magnetics, vol. 44, no. 11, pp. 3454-3459, 2008.

[108] M. López-Portugués, J. A. López-Fernández, J. Ranilla, R. G. Ayestarán, and F.
Las-Heras, “Parallelization of the FMM on distributed-memory GPGPU systems
for acoustic-scattering prediction,” The Journal of Supercomputing, pp. 1-11,
2012.

[109] I. Lorentz, M. Malita, and R. Andonie, “Fitting FFT onto an energy efficient
massively parallel architecture,” in Proceedings of the Second International
Forum on Next-Generation Multicore/Manycore Technologies, Saint-Malo,
France, Year, pp. 1-11.

[110] C. C. Lu, and W. C. Chew, “Fast algorithm for solving hybrid integral
equations [EM wave scattering],” Microwaves, Antennas and Propagation, IEE
Proceedings H, vol. 140, no. 6, pp. 455-460, 1993.

[111] M. Lubarda, M. Escobar, S. Li, R. Chang, E. Fullerton, and V. Lomakin,
“Domain wall motion in magnetically frustrated nanorings,” Physical Review B,
vol. 85, no. 21, pp. 214428, 2012.

[112] M. Lubarda, S. Li, B. Livshitz, E. Fullerton, and V. Lomakin, “Reversal in Bit
Patterned Media With Vertical and Lateral Exchange,” IEEE Transactions on
Magnetics, vol. 47, no. 1, 2011.

[113] M. V. Lubarda, S. Li, B. Livshitz, E. E. Fullerton, and V. Lomakin,
“Antiferromagnetically coupled capped bit patterned media for high-density
magnetic recording,” Applied Physics Letters, vol. 98, no. 1, pp. 012513-012513-
012513, 2011.

[114] J. C. Maxwell, “A dynamical theory of the electromagnetic field,” Philosophical
Transactions of the Royal Society of London, vol. 155, pp. 459-512, 1865.

212

[115] T. W. McDaniel, W. A. Challener, and K. Sendur, “Issues in heat-assisted
perpendicular recording,” IEEE Transactions on Magnetics, vol. 39, no. 4, pp.
1972-1979, 2003.

[116] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the 1st
conference on Computing frontiers, Ischia, Italy, Year, pp. 162.

[117] Microsoft, “C++ AMP : Language and Programming Model,” 2012.

[118] R. Mittra, "Integral equation methods for transient scattering," Transient
Electromagnetic Fields, L. B. Felsen, ed., New York: Springer Verlag, 1976.

[119] K. Moreland, and E. Angel, “The FFT on a GPU,” in Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware, San Diego,
California, Year, pp. 112-119.

[120] A. Moroz, “Quasi-periodic Green's functions of the Helmholtz and Laplace
equations,” Journal of Physics A, vol. 39, no. 36, 2006.

[121] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg, OpenCL
Programming Guide: Pearson Education, 2012.

[122] H. Muraoka, Y. Sonobe, K. Miura, A. M. Goodman, and Y. Nakamura,
“Analysis on magnetization transition of CGC perpendicular media,” IEEE
Transactions on Magnetics, vol. 38, no. 4, pp. 1632-1636, 2002.

[123] A. Nukada, and S. Matsuoka, “Auto-tuning 3-D FFT library for CUDA GPUs,”
in Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, Portland, Oregon, Year, pp. 1-10.

[124] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth intensive 3-D
FFT kernel for GPUs using CUDA,” in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, Austin, Texas, Year, pp. 1-11.

[125] NVIDIA Corporation, NVIDIA's Next Generation CUDA Compute
Architecture: Fermi, v1.1 ed., 2010.

[126] NVIDIA Corporation, CUDA C Best Practice Guide, 2012.

[127] NVIDIA Corporation, CUDA Compute Unified Device Architecture
Programming Guide, V4.2, 2012.

[128] NVIDIA Corporation, CUFFT Library V4.2, 2012.

213

[129] NVIDIA Corporation, GPU Computing SDK 4.2, 2012.

[130] NVIDIA Corporation, “NVIDIA's Next Generation CUDA Compute
Architecture: Kepler GK110 - The Fastest, Most Efficient HPC Architecture
Ever Built,” pp. 24, 2012.

[131] OpenACC-Standard.org, “The OpenACC™ Application Programming Interface,”
2011.

[132] S. Peng, and Z. Nie, “Acceleration of the method of moments calculations by
using graphics processing units,” Antennas and Propagation, IEEE
Transactions on, vol. 56, no. 7, pp. 2130-2133, 2008.

