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 In this thesis, fast algorithms for solving fields defined by the Helmholtz equa-

tion using integral equation methods are developed and implemented on Graphics 

Processing Units (GPUs). GPUs are massively parallel processors that offer tens or 

even hundreds of times of floating point computing capability to current generation 

CPUs. A short history of the GPUs is given and their unique architecture is described 

in details. On this new hardware architecture, algorithms like the hierarchical Non-

uniform Grid Interpolation Method (NGIM) and the FFT-based Adaptive Integral 
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Method (AIM) have to be significant changed from their original sequential forms to 

achieve high performances. Specifically, the computational domains of the problems are 

divided into boxes, homogenizing the computing burdens across the wide SIMD-style 

stream multiprocessors. Computing operations are reformed and reorganized to exploit 

the enormous floating point computing power and while at the same time to minimize 

the data transfer latencies. The achieved computing performance on commercial GPUs 

is generally two orders of magnitude higher than that on state-of-the-art CPUs and 

with much lower memory consumption. 

 Based on these fast algorithms, an ultra-fast micromagnetic solver with linear or 

 logO N N  computational complexity is built. This solver, named FastMag, runs on 

desktop workstations with one or several GPU cards and is able to simulate magnetic 

systems with over one hundred million degrees of freedom. Electromagnetic solvers that 

use slightly different algorithms are also implemented and provide impressive perfor-

mance on general electromagnetic problems such as wave scattering. This 

electromagnetic solver is also capable of handling periodic boundary problems using a 

new algorithm called the Fast Periodic Interpolation Method (FPIM). This algorithm 

significantly uses spatial interpolations as well as the FFT to reduce the time of evalu-

ating fields generated by infinitely periodic structures. 

 Using previously developed micromagnetic solvers, the author investigated two 

novel magnetic recording systems that might be useful in the next generation ultra-high 



 

xxv 

density magnetic recording. The capped bit-patterned media (CBPM) are proposed to 

have lower reversal fields, lower switching field distribution as well as better readback 

signals. The reversal mechanisms of bit-patterned media under the influence of micro-

waves are also investigated. This leads to the proposed multi-layer recording system 

using the microwave-assisted magnetic recording (MAMR) technology. 
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1 Introduction 

 This chapter describes the motivations of the work presented in this thesis, the 

necessary background of the work, the current status of the field and author’s contribu-

tions to the area. 

 

1.1 Importance of numerical simulations to science and engineering 

 Numerical simulation is one the most important tools for the human beings to 

understand the physical world. Contrary to other approaches, such as experiments and 

analytical reasoning, simulations as a general approach for solving scientific problems 

appeared much later.  It became widely used only after the emergence of modern elec-

tronic computers. Though it has a relatively short history, it has some unique features 

that make it irreplaceable.  

 Many real world phenomena can be modeled with fundamental physics laws, 

expressed mathematically using one or a system of ordinary differential equations 

(ODEs) or partial differential equations (PDEs). In particular, in the fields of computa-

tional micromagnetics and electromagnetics, the Landau-Lifshitz-Gilbert (LLG) 

equation and the Helmholtz equation are PDEs and numerically can be cast as ODEs. 

With proper initial or boundary conditions, the solutions of these differential equations 

could  predict the behavior of actual physical systems.  
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 However, for practical systems, few of these ODEs or PDEs can be solved 

analytically, so modeling realistic systems requires using numerical methods to solve 

the underlying equations. Furthermore, in many situations, performing numerical 

simulations has advantages over experiments as a power predictive tool. There are also 

cases that experiment in which experiments cannot be a viable option, e.g. when de-

structive or hazardous experiments are required. 

 

1.2 Acceleration of numerical simulation 

 Scientists and engineers in all disciplines have sought ways to reduce the com-

puting resources, such as the processor time and memory, used by their numerical 

simulators. Faster simulator can reduce the overall cost of research, produce more 

results within a fixed period of time or simulate larger or more accurate models of a 

system. A complete list of techniques to accelerate the simulation of a problem is far 

beyond the scope of this thesis, but for a certain types of problems that will be dis-

cussed in the field of computational electromagnetics and micromagnetics, general 

guidelines can be made on where and how to explorer the opportunities for acceleration. 

Similar approaches can also be used for a set of models in many other fields of compu-

tational physics. 
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 For all the problems that will be discussed in this thesis, physical systems are 

modeled by a set of coupled differential equations, which can be often further cast into 

an integral equation form. Solutions of these equations follow a general procedure. First, 

the computational domain of interests is discretized both temporally and spatially, and 

the continuous differential or integral operators are emulated by their discrete counter-

parts. There are a number of ways for such discretization,  such as Finite Difference 

methods (FD) [85, 175], finite element method (FEM) [5, 81] and the method of mo-

ments (MoMs) for the integral equation (IE) methods [68, 135, 140]. 

  These methods usually express the original problem as a system of linear equa-

tions that can be represented by either sparse or dense matrix equations. Then, in a 

second stage, solution, stage, these matrix equations are solved through either direct 

matrix inversion methods [137] or iterative methods [60]. Finally, the obtained solutions 

can either be output to in proper visualized form or be plugged into the simulator again 

for other calculations or optimizations. 

 To accelerate the aforementioned process, multiple options are available and 

most efficient simulators most likely use many of them aiming at accelerating the most 

time consuming, bottlenecks, stages.  

 One obvious way to accelerate the computation is to reduce the number of 

independent variables or parameters to be solved. This can be achieved by modeling 

the original physical problems with coarser discretization, everywhere in the domain or 
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in appropriate areas, leading to fewer degrees of freedom in the matrix-vector equations. 

In this thesis, the term “degrees of freedom” is also referred to as “unknowns”, “problem 

size” or sometimes “number of equations”.  

 Another approach of acceleration is to solve the presented linear equation 

system using “fast algorithms” that use less number of operations than the straightfor-

ward direct inversion or iterative solution techniques would need. Following this 

approach usually requires identifying and utilizing certain characteristics of the corre-

sponding matrices generated by a specific modeling method. The Adaptive Integral 

Methods (AIM) [11, 136], Fast Multipole Methods (FMMs) [34, 61], Non-uniform Grid 

Interpolation Methods (NGIMs) [16, 103]and H2-Matrix Approximation Methods [64, 

65] are a few examples among many other. These fast algorithms can often be ex-

pressed as a series of complex matrix transform operations applied to the matrix 

equations. 

 Computational methods are developed for using digital computers and they 

must account for the hardware features. For several decades the computational power 

increase largely relied on the increase of the processor speed. However, the speed of 

single core systems has saturated due to fundamental physical limitations [23, 74, 78]. 

Further improvement of performance of computers should rely on the adoption of 

parallel computer systems, such as multi-core CPUs [55, 75], alternative many-core 

architectures [4, 79, 101, 130, 150] and heterogeneous computing architectures [3, 21, 
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23]. These hardware architecture developments have a major impact on the design of 

computational algorithms. 

 Considering all these aspects, we can see that accelerating numerical solvers 

usually involves extensive domain knowledge of modeling physics phenomena in sets of 

mathematical equations, capabilities to design and implement fast algorithms efficiently 

as computer programs and in-depth knowledge of computer architectures for the algo-

rithms being adapted to state-of-the-art hardware and software. In this thesis, we will 

focus primarily on the latter two areas and describe the designing, optimizing and 

benchmarking processes of several fast algorithms on the General Purpose Graphics 

Processing Units (GPGPUs).  

 

1.3 Many-core and heterogeneous computing architectures 

1.3.1 Massive parallelization architectures 

 Many-core computing architectures emerged as an important technology for 

scientific computing less than ten years ago and it is becoming an increasing plausible 

platform of choice for numerical computing. With the instruction level parallelism (ILP) 

provided by compilers or hardware control logic being exhausted, chip designers decid-

ed to replicate multiple cores inside one chip and leave the higher level logic to utilize 

the thread-level or data-level parallelism [74, 78]. 
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 Historically, massive parallelization was the strategy of choice to scale the 

computation performance of scientific simulations to multiple tera- or peta-FLOPS 

range. The research area “high-performance computing” (HPC) deals mostly with 

computer clusters that consist of multiple computer nodes. In this regime, homogeneous 

high-performance computing nodes are built on processors responsible for all computing 

tasks, regardless of their nature. These nodes are connected through relatively slow 

network connections and interact with each other via certain message passing mecha-

nism such as the Message Passing Interfaces (MPIs). Contrary to the traditional HPC 

approaches, newly emerged many-core processor like Graphics Processing Units (GPUs), 

IBM’s Cell Broadband Engine (CBE) and Field Programmable Gate Arrays (FPGAs) 

allow for massive parallelization happens even within a single computing device. In 

particular,  a single GPU card can contain hundreds of cores, e.g. 1536 cores (or stream 

processors) on NVIDIA GeForce GTX 680 card [130] and 2048 processors on AMD 

Radeon 7970 HD card [4]. Each of the processor cores can run several permitting for 

tens of thousands individual threads in parallel [127]. Multiple GPUs can be installed 

on a single workstation or a single cluster node. 

1.3.2 Unique memory architecture 

 In addition to the unique processor architecture, the aforementioned many-core 

systems also have complex memory architectures to deal with the so-called Memory 

Wall Problem [116]. 
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 The cause of memory wall problem is closely related to the concept called 

arithmetic intensity, which is defined as the average number of arithmetic operations 

per memory access. For algorithms that have very low arithmetic intensity, the perfor-

mance does not scale with the number of processor, because it is the latency of memory 

access that limits the overall arithmetic throughput. With the emergence of multi-

TFLOPS single chip processors like the GPUs, this effect is magnified as the speed of 

GPU memory is only slightly faster than that of CPUs with a much fewer cores.  

 Therefore, GPUs employ more complex multi-level memory hierarchies includ-

ing the shared memory, constant memory, L1/L2 cache and texture memory [101, 125, 

127]. Utilizing these different types of memory against different types of tasks solely 

relies on the programmer and is critical for achieving high performance from any nu-

merical algorithm to run on GPUs. To keep these high-speed caches and shared 

memory efficiently used, data reuse has to be maximized by improving the spatial and 

temporal data access locality. There are also other features provided by specific vendors, 

like the coalesced memory access and arithmetic/memory instruction overlapping to 

further accelerate the data access throughput. 

 

1.4 Hardware-adapted algorithm design 
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 All the aforementioned hardware architectures require much more efforts from 

the programmers than just expressing their formulas in high level languages and letting 

the compilers to do the rest. Architects of a simulator should consider not only the 

theoretical computational complexity of the algorithm but also how the algorithms can 

be matched to these computing architectures. Programmers have to utilize task or data 

parallelism at a much finer scale and try to increase the data locality as much as possi-

ble. Sometimes, they may face a trade-off between parallel efficiency and computational 

complexity and one might need to adopt unconventional techniques such as trading 

memory access with extra numerical computations to break the memory wall.   

 In this work, the hypothesis is that for various algorithms in the fields of com-

putational electromagnetics and micromagnetics, high performance can only be 

achieved by simultaneously reducing the computational complexity and adapting the 

algorithms to the hardware. We believe researcher in all the numerical computing areas 

must pay close attention to the technology trends in all layers of the computing plat-

form, from the very low-level hardware processor arrangement to mid-level runtime 

library and to high-level task-level parallelization.   

 

1.5 Summary of contributions 
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 The main contribution of the thesis is to demonstrate that GPUs and other 

similar emerging many-core accelerator architectures are promising platforms for scien-

tific computing applications. This is especially true for areas that involve high floating 

point operation intensity such as computational electromagnetics and micromagnetics.  

 The thesis also gives important tips and hints on how existing algorithms 

should be modified to accommodate GPUs. The algorithms described, implemented and 

benchmarked show orders of magnitude improvements in speed and memory consump-

tion over compiler-optimized single thread sequential code. It is also shown that GPUs, 

as a typical and widely used many-core computing architecture, are very effective for 

computational electromagnetics and micromagnetic applications. However, in order to 

obtain significant speed-ups, developers of numerical simulation software have to keep 

the hardware architecture in mind, in order to write code ready to scale on to the large 

number of cores with heterogeneous processor and memory configurations.  

 The thesis also shows several simulators utilizing fast algorithms on GPUs. The 

effectiveness of GPU-accelerated fast algorithms is demonstrated by complex magnetic 

recording simulations, perpendicular magnetic write head simulations and the electro-

magnetic wave scattering simulations.  

 Employing the ultra-efficient micromagnetic solver built on those GPU-

accelerated fast algorithms, the author proposed several possible recording media de-

signs for the next generation magnetic recording systems and verifies them by 
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computer simulations. The first set of simulations deal with a novel design of bit pat-

terned media (BPM). The other use case is the simulation and verification of the 

microwave-assisted magnetic recording (MAMR) system. The simulation of the BPM 

and the MAMR applied on multilayer patterned media arrays shows interesting physi-

cal phenomena might help the design of the next generation hard-disk drive.. 

 

1.6 List of publications 

 During the past five years, the author has published several peer-review papers 

on several journal and made many presentations on conferences. Since the author 

started to do researches since the relatively early stage of GPUs emerged as a disrup-

tive technology, many results shown in this are slightly outdated. Therefore, the 

readers should be careful when comparing the absolute numbers listed in the paper 

with those published much later and on more advanced hardware platforms.  

 The author of this thesis and those publications conducted his research with 

many collaborators. Consequently, all of the papers listed described below as well as 

this thesis involve extremely large amount of cooperative work. The author would like 

to acknowledge all the co-authors listed on all the publications, in various academic 

institutions and industrial partners. 

1.6.1 Book chapters  
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 In the book titled “GPU Computing Gems: Jade Edition”, published by Elsevier 

in 2011, the chapter 19 named “Fast electromagnetic integral equation solvers on 

graphics processing units” described the electromagnetic solvers based on Non-uniform 

Interpolation Method (NGIM) on GPU [93]. The NGIM is a hierarchical multilevel fast 

algorithm that reduces the quadratic computational complexity of general iterative 

integral equation solvers to linear or O(NlogN) complexity. The section 4.2 will discuss 

this NGIM algorithm in more details with updated results and detailed analysis. 

1.6.2 Journal articles 

 Currently, 13 journal articles have been published or accepted for publication 

under the author’s name. Among them, 8 papers are on the topic of fast algorithms and 

numerical techniques for high performance simulation solvers on GPUs and the rest are 

in the area of design and analysis of the magnetic recording system.  

 The first two papers published in 2008 discussed a novel design for ultrahigh 

density magnetic recording system [106, 107]. The papers discussed a dual-layer pat-

terned element magnetic recording medium design that has two layers of different sizes 

stacked in the vertical directions. The magnetic behavior of this design has been inves-

tigated by simulations. From the simulations, various interesting behaviors induced by 

the prolonged soft upper layer and the ferromagnetic coupling between layers have 

been observed and it was found that the reversal field of such magnetic medium can be 

much lower than other single and multilayer design that have the same thermal stabil-
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ity. Following these papers, the proposed media have been fabricated and tested exper-

imentally [20, 25, 58]. 

 In 2009, the author published two papers on the topic of the microwave-assisted 

magnetic recording [95, 97]. In these papers, the author revealed various interesting 

physical phenomena when a double-layer ferromagnetically coupled pattern media 

element is excited by applied microwave field. In the second paper, the possibility of 

multi-layer recording was discussed [95]. The content of these papers will be presented 

and discussed again in the Chapter 7 of this thesis. In addition, the author also pub-

lished a paper proposing another magnetic recording media design, called the “capped 

media” in 2009 [96]. This paper also directly inspired another paper published in 2011 

on Applied Physics Letters [113].  Capped media can be seen as an extension and 

improvement of the “ledge” media and the AFC-capped media is the design with fur-

ther optimized performance. Following these papers, capped bit patterned media have 

been fabricated and their properties have been experimentally tested [84, 138, 139].  

 In 2010, the author started publishing extensively in the field of numerical 

computing and GPU algorithms and computing. Three papers were out. The first one 

in the IEEE Transactions on Magnetics describes micromagnetic solver on GPU with 

linear computational complexity [99], which is the early prototype of the FastMag 

solver that later published one year later in 2011 and is being used internally and 

externally in academia and industry. The next paper titled “Fast periodic interpolation 
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method for periodic unit cell problems” [100] describes a fast algorithm that can make 

and integral equation based electromagnetic solvers several orders of magnitude faster 

for problems with periodic boundary conditions. The new algorithm uses extensive 

spatial interpolations to accelerate the computation of fields and it can be efficiently 

parallelized on many-core architectures. The third paper in 2011, published in the 

Journal of Computational Physics describes the non-uniform interpolation methods 

(NGIMs) [15, 16, 102] on GPU in details [98]. The paper illustrates several key points 

for the NGIM to have high efficiency running on a single GPU card. This is the first 

published efficient implementation of a hierarchical fast method for integral solvers of 

Helmholtz equation. The key contributions of the paper are the unique approach of 

domain subdivision, the task distribution across stream processors and the on-the-fly 

interpolation calculation.  

 In 2011, the author published three papers in collaboration with other students 

in the lab. The paper titled “FastMag: Fast micromagnetic solver for large-scale simu-

lations” summarized features of the FastMag micromagnetic solver [31]. The FastMag 

simulator is extremely fast and has the capability of handling very large and complex 

magnetic systems. The solver can efficiently solve ultra-complex problems on a desktop 

workstation utilizing the fast algorithms on GPUs designed by the author. Several 

other papers showed a few simulations running on the FastMag simulator and interest-

ing phenomena have been observed leading to new and improved designs for various 
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magnetic systems. The papers on AFC-capped BPM extend the study of the “capped 

bit pattern media” and introduced an antiferromagnetically coupled cap layer that 

provides better cancellation of magnetostatic interactions between patterned islands 

[112, 113]. 

 At the time of writing this thesis, two other papers have been published. One 

paper in the Journal of Applied Physics discussed accuracy of the evaluation of ex-

change field which is a critical component during the solving of the LLG equation [30]. 

The other paper on the IEEE Transactions on Magnetics discussed several aspects in 

the micromagnetic simulations while designing and analyzing magnetic recording sys-

tems [49]. The paper reveals that improper discretization would significantly affect the 

accuracy of the simulations via investigating the effect of wrap around shield (WAS). 

By using sufficiently dense meshes model the recording head, it is found that WAS 

improves the head field gradient in both down- and off-track directions but reduces the 

magnitude of the field. This study shows the capability of the FastMag simulatr by 

running ultra-complex magnetic systems. This work has further proven the practicality 

of the GPU acceleration for scientific simulators.  

 The most recently published paper “Domain wall motion in magnetically frus-

trated nanorings” [111], discussed interesting physical phenomena observed in 

frustrated magnetic nanorings which might be useful as an alternative storage device in 

the future. 
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 Another accepted and yet to be published paper on the IEEE Antennas and 

Propagation Magazines introduces a new fast algorithm called box adaptive integral 

method (B-AIM) on GPUs. This algorithm also accelerates the field evaluation process 

in many iterative solvers for Helmholtz equations like NGIM but with slightly different 

philosophy. B-AIM is a newly designed FFT-based fast algorithm that also runs over 

100x faster on a single GPU card versus the sequential implementation for CPUs. This 

algorithm will be discussed in details in the Section 4.3.  

1.6.3 Conference presentations 

 The author is a regular attendant of various conferences organized by IEEE, 

APS and ACM, where he presented the new algorithms outlined above in the confer-

ences. 

 

1.7 Outline of the thesis 

 This thesis presents the scientific findings and engineering innovations the 

author has done during his PhD studies. Each chapter is mostly self-contained, includ-

ing a motivation, introduction, and summary. However, the chapters also have many 

cross-relations between each other. 

 The document is organized in eight chapters. The first (current) chapter con-

tains general introduction that describes the background of the fields and the 
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motivations of the author’s researches. It also summarizes the contributions of the 

thesis that will be presented later on and listed the publications and other academic 

activities the author has involved. 

 Chapter 2 presents problems the author has been concerned, in a concise but 

accurate way. This section begins with a description of the equations to be solved in 

computational micromagnetics and electromagnetics. Then several approaches to reach 

these equations numerically are described, analyzed and compared. Most of the numeri-

cal work is concentrated on the integral equation (IE) or integral superposition 

approach of solving partial differential equations (PDEs) in the form of either Poission 

equation or Helmholtz equation.  