[133] S. Peng, and C.-F. Wang, “Hardware accelerated MoM-PFFT method using
graphics processing units,” in Antennas and Propagation (APSURSI), 2011
IEEE International Symposium on, Year, pp. 3152-3153.

[134] J. Persson, Y. Zhou, and J. Akerman, “Phase-locked spin torque oscillators:
Impact of device variability and time delay,” Journal of Applied Physics, vol.
101, no. 9, pp. 09A503-503, 2007.

[135] A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for
Electromagnetics, New York: IEEE Press, 1998.

[136] J. R. Phillips, and J. K. White, “A precorrected-FFT method for electrostatic
analysis of complicated 3-D structures,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 16, no. 10, pp. 1059-1072, 1997.

[137] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes: Cambridge University Press, 2007.

[138] M. Ranjbar, S. N. Piramanayagam, R. Sbiaa, and T. C. Chong, “Magnetic
properties of antidots in conventional and spin-reoriented antiferro-magnetically
coupled layers,” Journal of Applied Physics, vol. 111, no. 7, pp. 07B921-923,
2012.

[139] M. Ranjbar, S. N. Piramanayagam, S. K. Wong, R. Sbiaa, and T. C. Chong,
“Anomalous Hall effect measurements on capped bit-patterned media,” Applied
Physics Letters, vol. 99, no. 14, pp. 142503-142503, 2011.

[140] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of
arbitrary shape,” Antennas and Propagation, IEEE Transactions on, vol. 30, no.
3, pp. 409-418, 1982.

214

[141] S. M. Rao, and D. R. Wilton, “Transient scattering by conducting surfaces of
arbitrary shape,” IEEE Transactions on Antennas and Propagation, vol. 39, pp.
56-61, 1991.

[142] H. J. Richter, “The transition from longitudinal to perpendicular recording,”
Journal of Physics D: Applied Physics, vol. 40, no. 9, pp. R149, 2007.

[143] V. Rokhlin, “Rapid solution of integral equations of scattering theory in two
dimensions,” Journal of Computational Physics, vol. 86, no. 2, pp. 414-439, 1990.

[144] S. Romero, M. A. Trenas, E. Gutierrez, and E. L. Zapata, “Locality-improved
FFT implementation on a graphics processor,” in Proceedings of the 7th
WSEAS International Conference on Signal Processing, Computational
Geometry & Artificial Vision, Athens, Greece, Year, pp. 58-63.

[145] R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y.
Kubota, L. Lei, L. Bin, C. Mihalcea, K. Mountfield, K. Pelhos, P. Chubing, T.
Rausch, M. A. Seigler, D. Weller, and Y. XiaoMin, “Heat-assisted magnetic
recording,” IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 2417-2421,
2006.

[146] M. Rumpf, and R. Strzodka, “Nonlinear diffusion in graphics hardware,”
Proceedings of EG/IEEE TCVG Symposium on Visualization (VisSym '01), pp.
75-84, 2001.

[147] Y. Saad, Iterative methods for sparse linear systems, Philadelphia, PA: Society
for Industrial and Applied Mathematics., 2003.

[148] Y. Saad, and M. Schultz, “GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM Journal on Scientific and
Statistical Computing, vol. 7, no. 3, pp. 856-869, 1986.

[149] W. Scholz, and S. Batra, “Micromagnetic modeling of ferromagnetic resonance
assisted switching,” Journal of Applied Physics, vol. 103, no. 7, pp. 07F539-533,
2008.

[150] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S.
Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan,
and P. Hanrahan, “Larrabee: a many-core x86 architecture for visual
computing,” ACM Transactions on Graphics, vol. 27, no. 3, pp. 1-15, 2008.

215

[151] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J.
Nogues, “Beating the superparamagnetic limit with exchange bias,” Nature, vol.
423, no. 6942, pp. 850-853, 2003.

[152] J. M. Song, and W. C. Chew, “Multilevel fast-multipole algorithm for solving
combined field integral equations of electromagnetic scattering,” Microwave and
Optical Technology Letters, vol. 10, no. 1, pp. 14-19, 1995.

[153] Y. Sonobe, K. K. Tham, T. Umezawa, C. Takasu, J. A. Dumaya, and P. Y. Leo,
“Effect of continuous layer in CGC perpendicular recording media,” Journal of
Magnetism and Magnetic Materials, vol. 303, no. 2, pp. 292-295, 2006.

[154] G. Stantchev, W. Dorland, and N. Gumerov, “Fast parallel Particle-To-Grid
interpolation for plasma PIC simulations on the GPU,” Journal of Parallel and
Distributed Computing, vol. 68, no. 10, pp. 1339-1349, 2008.