 Chapter 3 introduces the hardware platform the author used, the graphics 

processing units (GPUs). In the first section of Chapter 3, the history of GPUs is 

briefly described, including its emergence as special purpose coprocessor, development 

driven by consumer electronics and the current state of being powerful accelerators that 

possesses more computing power than CPUs. Then in Section 3.2 and 3.3, the hardware 

and software architectures of GPUs are described and analyzed. In the final section, the 

author concludes the chapter with an outlook of future development trends of many-

core and heterogeneous computing platforms, including possible new hardware designs, 

software models, and programming concepts.  
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 Chapter 4 concerns the fast algorithms implemented by the author. Detailed 

descriptions of three different algorithms that are common and efficient for evaluating 

various fields encountered in simulations are described and analyzed. Numerical results 

of each algorithm are shown in each section. Section 4.1 presents a literature review 

surveying the state-of-the-art at the time of construction of this thesis. Section 4.2 

deals with the Non-uniform Grid Integration Methods (NGIM), which belongs to the 

class of multi-level hierarchical fast algorithms. Section 4.3 describes the Box Adaptive 

Integral Methods (B-AIM) which is based on FFTs and near field corrections. In Sec-

tion 4.4, general guidelines for designing algorithms for GPUs are listed and discussed. 

 Chapter 5 describes Fast Periodic Interpolation Methods (FPIM) which targets 

a set of problems with infinite periodic boundary conditions.  

 In Chapter 6, several use cases of our computational electromagnetic and mi-

cromagnetic solvers are shown. The solvers is a collaborative effort of several people, 

including the author’s advisor Prof. Vitaliy Lomakin and the author’s contributions are 

mostly in the numerical fast algorithms, parallelization, GPU implementations, perfor-

mance optimizations, and integration. The use cases include several verification 

problems that show the capability and validity of developed solvers and two real world 

simulation projects done for industrial partners of the group.  
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 In Chapter 7, presents the use of micromagnetic solvers for application in the 

design of magnetic recording system. The material in this chapter is mostly from the 

previously published papers by the author. 

 The last chapter summarizes the thesis with observations at a higher-level 

perspective and also lists several the possible future work directions to improve and 

extend the existing methods and codes. 
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2 Problem statement and mathematical outline  

 This chapter aims to lay the mathematical foundations of the problems to be 

solved in the field of computational micromagnetics and electromagnetics.  

2.1 Numerical solutions of general micromagnetic problems 

 Micromagnetic simulation deals with various phenomena that happen in the 

magnetic materials. It was introduced by William F. Brown Jr. in 1963 via the Brown’s 

equation, which is derived by obtaining stationary points from the free energy func-

tional [22]. The magnetization dynamics is described through the Landau-Lifshitz-

Gilbert equations [56, 86].  This equation describes the motion of magnetic moments as 

a damped gyromagnetic precession around the local magnetic field they observe. Equi-

librium states can be found by minimizing the magnetic energy of the system. 

Moreover, minima energy paths between various magnetic states can be found either 

using minimization methods of the Nudged Elastic Band method [46, 73]. 

2.1.1 Gibbs free energy 

 The total Gibbs free energy of a magnetic system is given by [22] 

   total exch anis zeeman demagE E E E E dv


       (2.1) 

Within this formula, each energy component can be expressed as: 
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a)  2 2 2( ) ( ) ( )exch x y zE A m m m dv


       is the exchange energy, where A  is the 

exchange constant and xm , ym , zm  are three components of normalized magnetization 

in any discretized volume; 

b)   2
1 1anisE K dv


   m a , where 1K  is the magnetocrystalline anisotropy 

constant, m  is the normalized magnetization defined as / sMm M  and a  is the 

unit vector along the easy axis. This expression is for materials with simple uniaxial 

anisotropy and more complex forms of anisotropy do exist but are not discussed within 

this thesis; 

c) zeeman extE dv


   M H , where M is the magnetization and extH  is the external field; 

d) 1
2demag demagE dv


   M H , where magnetoH is the magnetostatic field. 

 Calculating the equilibrium state of the magnetic system requires finding the 

minimal total energy. Brown proposed a variational method that calculates the varia-

tional derivative of the total energy with respect to the magnetization [22]. So in the 

equilibrium state,   

     0totalE



M

     (2.2) 

This leads to the Brown’s equation: 

    2
12 2 0s sA K M M      ext demagM m a a m H H   (2.3) 
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 This means that at the equilibrium state, the magnetization polarization will 

align itself with an effective field that can be expressed as  

   
 2

122

s s

KA
M M


   eff ext demag

a a mm
H H H



  (2.4)

  

 To solve a large magnetic system, one usually needs to discretize the whole 

computational domain into many small subdomains, within which all the magnetic 

properties are assumed to be uniform or have prescribed variations. The above energy 

calculation is valid for any of these subdomains and the equilibrium state of the entire 

system can be obtained by minimizing the total energy possessed by all the subdomains. 

As stated briefly in the Section 1.2, there are many ways of discretization, with the 

finite difference (FD) and finite element method (FEM) being two most widely used 

methods. Using any of these methods will generate a system of equations that can be 

expressed as a matrix equation and its solution will be discussed in later sections. 

2.1.2 The Landau-Lifshitz-Gilbert equation 

 Often the dynamic behavior of the magnetization is of main interest. The dy-

namics of a single magnetic moment under the influence of a magnetic field is governed 

by its Larmor precession and the model to describe this motion was proposed by Lan-

dau and Lifshitz [86] and later modified by Gilbert [56, 57]. The Landau-Lifshitz 

equation for modeling the dynamic behavior of a single magnetic moment is as follows: 
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, where the L and  are precession and damping constant respectively. 

 The first term of the above equation is the precession term and the second term 

is an empirical damping term. Later in the 1955, Gilbert proposed a different approach 

to model the dissipation process and came out with another expression of the damping 

term. The magnetic dynamics equation with the Gilbert damping term is expressed as 

follows 
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 These two equations are mathematically equivalent, though they are derived 

from different physical perception. The damping and precession constants in the above 

two equations can be related via 
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 The commonly used as the “Landau-Lifshitz-Gilbert equation” (LLG equation) 

has the following form 
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 This is the equation that we are going to discuss and attempt to solve in this 

thesis for all the micromagnetic problems. 

2.1.3 Solution of the dynamic equation 
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 As discussed in the previous two sections, using either FEM or FD method to 

construct either the energy variational equation or the LLG equation for a disrectized 

magnetic domain will lead to a series of ODEs. The LLG equation can be expressed in 

a general form of  

      ,
d

f t
dt


y

y      (2.9) 

 This system of ODEs can be solved by various time integration methods, in-

cluding explicit and implicit methods [37, Tenenbaum, 1985 #304]. 

 In order to supply the right-hand-side (RHS) as shown in Eq. (2.9) to the time 

integrators, the simulator will have to evaluate the effH  at every time step, which 

means that Eq. (2.4) needs to be calculated for multiple times (often tens of thousands 

and hundreds of thousands times). Therefore, the ability to rapidly compute the effec-

tive field is of a primary importance.  

2.1.4 Evaluation of the magnetostatic field component 

 Among the four components of the effective field, the magnetostatic component 

differentiates itself from other field components as it is the only long range field. So to 

obtain the magnetostatic field in the entire computational domain, one has either to 

solve the Poisson equation or use the superposition principle to calculate the interac-

tions between all sources and observers via the Green’s function method. Both 

approaches have high computational complexity. The actual simulations confirm that 
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even for relative small problems with sizes up to several hundreds, the time used to 

obtain the magnetostatic field may be dominant as compared to other effective field 

components. 

 In this thesis, we are focusing on accelerating the Green’s function method as 

will be called in the following texts. The magnetostatic field can be expressed as 
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where the first and second terms corresponds to the field generated by the equivalent 

volumetric and surface magnetic charge distributions, respectively. Both of the above 

integration terms can be transformed into a discrete convolution followed by the gradi-

ent operator 
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where  iq r  is discretized volumetric or surface magnetic charge and   is the static 

magnetic scalar potential. 

 The evaluation of the magnetic scalar potential is a computationally complex 

task, which is of primary interest of Chapter 4.  
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2.2 Numerical solutions of general electromagnetic problems 

 Electromagnetics is a branch of science that deals with physical phenomena 

related to electromagnetic fields and interactions. The contemporary electromagnetics is 

built on the foundation laid by James Clerk Maxwell between 1861 and 1862 through 

the Maxwell’s equations [114]: 
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 Here the Maxwell’s equation is shown in for time-harmonic fields, and 

    E, D, B, H, J  are electric field, electric displacement, magnetic flux density, mag-

netic field and electrical current density, respectively. 

2.2.1 Helmholtz wave equations and its Green’s function 

 From those four equations, electromagnetic wave equation can be deduced and 

the wave equation in the vacuum can be expressed as second-order partial differential 

equations: 
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where A and   are the magnetic vector potential and the electric scalar potential 

defined as  
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respectively and under Lorentz Gauge Condition  

     
2

0
jw

c
  A     (2.15) 

 To solve these wave equations, a number of integral equation formulations can 

be used. In this paper, we discuss the frequency domain volumetric/surface integral 

equation only and for time domain IEs, please refer to Ref. [118, 141] for more details. 

Here a frequency surface integral equation formulation is shown as an example. Consid-

er a surface problem comprising a structure made of a perfect electric conductor 

residing in free space. An electric field IE can be written for an unknown surface cur-

rent sJ  distributed on the surface S  of the structure of the linear size D  in the 

following mixed potential form [135] 
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  (2.16) 

 Here, iE is the incident field,  is the magnetic vector potential generated by the 

surface current sJ ,  and   is the scalar potential generated by the surface charge s  

related to the surface current via the divergence. In addition, k  is the wavenumber 

corresponding to the wavelength 2 k   and frequency 2f kc   with velocity c . 
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2.2.2 Solution of the Helmholtz equation 

 Careful readers can easily see that Eq. (2.16) is very similar to the Eq. (2.10) 

except for different unknowns to be solved. To solve Eq. (2.16), the Method of Mo-

ments (MoM) is usually used to discretized the surface, which is meshed into surface 

elements, typically triangles [68]. The unknown current is expanded via  

1
( ) ( )sN

n nn
j

sJ r f r , where nj  are unknown coefficients, ( )nf r  are basis functions, 

and sN  is the number of the degrees of freedom in the expansion. Often Rao-Wilton-

Glisson functions are chosen as the basis functions due to its versatility in handing 

various geometries [140]. The current expansion is substituted in the IE and subse-

quently tested (i.e. integrated) with testing functions (which may be chosen the same 

as the basis functions). Integrating by parts the scalar potential component the IE is 

transformed in a set of algebraic equations 
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where mnZ  are elements of the impedance matrix and mV  is the tested (known) inci-

dent field 
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 For m n  the integrals in Eq. (2.18) are computed using quadrature rules of a 

certain order while for m n  the singular behavior of the integral kernel is taken into 

account via an analytical integration. The ways to solve this system of equations by 

iterative methods will be described in the Section 2.4, but usually the solver will need 

to evaluate the following equation: 
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 Here, the potential ( )mu r  at the observation locations mr  is evaluated by a 

discrete convolution of the Green’s function ( , ) m njk
m n m nG e  r rr r r r  and sources 

nQ  co-located with the observers.  

 The advantage of the IE method is that it generally does not require the empty 

spaces in a computational domain to be discretized thus are very effective for complex 

geometries with empty spaces. It is also good for 3D surface problems such as the 

electromagnetic wave scattering from conductors.  

 

2.3 Numerical solutions of electromagnetic problems with periodic boundary 

conditions 

 Periodic programs are often met in electromagnetics and micromagnetics, e.g. 

antenna arrays, meta-materials, arrays of magnetic elements, etc. [135]. Using the 

integral equation methods, the only difference between solving a free-space problem and 
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periodic problem is the form of their respective Green’s functions. To account the 

infinite cells in the computational domain, the free space Green’s function need to be 

replaced by a periodic Green’s function (PGFs) which is usually much more complex 

than the one shown in the Eq. (2.19) [13, 83, 164]. Therefore, to accelerate the solution 

of periodic problems, a solver must overcome two major obstacles: 1) Evaluation of 

PGFs and 2) Convolution as in Eq. (2.19).  

2.4 Integral equation solvers  

 From the description in the previous sections, we could see that in computa-

tional micromagnetics and electromagnetics, one of the most critical issues for 

accelerating the solution of problems are the rapid evaluation of the fields. The fields 

can either be static fields such as the magnetostatic field defined by the Poisson’s 

equation or the electromagnetic field defined by the Helmholtz equation. Using the 

Green’s function method to solve this two equations will result in integral equations in 

the form of Eq. (2.17) and Eq. (2.18). Combining the equations for the whole computa-

tional domain, we could obtain a matrix equation expressed as  

          U = GQ      (2.20) 

 As mentioned earlier, in the micromagnetic simulations as described in the 

Section 2.1, we need to evaluate the magnetostatic field from given known distribution 

of magnetic charges. This leads to “forward” evaluation of the matrix equation Eq. 
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(2.20) with  2O N operations. (For the definition of the big-O notations used through-

out the thesis, please refer to the Appendix B) In other applications, such as those 

commonly seen in the electromagnetic simulations, we need to solve for the unknown 

source distribution from a known field distribution. This can be accomplished via direct 

inversion methods, which have the cost of  3O N  if implemented naïvely. Another 

class of methods named iterative methods solves the above equation without inverting 

the matrix G  and replaces this process with multiple passes of “forward” evaluation. A 

general iterative method would have the following steps: 

1. Guess the initial solution of Q as 0Q  

2. Evaluate the matrix-vector multiplication and obtain 0 0U = GQ  

3. Calculate some measure of the residual 0 oR U - U  whether it is smaller than a 

prescribed error 0 . If yes, return 0Q  as the solution. If no, calculate 1Q from 0Q using 

a formula or with the information from 0R . 

4. Repeat the stage 2 and 3 until the residual meets the exit condition. 

 There are many iterative methods such as Jacobi method, Gauss-Seidel method, 

conjugate gradient (CG) method or the generalized minimal residual (GMRES) method, 

etc. [60, 147, 148]. The cost of these methods if implemented directly is  2
itO N N , 

where itN  is the number of iterations.  Therefore, for both the micromagnetic simula-

tions and the electromagnetic simulations, the most critical issue of a high performance 
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solver is the rapid evaluation of the matrix-vector multiplication as shown in the 

Eq.(2.20), which can be seen as a convolution between two functions. This thesis is 

concerned with iterative methods.  

 

2.5 Fast methods for integral equations 

 Reducing the computational complexity of the Eq. (2.11) or the Eq. (2.19) has 

been pursued by many researchers in the various disciplines, e.g. Ref. [36] This thesis 

presents two algorithms that represent two categories of fast algorithms.  

 The first category of methods realizes that the Eq. (2.11) and Eq. (2.19) can be 

seen as a convolution between two functions, which can be accomplished through 

multiplication in the frequency domain after Fast Fourier Transforms [39]. The result-

ing computational complexity is  logO N N  , which is a significant reduction over the 

original  2O N
 
operations.  However, the utilization of FFT requires the sources to 

present uniformly and in a periodic pattern. Thus, to meet this requirement, the Con-

jugate-Gradient FFT (CG-FFT) method [26] assumes a uniform source discretization 

scheme, resulting in regularly distributed discrete sources. On the contrary, the precor-

rected-FFT (pFFT) method [136] and Adaptive Integral Method (AIM) [11] do not 

impose any restrictions on the discretization by introducing uniform auxiliary grids for 

transferring the interaction between the actual discretized sources and observers. These 
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auxiliary grids interact with their primary sources/observers through various interpola-

tion and anterpolation/projection schemes. Both of these methods make the evaluation 

of the convolution to be done in  logO N N  operations for general volumetric prob-

lems and  3/2 logO N N  for general surface problems [36]. In Section 4.3, the author 

presents a modified AIM method called, Box AIM (B-AIM) that achieves the same 

asymptotic complexity but with much higher parallel efficiency on GPU hardware 

platforms. 

 The second category of method is the hierarchical multi-level method, often 

called “tree-code” due to the way they divide the computational domain. Algorithms fall 

in this category include the Barnes-Hut Method [8], Particle-Particle Particle-Mesh 

(P3M) [48, 161], and Multi-Level Fast Multipole Methods (MLFMMs) [34, 61, 110, 143], 

etc, with MLFMMs being the most well-known one. The FMMs are originally proposed 

by Greengard and Rokhlin in their famous paper published in 1987 [61]. For statics In 

FMMs use the fact that the field far from a group of sources can be represented in 

terms of a small number of multipoles. For dynamics, the field can be represented in 

terms of plane waves or related expansions and the translation properties of plane 

waves can be utilized to achieve a similar complexity reduction as in the static case, 

albeit with a higher complexity. This property reduces the computational complexity 

contrary to treating sources one by one as in direct methods. To correctly and efficient-

ly represent the field generated by sources both far and near, the computational 
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domain is divided into far-field region, where the error of the multipole expansion is 

below a prescribed value, and near-field region, where the field can only be calculated 

directly through superposition. The total complexity of FMM-like methods depends on 

the two competing factors, the near-field operations and the far-field operations which 

are dictated by the choice of the near-far field criteria. The asymptotic computational 

complexity of the MLFMM is  O N  for the static field calculation as in Eq. (2.11) and 

( log )O N N  for dynamic field calculation as in Eq. (2.19) [36, 143]. 

 In Section 4.2, a spatial multi-level “tree-code” called the Non-uniform Interpo-

lation Method (NGIM) is described. The NGIM is theoretically proposed by A. Boag in 

[16] and the computational complexity is proven to be the same as the MLFMMs [15, 

16, 102]. However, this algorithm has several advantages while dealing with specific 

types of problems and the author will present detailed results and analysis in that 

section.  
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3 Introductions to the Graphics Processing Units (GPUs) 

 Graphics Processing Units (GPUs) are one of the many processors in modern-

day desktop, laptop and mobile PCs and tablets. GPUs were originally designed for 

handling display-, image- video- and graphics-related applications. However, the im-

pacts of GPUs have stepped outside traditional definitions and a new term, General 

Purpose Graphics Processing Units (GPGPUs), is becoming increasingly popular in a 

number of computational communities. To help understand why computational scien-

tists and researchers put much effort in designing or modifying their data or compute 

intensive algorithms to run on GPUs, and to understand what distinctive features 

GPUs have a brief history of GPUs is presented next.   

 

3.1 A short history of GPUs 

 Graphic processors appeared long time ago ever since the invention of the 

computer itself. Early graphic processors were used for drawing texts and pictures on 

the screen and later, after the three-dimensional (3-D) graphics contents became popu-

lar, the modern graphics pipeline emerged. We begin our survey on the history of 

GPUs from the late 1990s, when the 3D graphics appeared. The earlier history of 

GPUs can be found in Ref. [12].  

3.1.1 3D graphics pipeline 
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 A typical scene in 3D computer graphics consists of many objects that a viewer 

might be able to see. The geometrical shapes of these objects can be very complicated 

with thousands of surfaces. These objects are formed through basic elements such as 

points, line segments, and polygons. Often the surface of a 3D object model is repre-

sented by a bundle of triangles, each of which is made of three vertices. 

 The major tasks of GPUs are to process the information related to these objects 

and to draw them on the screen in the way that looks natural to the viewer.  To that 

end, the GPUs need to perform various transforms on primitive geometrical data 

related to the objects and this process is described in the “graphics pipeline”. 

 

 

(a) Vertex transformation: 

 After geometrical data of a 3D object is passed to the GPUs, one of the jobs 

they need to perform is to transform the data into a two-dimensional space that 

Scene to be rendered
in 3D world space

Vertex processing Rasterization Fragment processing

 

Figure 1 Stages of a common 3D graphics pipeline 
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matches the actual display region. This is done through transforming all vertices of the 

objects and reconnects them in the new coordinate space. There are many coordinate 

systems associated with this process. An object has a position and orientation in the 3D 

world space, a global coordinate system that relates the object with other objects in the 

same scene. There is also camera space where the z axis is parallel to the viewing 

direction and x and y axis are aligned with the display boundaries. Before showing it 

onto the screen, the object also needs to undergo a transformation that takes the per-

spective into consideration, which make the far objects smaller to the viewer. Finally, 

the object is mapped onto the screen taking the position of the active window into 

consideration.  