[155] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K.
Schulten, “Accelerating molecular modeling applications with graphics
processors,” Journal of Computational Chemistry, vol. 28, no. 16, pp. 2618-2640,
2007.

[156] D. Suess, T. Schrefl, S. Fahler, M. Kirschner, G. Hrkac, F. Dorfbauer, and J.
Fidler, “Exchange spring media for perpendicular recording,” Applied Physics
Letters, vol. 87, no. 1, pp. 012504-012503, 2005.

[157] Z. Z. Sun, and X. R. Wang, “Magnetization reversal through synchronization
with a microwave,” Physical Review B, vol. 74, no. 13, pp. 132401, 2006.

[158] C. Thirion, W. Wernsdorfer, and D. Mailly, “Switching of magnetization by
nonlinear resonance studied in single nanoparticles,” Nature Materials, vol. 2, no.
8, pp. 524-527, 2003.

[159] D. A. Thompson, and J. S. Best, “The future of data storage technology,” IBM
Journal of Research and Development, vol. 44, pp. 311-322, 2000.

[160] T. Topa, A. Noga, and A. Karwowski, “Adapting MoM with RWG basis
functions to GPU technology using CUDA,” Antennas and Wireless
Propagation Letters, IEEE, vol. 10, pp. 480-483, 2011.

[161] A. Y. Toukmaji, and J. A. Board Jr, “Ewald summation techniques in
perspective: a survey,” Computer Physics Communications, vol. 95, no. 2–3, pp.
73-92, 1996.

216

[162] G. Valerio, P. Baccarelli, P. Burghignoli, and A. Galli, “Comparative analysis of
acceleration techniques for 2-D and 3-D Green's functions in periodic structures
along one and two directions,” IEEE Transactions on Antennas and
Propagation, vol. 55, no. 6, pp. 1630 - 1643 2007.

[163] G. Valerio, P. Baccarelli, S. Paulotto, F. Frezza, and A. Galli, “Regularization
of mixed-potential layered-media Green's functions for efficient interpolation
procedures in planar periodic structures,” IEEE Transactions on Antennas and
Propagation, vol. 57, no. 1, pp. 122-134, 2009.

[164] D. Van Orden, and V. Lomakin, “Rapidly convergent representations for 2D
and 3D Green's functions for a linear periodic array of dipole sources,” Antennas
and Propagation, IEEE Transactions on, vol. 57, no. 7, pp. 1973-1984, 2009.

[165] S. Velamparambil, S. MacKinnon-Cormier, J. Perry, R. Lemos, M. Okoniewski,
and J. Leon, “GPU accelerated Krylov subspace methods for computational
electromagnetics,” in Microwave Conference, 2008. EuMC 2008. 38th European,
Year, pp. 1312-1314.

[166] R. H. Victora, and S. Xiao, “Composite media for perpendicular magnetic
recording,” IEEE Transactions on Magnetics, vol. 41, no. 2, pp. 537-542, 2005.

[167] V. Volkov. "Better performance at lower
occupany", http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf, accessed
on 08/25/2012;

[168] V. Volkov, and J. W. Demmel, “Benchmarking GPUs to tune dense linear
algebra,” in High Performance Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference for, Year, pp. 1-11.

[169] D. Weller, and A. Moser, “Thermal effect limits in ultrahigh-density magnetic
recording,” IEEE Transactions on Magnetics, vol. 35, no. 6, pp. 4423-4439, 1999.

[170] G. Winkler, D. Suess, J. Lee, J. Fidler, M. A. Bashir, J. Dean, A. Goncharov, G.
Hrkac, S. Bance, and T. Shrefl, “Microwave-assisted three-dimensional
multilayer magnetic recording,” Applied Physics Letters, vol. 94, no. 23, pp.
232501-232503, 2009.

[171] G. Woltersdorf, and C. H. Back, “Microwave assisted switching of single domain
Ni80Fe20 elements,” Physical Review Letters, vol. 99, no. 22, pp. 227207, 2007.

[172] H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
“Demystifying GPU microarchitecture through microbenchmarking,” in

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

217

Performance Analysis of Systems & Software (ISPASS), 2010 IEEE
International Symposium on, Year, pp. 235-246.

[173] R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a
diffraction grating spectrum,” Philosophical Magazine, vol. 4, no. 21, 1902.

[174] K. Yang, and A. E. Yilmaz, “Comparison of precorrected FFT/adaptive integral
method matching schemes,” Microwave and Optical Technology Letters, vol. 53,
no. 6, pp. 1368-1372, 2011.