 The operations in this stage consist of large amount floating point number 

operations.  Transformations done on different vertices are completely independent, 

which allows for massive parallelization. Therefore, it is not surprising that modern 

GPUs have thousands of parallel processors and a very high parallel performance 

(currently in the tera-FLOPS range).  

(b) Rasterization: 

 Once a graphic object has been transformed into the window space, the GPU 

must determine which pixels are covered by the object. The process of converting a 

triangle to a collection of pixel fragments is called rasterization. Each triangle sampled 
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uniformly at the center of each pixel consists of a group of points. The depth, interpo-

lated color, and textures of these points are called a fragment.  

(c) Fragment operations: 

 Fragments generated by different primitive objects are well possible to overlap 

with each other and some fragments might even be facing back. The GPUs may elimi-

nate these unnecessary fragments at beginning of this stage and this is called “fragment 

shading”. Each pixel is then subsequently processed to compute a final color value, via 

simple superposition of interpolated color values from vertices or very complicated 

formulas that emulates complex environmental lightings. This is called “pixel shading”. 

The need for complex shading processes led to programmable compute units that later 

made the GPU capable of doing general purpose calculations. 

(d) Frame buffer operations: 

 Finally, the computed shaded pixel fragments are written to a frame buffer that 

are ready to be displayed onto a windowed application.  

3.1.2 Fixed-function GPUs  

 Before the year 2000, GPUs were mostly fix-function engines. One notable 

generation of GPUs, the NVIDIA’s Geforce 256 and ATI’s Radeon 7200, introduced in 

Oct. 1999 were the first set of devices that took the entire graphic pipeline onto its 

shoulder, freeing the CPUs for other tasks. In fact, the name “GPU” itself was intro-
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duced by NVIDIA after the launch of GeForce 256. Nevertheless, scientists did try to 

map non-graphics operations to those GPUs. They found many limitations on then-

state-of-the-art GPUs such as fixed-precision numbers and very slow frame-buffer 

readback [146]. 

 Two generations later, the NVIDIA Geforce 3 and ATI Radeon 8500 cards 

implemented the programmable shaders that significantly changed the way developers 

thinking about graphics pipelines. The programmable shaders allowed developers to 

write codes without thinking about setting the pipeline states. This change intrigued 

more researches to explore the possibility of using GPUs for general-purpose computa-

tions. In Ref. [69, 70], PDEs were implemented on this generation of GPUs and the 

term General Purpose GPU (GPGPU) was first introduced by Mark Harris.  

 Two generations later, in the NVIDIA Geforce FX 5800 and ATI Radeon 9700 

cards, a new shader model was implemented and the GPUs started to support the 

floating point precisions. The floating point precision calculation is a critical feature for 

the computer graphics developers to render many physical phenomena such as fire, 

smoke, fog, clouds to the realistic quality. It opened the door to new possibilities of 

employing GPUs in general computations. 32-bit floating point format was supported 

by NVIDIA right at the launch of those GPUs while ATI chose to implement a 24bit 

scheme as they believed that it was sufficient for most graphic applications. Later, both 
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vendors started supporting support 32-bit single precision floating points, though they 

were not entirely IEEE-754 compliant. 

 Another important feature that appeared in this generation of GPUs is the high 

level shading languages, replacing the assembly-level languages used for programming 

previous generation shaders. NVIDIA proposed Cg, Microsoft integrated a High Level 

Shading Languages (HLSL) into its DirectX API and loyalty-agonistic OpenGL stand-

ard introduced GL Shading Languages (GLSL), which made coding GPU shaders much 

easier than before. 

3.1.3 The Emergence of GPGPUs 

 From the previous description of the graphics pipeline, the reader could see that 

the two programmable stages, the vertex processing and the fragment processing, 

perform quite different operations. The vertex processing stage, in which coordinate 

transformations are involved, is abundant of arithmetic operations. The fragment 

processing stage, on the other hand, is filled with high-throughput memory transfer due 

to texture filtering. Typical graphics workloads requires more computational power in 

the fragment processing stage than in the vertex processing stage and the GPUs listed 

in the last section usually handling this by providing 2 or 3 time more fragment shaders 

than vertex shaders. However this static solution is obviously suboptimal for tasks 

under extreme conditions such as rendering scenes with many large triangles. 
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 In addition to the load balancing problem between vertex and fragment shaders, 

the demand of rendering increasingly complex scenes made it necessary to have a new 

shader, called the “geometric shader”, appearing in between the vertex and fragment 

processing stage. Allocating and balancing hardware resources across these three types 

of shaders became an impossible job and the GPU architects began considering what 

was a revolutionary “unified shader” that could handle all the tasks involved in these 

three stages. These “common” processors had powerful floating point operation capabili-

ties as well as high bandwidth for accessing the graphics memory. As a result they were 

becoming more and more suitable for general- purpose computing tasks. 

 

3.2 The Architecture of GPGPUs 

 The first generation of GPUs with unified processor architecture were NVIDIA’s 

Geforce 8800GTX (released in November 2006) and ATI’s Radeon HD 2900XT (re-

leased in May 2007).  

3.2.1 NVIDIA G80 architecture 

 Figure 2 illustrates the architecture of the Geforce 8800 GTX chip, codename 

G80, the first CUDA-capable GPUs. The device was built from an array of stream 

processors (SP), which are sometimes called ALUs in other vendors GPUs. Eight of 

these SPs were bundled together to form streaming multiprocessors (SM). Various 
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other functional units such as texture memory caches, instruction dispatcher and spe-

cial function unit (SFU), etc., were attached to SM to assist dealing with the pipeline 

operations. In Geforce 8800 GTX, there were 128 SPs, grouped into 16 SMs, and in 

each SM there were 8 ALUs, 2 special function units, 1 instruction dispatcher unit, 16 

KB of fast “scratch pad” memory. There were also 64 KB read-only constant memory 

shared by all SMs.  
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 Since different shaders might use different function units within an SM, each 

SM was hardware multithreaded, which meant it was able to manage much more 

threads than actual SP it contained with almost no scheduling overhead. For G80 

architecture, each SM could handle up to 768 concurrent threads and the entire GPU 

would handle up to 12K threads simultaneously. Later architectures from NVIDIA such 

 

Figure 2 The Geforce 8800GTX architecture (G80) with unified shaders. The figure 
on the bottom shows the internal structure of an SM. 
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as the GT200, GF104 and current generation GK104 are all similar to G80 with some 

changes in processor arrangement and cache levels [125, 130]. 

 For performance reasons, the GPU architect invented a concept called “warp” 

[127] that is made of 32 threads. Threads within each warp execute same instruction at 

the any given time, which brings down the scheduling burden of the dispatcher unit. 

However, if the code branches within a single warp, resulting in different instruction 

paths for different threads, the warp will go through all the instruction paths sequen-

tially and disabling threads not at that path one at a time. This will significantly 

reduce the execution efficiency and should be avoided when possible.  

 Another unique feature of G80 architecture is its various types of memories. 

The latencies of each types of memory are benchmarked in Ref. [6, 172]. The registers 

are on-the-chip temporary storage that has almost no latency to be accessed, similar to 

those inside CPU. One level higher, there is “shared memory”. These extremely fast 

memories are designed for the threads within the same “thread block” to access simul-

taneously. Thread block consist of several warps that may or may not do similar tasks. 

The threads within the same block can communicate with each other without going 

back to the off-chip DRAMs and can be synchronized with specific instructions. They 

are always mapped to the same SP. Communication between threads of different block 

has to be done via off-chip DRAMs, called the “global memory”. Global memories is 

relatively large in sizes (768 MB for Geforce 8800GTX) and several giga-bytes for more 
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recent generations ( e.g. 6 GB for Tesla M2090). GPUs’ global memory has very high 

bandwidth compared to CPUs’ main RAM but it can only be accessed at a rate close 

to the theoretical limit through the “coalesced memory access”. The “coalesced memory 

access” occurs only when multiple contiguous threads within the same warp attempts to 

access contiguous memory addresses that are aligned to a certain number. If these 

conditions are met, a burst of data can be transferred through global memory bus and 

the non-negligible latency of global memory can be hidden across multiple threads. 

3.2.2 AMD Radeon R600 architecture 

 Though AMD Inc. acquired ATI Technologies in 2006, it kept ATI’s product 

line and branding. Radeon R600 architecture was the first generation GPUs featuring a 

unified shader architecture from AMD.  

 The R600 architecture is very similar to G80 and only different in the way that 

it bundles its stream processors. The Radeon HD 2900XT GPU contains 320 scalar 

stream processors (SP) arranged into for groups. For each group, the 80 SPs are again 

divided into 20 units and each 4-SP unit is attached a special function unit to form a 5-

way superscalar shader. Each of this 5-way shader has its own branch control unit and 

general-purpose registers. This architecture has changed in the latest generation of 

AMD GPUs that will be mentioned in Section 3.4, so the hardware architecture is 

described here only for completeness. R600 architecture also used the same types of 

memories that match to those in the G80 architecture. 
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3.3 GPU programming model and its impact in scientific computing 

 A mature and easy-to-use development environment usually hides the hardware 

details from developers as the hardware implementations are different from different 

vendors. A well-defined set of APIs sits between the application and driver layer is 

necessary for software developers to unleash the power of GPUs. Several famous APIs 

are listed here. 

3.3.1 Graphics APIs 

 The two most widely used graphics APIs are DirectX (Direct3D, specifically) 

and OpenGL. These two APIs were proposed in 1995 and 1992, respectively and they 

have evolved significantly. The OpenGL specification is moderated by an industrial 

consortium called Khronos Group and is implemented as a multi-platform loyalty-free 

open standard. The DirectX is a product of Microsoft for exclusive use on Windows 

and its XBOX gaming console. There were other APIs being used at some point in the 

history, such as the Glide3D proprietary API developed by 3dfx, but it was later aban-

doned. 

 Both of these APIs serve the same purpose - abstracting the hardware details 

and letting the programmer to focus on the actual operations in the graphics pipeline. 

Graphics APIs are designed specifically for computer graphics applications and some-
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times influence the hardware design as well. New features and functionalities sometimes 

appears in definition of graphics APIs before being actually realized in the hardware. 

This is especially true for DirectX.  

3.3.2 General purpose programming APIs for GPGPUs 

 As have described in the previous chapters, even before the GPGPU had ap-

peared, researchers and scientists have tried to leverage the computing power provided 

by GPUs to accelerate the scientific simulation codes. However, GPUs were not a 

popular choice among the majority of researchers until much more user-friendly high-

level languages and APIs appeared.   

(a) CUDA C 

 The CUDA C programming model was the first and most widely used compu-

ting model for GPGPUs, proposed by NVIDIA. It is a multi-platform API, supporting 

Windows, Linux and MacOS, but runs only on NVIDIA GPUs after Geforce GTX 8800. 

CUDA C is designed for developers to directly control the stream processors and mul-

tiple levels of on- and off-chip memory as well as the communication between the CPU 

(the host) and GPU (the device). 

 On the host side, CUDA deals with necessary initialization, data passing be-

tween host as well as device and kernel launching. On the device side, it is an extended 

version of traditional C programming language with modifications to address the 
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unique needs of massive parallelization and multiple levels of memories. Each function 

written to be running on the device is called a “kernel” and kernels are usually designed 

to be executed thousands or even millions of times simultaneously. Each of the 

launched instances is called a “thread” and they are usually identified via a distinct 

“thread ID”. Several threads are bundled into warps and several warps form a “thread 

block”. A “thread block” is mapped to a SM. Each block has its own shared memory 

and threads can communicate with each other using this “shared memory”. It is usually 

a good practice to use the shared memory as it is on-chip and is at least one order of 

magnitude faster than the global memory. Correct utilization of the shared memory is 

one of the most important aspects to make many GPU codes efficient. There is no way 

to determine the sequence of executions among threads from different thread blocks 

and there is no synchronization mechanism for them except at the end of a kernel 

launch. There is a size limit on the number of threads that a thread block can contain, 

and this number is 512 for older CUDA compute architectures like G80 and 1024 or 

2048 for newer ones.  

 Since the launch of the first version of CUDA in 2007, NVIDIA has continuous-

ly added many new features to this programming model to accommodate the change of 

hardware architecture and to increase its usability. The latest beta release of CUDA is 

version 5, which introduces many new features that will be discussed in the Section 3.4.  
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All the GPU algorithms that will be presented in Chapter 4 and all the GPU-

accelerated solvers presented in Chapter 5 are written for NVIDIA GPUs using CUDA. 

During the writing of this thesis, the current stable version of CUDA is 4.2 but many 

timing results shown in Chapter 4 are still obtained using older version as far back as 

3.0.  

(b) OpenCL 

 OpenCL is an API proposed by Apple Inc. in 2008 and maintained by Khronos 

Group. It aims at creating portable, vendor, and device independent programs that are 

capable of being accelerated on many different hardware platforms and it is the first 

API that explicitly aims at utilizing all computing resources in a computer system, 

including CPUs and GPUs [82, 121]. However, as the GPGPUs remain as the most 

widely used many-core processors, the OpenCL programming model turns out to be 

very similar to the NVIDIA’s CUDA model. It also contains two different sections, the 

host side APIs and the device side kernel language based on C. Despite small differ-

ences in names, the OpenCL APIs can almost be one-on-one matched with 

corresponding CUDA Driver APIs. The OpenCL extensions used in the kernel code can 

also be understood by many experienced CUDA developer with ease. Interested readers 

can refer to Ref. [2, 82, 121] for further details of OpenCL.  

(c) DirectCompute 



49 

 

 DirectCompute is a component of DirectX 11, published by Microsoft and 

supported by both NVIDIA and AMD GPUs. DirectCompute differs itself from the 

CUDA and OpenCL programming environment as it runs only on Windows operating 

systems, specifically speaking, Windows 7 and above. Naturally, the host side APIs of 

DirectCompute follows the Direct3D fashion and the device side kernel code is similar 

to HLSL, both of which are maintained by Microsoft.  

(d) Microsoft C++ AMP 

 Microsoft C++ Accelerated Massive Parallelism (AMP) is a library developed 

by Microsoft and bundled as a run-time library with its Visual Studio 2012 compiler 

suite [117]. C++ AMP accelerates the execution of C++ code by automatically identify 

pieces of code that can be executed on GPUs with high efficiency. C++ AMP exploits 

the data parallelism opportunities that are often met in loops, multidimensional arrays 

and memory transfer etc. It is built up on DirectCompute and if no compatible 

GPGPUs are presented, it will fall back onto CPUs. The syntax of C++ AMP is 

similar to the newly proposed and standardized C++11, and should be relatively easy 

for C++ programmers. However, same as the DirectCompute, the lack of multi-

platform support limits its applicability in many scientific computing applications.  

(e) OpenACC 
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 OpenACC is an open standard proposed by NVIDIA that intends to make the 

GPGPUs more accessible for scientists who focuses less on the optimization process. 

OpenACC adopts a similar approach as the OpenMP and is designed as set of direc-

tives and pragmas for the programmers to hint the compiler to do certain 

parallelization and optimizations on certain sections of codes. OpenACC is still in its 

very early stage of development and very limited information is available [131]. 

 

3.4 Future architectures and potential impact to scientific computing 

 Ever since their emergence in 2006, GPGPUs have gained a tremendous mo-

mentum in compute intensive applications such as computational photography and 

physics simulations. This wide adoption of GPGPUs has encouraged the vendors of 

GPUs to improve their architecture further for compute tasks. Other many-core archi-

tectures, too, have begun entering the high performance computing area. In this section, 

we briefly introduce these new architectures and interested readers should follow to 

documentations from each vendor to see their latest development. 

3.4.1 NVIDIA’s Kepler GK110 architecture [130] 

 The Kepler GK110 GPGPU architecture is the latest generation CUDA capable 

compute architecture. It pushes the GPUs a step further towards the HPC and empha-
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sizes not only the raw computing power but also energy efficiency. The key features of 

GK110 GPGPUs include: 

(a) Significant boost in double precision computing capability 

One of the most critical areas that GPU has lacked so far is the double precision com-

puting capability, partly due to the fact that graphics applications do not require such 

high precision. In fact, many operations, especially in the fragment shading stage, 

require only 16-bit floating point accuracy to be visually satisfying. However, for many 

scientific computations, such as iterative solvers and other sensitive systems, a little 

truncation error of floating point numbers may lead to high numerical inaccuracies. 

Therefore, increasing double precision performance should increase the range of GPG-

PU use in high-performance scientific computing. 

(b) Increased ability handling complex flow 

 NVIDIA implemented two new features, thread launching from within GPU 

kernels and handling multiple kernels simultaneously. This would make the program-

ming of GPUs similar to multithreaded applications on CPUs. 

(c) Changed SM composition. 

 The new architecture also changed the way SPs are organized into an SM and a 

rebalance of compute resources for better accommodating the HPC computing needs. 

This includes but not limited to, significant increase in the register resources, quad 
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warp scheduler for each SM and new shuffle instructions useful for non-sequential 

memory operations, etc. 

3.4.2 Intel’s Many Integrated Cores (MIC) [79, 150] 

 Intel’s approach towards heterogeneous computing architecture is different from 

graphics vendors like NVIDIA or AMD. In 2009, Intel demonstrated a GPU that is 

completely different from their widely adopted Intel GMA graphics chip. This GPU 

was at that time known as “Larrabee” but its development was terminated in 2010. 

Later, Intel proposed a new architecture, called “Many Integrated Cores” that inherited 

many features of Larrabee and the first device named “Knights Corner” with 50 cores 

integrated into a single chip, was released in 2012. There are very few benchmarks 

available for this new device at the moment and the technical design is not exposed to 

public either. However, Intel claims that MIC is fully compatible with application 

compiled for x86 CPUs but it does include special graphic function units, such as the 

texture sampling unit. 

3.4.3 Reconfigurable Computing (RC) architectures [18, 38] 

 Reconfigurable computing has long been a hot topic in scientific computing. It 

takes the advantage of reconfigurable hardware such as field programmable gate arrays 

(FPGAs) as accelerators to handle highly parallel computing tasks. FPGAs can change 

their hardware design during the runtime and adapts themselves to different algorithms 
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at the hardware level. More importantly, RC takes advantages of data parallelism in 

the algorithm too. Comparing with multi-core CPUs and GPUs, FPGAs utilizes every-

thing on the chipset to do the specific operations and waste nothing in non-task-related 

functions like interrupt handling or even instruction branch prediction, etc. Another 

advantage of RC is its low FLOPS-Watt ratio, which might be a critical limiting factor 

for the current supercomputers to reach the Exa-FLOP scale. Benefitted from its low 

clock frequency, the power efficiency of FPGA is usually higher than that of the tradi-

tional CPUs and GPUs. However, since FPGAs are expansive and relatively hard to 

program, the growth rate of their usage in HPC community is much lower comparing 

with GPGPUs.  

3.4.4 Merge of traditional CPU and GPUs 

 From the above discussion one can see that there is a tendency that GPUs 

become increasingly general-purpose and CPUs become increasingly parallel. This 

tendency has been well identified by many chip vendors. Companies like AMD even 

started developing unified computing unit called Accelerated Processing Units (APUs) 

that aims at ultimately unified the CPUs and GPUs. This parallelization process actu-

ally fits the scientific computing application very well as many physical phenomena are 

intrinsically parallel. Many researchers share the same conclusion as the ultimate 

physical limit for any forms of processors should be the same [32, 78, 176]. 
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4 Fast algorithms for integral equation solvers on GPUs 

4.1 Current status and literature review 

 In Section 2.5, we have briefly discussed the ways that integral equation solvers 

can be accelerated. However, even IE solvers using those fast methods easily take too 

long for desktop workstations. GPUs are very promising to further accelerate those 

solvers.  