[175] K. Yee, “Numerical solution of initial boundary value problems involving
maxwell's equations in isotropic media,” Antennas and Propagation, IEEE
Transactions on, vol. 14, no. 3, pp. 302-307, 1966.

[176] D. Yeh, L.-S. Peh, S. Borkar, J. Darringer, A. Agarwal, and W.-m. Hwu,
“Thousand core chips,” IEEE Design & Test of Computers, vol. 25, no. 3, pp.
272-278, 2008.

[177] A. E. Yilmaz, J. Jian-Ming, and E. Michielssen, “Time domain adaptive integral
method for surface integral equations,” IEEE Transactions on Antennas and
Propagation, vol. 52, no. 10, pp. 2692-2708, 2004.

[178] R. Yokota, and L. A. Barba, "Chapter 9 - Treecode and Fast Multipole Method
for n-body simulation with CUDA," GPU Computing Gems Emerald Edition,
W. H. Wen-mei, ed., pp. 113-132, Boston: Morgan Kaufmann, 2011.

[179] R. Yokota, J. P. Bardhan, M. G. Knepley, L. A. Barba, and T. Hamada,
“Biomolecular electrostatics using a fast multipole BEM on up to 512 GPUs and
a billion unknowns,” Computer Physics Communications, vol. 182, no. 6, pp.
1272-1283, 2011.

[180] J.-G. Zhu, and Y. Wang, “Microwave assisted magnetic recording utilizing
perpendicular spin torque oscillator with switchable perpendicular electrodes,”
IEEE Transactions on Magnetics, vol. 46, no. 3, pp. 751-757, 2010.

[181] J.-G. Zhu, X. Zhu, and Y. Tang, “Microwave assisted magnetic recording,”
IEEE Transactions on Magnetics, vol. 44, no. 1, pp. 125-131, 2008.

	DEDICATION
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	VITA
	ABSTRACT OF THE DISSERTATION
	1 Introduction
	1.1 Importance of numerical simulations to science and engineering
	1.2 Acceleration of numerical simulation
	1.3 Many-core and heterogeneous computing architectures
	1.3.1 Massive parallelization architectures
	1.3.2 Unique memory architecture

	1.4 Hardware-adapted algorithm design
	1.5 Summary of contributions
	1.6 List of publications
	1.6.1 Book chapters
	1.6.2 Journal articles
	1.6.3 Conference presentations

	1.7 Outline of the thesis

	2 Problem statement and mathematical outline
	2.1 Numerical solutions of general micromagnetic problems
	2.1.1 Gibbs free energy
	2.1.2 The Landau-Lifshitz-Gilbert equation
	2.1.3 Solution of the dynamic equation
	2.1.4 Evaluation of the magnetostatic field component

	2.2 Numerical solutions of general electromagnetic problems
	2.2.1 Helmholtz wave equations and its Green’s function
	2.2.2 Solution of the Helmholtz equation

	2.3 Numerical solutions of electromagnetic problems with periodic boundary conditions
	2.4 Integral equation solvers
	2.5 Fast methods for integral equations

	3 Introductions to the Graphics Processing Units (GPUs)
	3.1 A short history of GPUs
	3.1.1 3D graphics pipeline
	(a) Vertex transformation:
	(b) Rasterization:
	(c) Fragment operations:
	(d) Frame buffer operations:

	3.1.2 Fixed-function GPUs
	3.1.3 The Emergence of GPGPUs

	3.2 The Architecture of GPGPUs
	3.2.1 NVIDIA G80 architecture
	3.2.2 AMD Radeon R600 architecture

	3.3 GPU programming model and its impact in scientific computing
	3.3.1 Graphics APIs
	3.3.2 General purpose programming APIs for GPGPUs
	(a) CUDA C
	(b) OpenCL
	(c) DirectCompute
	(d) Microsoft C++ AMP
	(e) OpenACC

	3.4 Future architectures and potential impact to scientific computing
	3.4.1 NVIDIA’s Kepler GK110 architecture [130]
	(a) Significant boost in double precision computing capability
	(b) Increased ability handling complex flow
	(c) Changed SM composition.