4.1.1 MoM on GPUs 

 Accelerating the direct implementation of iterative MoMs approaches is 

straightforward. There is actually a tech demo in the NVIDIA GPU Computing SDK 

that shows simple gravitational simulations, within which the gravity n-body problem is 

calculated using Eq. (2.11) [129]. In this demo, the algorithm to obtain the aggregated 

gravitational forces on each particle is the direct superposition as shown in Eq. (2.11). 

Though simple in implementation, it is very effective for accelerating simulations that 

require solving this type of n-body problem. When the number of degrees of freedom is 

relatively small the small overhead of direct method makes it the fastest option. In 

Section 4.2.3, we could see that GPU direct method outperforms many CPU fast meth-

ods on problems even up to several millions.  

 In the field of computational electromagnetics specifically, accelerating the 

method-of-moments (MoMs) without fast methods has also been the topic of many 
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research literatures. Most of the implementations of MoMs on CPUs lead to a system 

of linear equations represented in the form of matrix equations, in order to take ad-

vantage of existing well-optimized high-performance linear algebra libraries, such as 

BLAS.  

 Speaking specifically about the computational electromagnetics, Ref. [44, 89, 90, 

92, 160], the impedance matrices are filled in the preprocessing stage and solved by LU 

decomposition. In Ref. [45, 132], the synthesized matrix equations are solved by the 

conjugate gradient (CG) iterative method. The speed-ups achieved following these 

approaches are in the range of 10-50 depending on the optimization details and the 

actual hardware platforms the comparisons are made on. Nevertheless, due to signifi-

cant memory used by the uncompressed impedance matrix, the largest problem sizes 

these solvers can handle are limited to tens of thousands, even on a dedicated compute-

only NVIDIA TESLA card with several giga-bytes of memory. To the best of the 

author’s knowledge, there is no literature on “on-the-fly” implementation of MoM on 

GPUs. “On-the-fly” means filling the impedance matrices right before they are used and 

discarding them after.  However, either the LU decomposition or the iterative solvers 

involves many interactions between elements so most of them require the whole matri-

ces being existed on GPUs’ global memory at a certain point. This would make the 

previous “on-the-fly” approach meaningless from the perspective of memory saving. 

4.1.2 FFT-based fast algorithms on GPUs 
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 As mentioned in Section 2.5, the quadratic computational complexity of the 

direct MoMs limits its applicability to realistic simulations, so porting MoM with fast 

methods to GPUs draws much attention from the researchers in the computational 

electromagnetic field. Due to relatively simple data structures and high parallelizability, 

the FFT-based fast methods are popular among solvers designed for multi-node com-

puter clusters and are naturally being considered for porting to GPUs. In any of the 

FFT-accelerated algorithms, one of the essential building blocks is the FFT itself. Not 

being a perfect algorithm for GPUs but widely used in many areas, the FFT has been 

ported to GPUs long before the GPGPU era. The Ref. [119] might be among many 

earliest attempts to use OpenGL APIs for the general computing needs. Since CUDA 

was introduced, various implementations were published for several generations of 

GPUs. The CUFFT library that comes along with the CUDA release might be the 

most widely used one due to its similarity with the popular FFTW libraries on CPUs 

and adequate, constantly improving performance [128]. Other researchers have claim 

that they achieved higher performance [52, 59, 63, 109, 124, 144]. Meanwhile, Ref. [42, 

47, 123] focus on other aspects, such as the memory transfer between CPU and GPU, 

mixed-radix performance improvement, and automatic performance tuning. There are 

also efforts on accelerating FFTs across multiple GPUs, e. g. in [33], but to the best of 

the author’s knowledge, the performance achieved are not satisfactory for many appli-

cations due to significantly data exchange latencies on multi-GPU systems.  
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 Being built based on aforementioned FFT libraries, researchers in computation-

al electromagnetics tried to implement AIM and pFFT algorithms on GPU. Only a few 

attempts are recorded. In Ref. [50, 51, 133], FFT-based fast algorithms are implement-

ed and tested up to 80k unknowns. These implementations try to express the fast 

methods in the form of matrix-vector multiplication explicitly, just like for direct 

MoMs. Thus all of them can go up to only few tens of thousands of degrees of freedom.  

4.1.3 Hierarchical fast methods 

 Hierarchical fast methods usually divide the computational domain into multi-

ple levels of boxes and treat the far- and near-field separately. In Ref. [67, 155], multi-

level direct Coulomb summation is shown to achieve over 100 GFLOPS on NVIDIA 

Geforce 8800GTX card and approximately 50x speed-ups comparing with a core of a 

Intel Core2 QX6700 CPU.  More complex tree codes like the Barnes-Hut and Particle-

to-particle-particle-to-mesh (P3M) methods [9, 24, 66, 80, 154] are implemented on 

desktop CPU- and GPU- clusters, achieving astounding tens to hundreds of Tera-

FLOPS of peak performance on several hundreds of nodes. FMMs are also a quite 

popular choice for evaluating long range forces such as the electrostatics. Ref. [62] is an 

early attempt to porting static FMMs onto GPUs though most of the speed-ups are 

obtained by changing the ratio of near- and far-field computational burdens as the 

near-field is easier to be accelerated on GPUs. Later attempts obtained much better 

performance due to improvement in both the algorithm designs and hardware architec-



58 

 

tures [29, 43, 87, 108, 178, 179]. The largest problem sizes these FMMs implementa-

tions can handle on a single GPU card is in the order of 710 [178] and on multiple 

GPU-clusters has exceeded one billion level [77, 179]. 

 Although researches on FMMs for static fields are quite fruitful recently, using 

FMMs to calculate Helmholtz-type of dynamic fields is quite hard as the series repre-

sentation and translation of dynamic fields are more complex. In Ref [41] , the 

researchers did a satisfactory job for accelerating FMMs in the low frequency and 

achieved good speed-ups.  

4.1.4 Solution of linear systems 

 With or without those fast methods, the MoMs usually produces a system of 

linear equations that need to be solved either directly by matrix inversion or by various 

iterative methods. Direct matrix solvers on GPUs have been shown in Ref. [54, 91, 168] 

and researches on iterative solvers can be found in Ref. [7, 17, 28, 71, 165]. The perfor-

mance obtained on widely used iterative methods like the GMRES are around 5-10x, 

comparing with sequential codes on CPUs.  

4.2 Non-uniform Grid Interpolation Method (NGIM) 

 In this section, we describe a highly efficient GPU implementation of a modifi-

cation of the non-uniform grid interpolation method (NGIM) [16, 98, 102], for fast 

evaluation of the potential ( )mu r  in Eq. (2.11) or Eq. (2.19) . Acceleration of NGIM is 
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built on the fact that the field potential far from a source is a function with a known 

asymptotic behavior. The slowing varying fields far from the sources can be sampled 

and represented pretty accurately by a few sample points. Then the field values on 

many other points can easily be interpolated from these samples points instead of doing 

costly Green’s function evaluation. The algorithm is implemented using a hierarchical 

domain decomposition method, similar to Multi-level FMMs (MLFMMs) [36, 152]. The 

domain is subdivided into several levels comprising subdomains of different sizes. Near- 

and far-field spaces are identified and the interpolation procedures are implemented for 

the sufficiently separated subdomains. This algorithm achieves the computational cost 

of ( )O N  in the low-frequency regime, ( log )O N N  in the high-frequency regime, and 

somewhere in between in the mixed-frequency regime. 

 Similar to the MLFMMs, NGIM can also handle non-uniform geometries and 

has the same asymptotic cost for both volumetric and surface problems. The NGIM 

differs from the MLFMMs in that it relies on direct spatial interpolations, which are 

operations the GPUs destined to do. Moreover, the same NGIM can be applied to 

static ( 0k  ) and dynamic ( 0k  ) problems, as well as to problems with other 

kernels, without major changes in its structure and mathematical operations, as op-

posed to MLFMMs. Moreover, NGIM does not require any special function evaluations, 

which increases it execution efficiency on GPU systems, as will be shown in the Section 

4.2.3.  
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4.2.1 Algorithm description 

 In this section we present the description of the NGIM and its implementation 

scheme. We discuss how the algorithm is coupled with general electromagnetic IE 

solvers.  

 The NGIM divides the computational domain into a hierarchy of boxes contain-

ing sources and observers. At any level, each box is treated as a “parent” box, which is 

divided into eight “child” boxes at lower level. This process goes on recursively and 

stops until boxes at finest level contain less than a prescribed number of sources. These 

boxes form an oct-tree. Then, for a certain box, near-field and far-field boxes are identi-

fied by distances larger or smaller than a predefined value (e.g., twice of the box 

diameter). The fields contributed by sources in the near-field boxes will later be evalu-

ated via direct superposition. The fields generated by sources in far field boxes are 

aggregated to their respective box center and have them interpolated on observers 

through several stages of operations, including complex upward and downward travers-

ing of the oct-tree. This procedure, illustrated in Figure 4 - Figure 7, is similar to other 

multi-level algorithms such as MLFMMs.  
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 The field outside a group of sources is amplitude- and phase-compensated with 

respect to the common distance from the group center. The resulting slowly varying 

“compensated field” can then be sampled at a sparse non-uniform grid (NG) and calcu-

lated at all desirable observation locations via inexpensive local (e.g. Lagrange) 

interpolation. The density and specific position of NG samples are determined mathe-

matically [14] in the preprocessing stage and remain unchanged during the entire 

simulation. For low-frequency evaluations, a total number of  O N  NG samples are 

required to sample the field across all levels of the boxes. But, in high-frequency regime, 

since its oscillation does not diminish to zero at infinity, this number is  logO N N . 

Generally speaking, in both regimes, the higher the accuracy requirement, the denser 

the NG grid. 

source

observer

NG sample

r-r’
 

Figure 3 Calculating the field from far away sources by interpolation through NG 
samples. The direct evaluation of the interaction between the source and the 
observer is shown as the green dashed line and the indirect evaluation through 
NGIM is done through grid samples (cyan points) and interpolations (blue dashed 
lines). 
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 The frequency of fields also affects another aspect of the algorithm. For low 

frequency problems, the field transition from NG samples to the final observation 

points are not done directly but via another set of intermediate Cartesian Grid (CG). 