	3.4.2 Intel’s Many Integrated Cores (MIC) [79, 150]
	3.4.3 Reconfigurable Computing (RC) architectures [18, 38]
	3.4.4 Merge of traditional CPU and GPUs

	4 Fast algorithms for integral equation solvers on GPUs
	4.1 Current status and literature review
	4.1.1 MoM on GPUs
	4.1.2 FFT-based fast algorithms on GPUs
	4.1.3 Hierarchical fast methods
	4.1.4 Solution of linear systems

	4.2 Non-uniform Grid Interpolation Method (NGIM)
	4.2.1 Algorithm description
	Stage 0 (near-field evaluation):
	Stage 1 (finest level NG field calculation):
	Stage 2 (aggregation of NGs/upward pass):
	Stage 3 (NG to CG transitions and CG decomposition/downward pass):
	Stage 4 (CG to observation point):

	4.2.2 GPU NGIM
	(a) Preprocessing and initialization stages
	(b) Near-field computation
	(c) Outward computation from sources to NG samples (Stage 1)
	(d) NG upward aggregation (Stage 2)
	(e) Evaluation of field values on CG samples (Stage 3)
	(f) CG grids to observers (Stage 4)

	4.2.3 Overall results
	(a) Computational time for low frequency problems
	(b) Computational time for high- and mixed-frequency problems
	(c) Memory usage

	4.2.4 Summary and future directions

	4.3 Box Adaptive Integral Method (B-AIM)
	4.3.1 Procedure of B-AIM
	Preprocessing (Stage 0):
	Projection (Stage 1):
	Grids interaction calculation (Stage 2):
	Interpolation (Stage 3):
	Near field correction (Stage 4):

	4.3.2 The GPU implementation of B-AIM
	(a) “On-the-fly” calculation:
	(b) Box-level domain decomposition and regulation:
	(c) Pre-sorting:
	(d) Block-box mapping:
	(e) Lagrange projection and interpolation schemes:

	4.3.3 Computational complexity and result analysis
	4.3.4 Multi-GPU B-AIM
	4.3.5 Summary

	4.4 General designing guidelines for algorithms running on GPUs
	4.4.1 Massive parallelism
	4.4.2 Memory exchange between host and device
	4.4.3 Floating point intensive and memory intensive applications
	4.4.4 Using shared memory to avoid global memory access
	4.4.5 Coalesced access to global memory
	4.4.6 Occupancy
	4.4.7 Branching and divergence

	4.5 Summary
	4.6 Acknowledgement

	5 Fast Methods for Periodic Boundary Problems
	5.1 Problem formulation
	5.2 Fast Periodic Interpolation Method (FPIM)
	5.3 Evaluation of the near-field periodic field in FPIM
	5.4 Evaluation of the far-field periodic field in FPIM
	5.4.1 Stage 1: Evaluating at source and observer grids
	5.4.2 Stage 2: Evaluating at the observation grid
	5.4.3 Stage 3: Evaluating at the actual observers

	5.5 Computational complexity
	5.5.1 Low- and moderate-frequency regime
	5.5.2 High-frequency regime
	5.5.3 Mixed-frequency regime

	5.6 Results
	5.6.1 Computational times in various frequency regimes
	5.6.2 Computational times for various kernels
	5.6.3 Computational accuracy

	5.7 Discussions on extended applications of FPIM
	(a) Periodic 1D and 2D arrays in 2D free-space
	(b) Periodic 1D and 2D arrays in metal wall waveguides
	(c) Periodic 1D and 2D arrays in layered media

	5.8 FPIM on GPUs
	5.9 Summary
	5.10 Acknowledgement

	6 Electromagnetic and micromagnetic simulators on GPUs
	6.1 The micromagnetic simulator (FastMag)
	6.1.1 Large scale bit patterned media array simulations
	6.1.2 Magnetic recording head simulations

	6.2 The electromagnetic simulator
	6.2.1 Scattering from free-standing spheres
	6.2.2 Scattering from human upper body
	6.2.3 Scattering from periodic meta-materials

	6.3 Acknowledgement

	7 Micromagnetic simulations of advanced magnetic recording media and systems
	7.1 High density capped bit patterned media
	7.1.1 Introduction
	7.1.2 Structure configuration
	7.1.3 Switching field distributions
	7.1.4 Readback process
	7.1.5 Summary

	7.2 Microwave assisted magnetic recording
	7.2.1 Introduction
	7.2.2 Experiment configuration
	7.2.3 Reversal mechanism for homogeneous and composite media
	7.2.3 Reversal mechanism for homogeneous, composite media
	7.2.4 MAMR for multilevel recording
	7.2.5 Summary

	7.3 Acknowledgement

	8 Summary and future directions
	8.1 Summary
	8.2 Future directions
	8.2.1 Further development of NGIM
	8.2.2 FastMag on GPUs
	8.2.3 Parallelization across multiple computing nodes

	Appendix A The big-O notation
	Appendix B Periodic Green’s function
	References