The CG saves the computational cost because in low frequency applications the density 

of observers is determined by the geometry of objects thus might be very high. In this 

case, a small number of sampling points is sufficient for calculating fields on a large 

number of observers. In high-frequency regime, the density of discretized sources is 

determined by the wavenumber of the field, so the number of CG samples would be the 

same as the observers and would not save operations. Therefore, CG is not used in the 

high-frequency calculations. In the mixed-frequency regime, CG is built for lower levels 

with boxes much smaller than wavelengths (low-frequency levels) and is omitted for 

higher levels otherwise (high-frequency levels). 

 After the boxes and grids are built, fields at actual observers are calculated 

from sources via a sequence of interpolations. In the low-frequency regime, for example, 

the field at observers is interpolated via CG samples, which is in turn obtain from NG 

samples of certain boxes and CG samples of their parent boxes. The fields at NG 

samples are obtained, via interpolation, from their child boxes, except on the lowest 

level, on which they are calculated directly from the sources. This process can be de-

scribed as a stage-by-stage procedure shown below: [93, 98] 

Stage 0 (near-field evaluation):  
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 All near-field interactions between the sources in the near-field boxes at the 

finest level are computed via direct superposition. This step is completely independent 

of the rest of the algorithm and can be separately implemented and executed in parallel 

or in sequence of other stages, depending on the available hardware. 

Stage 1 (finest level NG field calculation):  

 The field values on NG samples are computed directly from the sources. This 

operation is only valid for the boxes at the finest level. 
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Stage 2 (aggregation of NGs/upward pass):  

 The field values on NG samples of the boxes at coarser levels are computed by 

accumulating fields at NG samples of their eight child boxes. Such aggregation involves 

local interpolations and common distance compensation in the amplitude and phase 

between the corresponding NG samples. 

 

NG samples
Sources

Qs

Qr

 

Figure 4 The illustration of the Stage 1: field calculation on NG samples on the 
finest level. The fields on the NG samples (red dots) from sources (cross dots) are 
calculated directly. 
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Stage 3 (NG to CG transitions and CG decomposition/downward pass):  

 Field values on CG samples are calculated for boxes at all levels. Field values at 

CG samples of an observer box on a specific level come from two origins. The first is 

from the interaction-list boxes on the same level. The interaction-list boxes have their 

parent box as a neighbor of the observer box, except for those having already been 

taken into considerations in the near-field stage (corresponding to influences of the 

Lagrange
Interpolation

Pt

Active CG samples at level l
Inactive CG samples at level l
NG samples at level l-1

 

Figure 5 The illustration of Stage 2, aggregating fields on NG samples on coarser 
levels. The fields on NG samples on the higher levels (red dots) are calculated 
through interpolations from lower levels (yellow dots). 
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source of “medium distance”). The second contribution of field at CG samples comes 

from their parent box. This contribution is valid only for boxes below the interface 

level if the calculation is done in mixed-frequency. CG samples of an observer box 

obtain fields from these two sources through interpolations, from NG samples in the 

former case, and from CG samples in the latter case. 

 

Stage 4 (CG to observation point):  

Interpolation from NG samples of IL box 
(stage 3 first sub-stage)

Interpolation from CG of parent box
(stage 3 second sub-stage)

CG samples to be calculated

CG samples
NG samples

Active NG samples
Active CG samples

 

Figure 6 The illustration of Stage 3, calculating fields on CG samples (large green 
dots) from NG samples of IL boxes (yellow dots) and CG samples of higher levels 
(green dots). 
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 The field values at actual observation points are obtained by local interpola-

tions from the CG samples of the finest level boxes. The whole process has a 

computational cost of ( )O N . Using local interpolations guarantees the adaptivity of the 

algorithm to non-uniform geometries since the NG samples and CG samples are built 

and processed only around locations where sources and observers exist.  

 

 One thing worth mentioning is that, as discussed in previous paragraph, there 

are no CGs constructed for computations in high-frequency regime, so the CG-CG 

interpolations and CG-observer interpolation do not exist and the whole downward 

CG samples
Observers

 

Figure 7 The illustration of Stage 4, calculating field values on observers (cross 
dots) from CG samples (green dots) 
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pass disappears. In this regime, fields are directly interpolated from the NGs at each 

level to the observers. In the mixed-frequency regime, the downward pass partially 

exists, for the “low-frequency” levels of boxes. So the downward pass of mixed-frequency 

calculation is a hybrid scheme of the “direct NG-observer interpolation” and “NG-CG-

observer interpolation”. 

4.2.2 GPU NGIM 

 To implement NGIM efficiently on GPUs, special care should be taken concern-

ing the unique programming model and hardware architecture of GPUs. Coalesced 

global memory accessing and utilization of shared memory are two critical features, 

among many others, that should be taken advantage as much as possible. All these 

concepts and mechanisms have been discussed extensively in Ref. [127], as well as many 

other works related to scientific computing on GPUs. The implementation of the NGIM 

on GPUs follows the same ”stage-by-stage” protocol as that on CPUs, but contains 

significant changes. 

(a) Preprocessing and initialization stages 

 In the preprocessing stage, all necessary data structures used by the NGIM are 

allocated and initiated. The initialization operations include copying coordinates of 

sources and observers to the allocated matrices on GPUs and reshaping and copying 
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various auxiliary data, such as the interaction-list.  The operations here are executed 

only once in standard IE solvers for one specific problem. 

 In addition to the memory transfer operations, another crucial task done in the 

preprocessing stage specifically for GPUs is rearranging the source amplitude and 

coordinate arrays so that sources belong to the same box can be found at contiguously 

places in the memory. This is critical for GPUs to adopt the coalesced accessing for 

accelerated the memory read and write, which will be described in details later. For 

NGIM, the hierarchical relationship between boxes matches this requirement as the 

sources that belong to the same box at the finer level belong to the same box at the 

coarser level too. 

 In the GPU version of NGIM, the grids are not built in the preprocessing stage. 

Instead, the position of NG or CG samples and the interpolation coefficients are com-

puted on-the-fly when needed. This on-the-fly approach reduces the memory 

consumption and the total memory access operations in the later stages and eventually 

leads to much better overall performance. As a result, the preprocessing time of the 

GPU code is reduced by a few orders of magnitude compared with the CPU code, 

making the NGIM more effective for large problems. It is noted that using a similar 

approach for FMM-type methods is also possible but it may be somewhat less efficient 

due to more complex operations in the field evaluation stages, as these methods usually 

require computing special functions, e.g. the Hankel functions.  
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(b) Near-field computation 

 In this stage, the fields at the observers are evaluated directly by accumulating 

the field contributions from sources belonging to the level L  boxes in the near-field 

region of the observer box. Methods to parallelize this stage also apply to direct evalua-

tions of the classical “n-body” problems [129]. Since the computational domain has 

already been divided into boxes with sources and observers, the traversing the list of 

observers and sources can be done in a box-by-box fashion.  

 Mathematically, the near-field computation is a sparse matrix-vector multiplica-

tion. However, for many problems, the sparse impedance matrix is too large for GPUs 

if pre-filled and stored. Therefore, instead of trying to accelerate sparse matrix-vector 

products directly, we compute all the fields “on-the-fly”. Figure 8 shows the flowchart 

diagram of CPU and GPU implementation of near-field stage, respectively, and Figure 

9 shows the thread arrangement and assignment in the same stage. The key points are 

summarized as follows: 
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(a)

x < number of 
observer boxes?

y < number of 
observers?

z < number of 
source box in 
Near-Field List?

w < number of 
sources?

d
calculate fields between 
near sources/observers

output

yes

yes

yes

yes

no

no

no

no

sequential parallel

……

z < number of 
source box in 
Near-Field List?

w < number of 
sources?

calculate fields between 
near sources/observers

yes

no

no

block 0, 
thread 0

block 0, 
thread 1

block X-1, 
thread  Y-2

block X-1, 
thread Y-1

load source coord. and amp.

output

(b)

load source coord. and amp.

 

Figure 8 The flow chart of CPU and GPU NGIM. (a) The sequential version of 
the near-field stage of the NGIM involves a four-level loop that takes into ac-
count each source-observer pair satisfies the Near-Field criterion. (b) In the 
corresponding parallel version of the near-field stage of the NGIM, two levels of 
loop are spread onto parallel stream processors of GPU. X and Y are number of 
observer box and number of observers in each box. Coalesced memory loading is 
utilized and shown in details in Figure 9. 
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(1) We adopted “one-thread-per-observer” type of parallelization, in which one 

thread is responsible for calculating the field value at one observer.  

(2) The number of threads per block can be chosen by the user or determined by 

the computing hardware, the number of unknowns of the problem, or the 

source/observer distribution. However, only threads processing observers be-

longing to the same box are bundled together to form a block. One or several 

thread blocks might be needed to handle certain boxes when the number of ob-

servers in that box is too large. To achieve a better performance, the number of 

p CG samples

q NG samples

thread i+1
thread i+2

Shared memory

block m(k+1)

thread i

…
…

Coalesced

block m(k+1)

thread i

…
…

Lagrange interp.

 

Figure 9 Memory access patterns of threads within the same block. Coalesced 
global memory is utilized to accelerate the memory loading. 

 

 



73 

 

threads per block should be multiples of 32 on NVIDIA GPUs as this is the size 

of a warp. 

(3) Since observers in the same box have the same set of near sources, those sources 

are cooperatively loaded from global memory once and in later stages they can 

be accessed through ultrafast shared memory. This cooperative memory loading 

is coalesced as the sources belongs to the same box is stored in contiguous loca-

tions. 

(4) Some intrinsic mathematical functions are used to accelerate the computations. 

Though not as accurate as their CPU C version counterparts [127], these trigo-

nometric and exponential functions are adequate for NGIM in terms of accuracy 

and are much faster than standard-binding double precision functions.  
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 Table 1 shows the computational time of the near-field stage on CPUs and 

GPUs. The CPU timing results were obtained on a single core of an Intel Xeon X5248 

CPU at 3.2GHz using Intel Fortran Compiler v10 with –O3 optimization. On the GPU 

Table 1 Computational times and speed-up ratios of the near-field stage 

pN
 

L  CPU (Xeon X5482) GPU (GTX 480) ratio 

16 3 2.11e-1 1.02e-3 206.9 

32 3 8.63e-1 2.22e-3 388.7 

64 3 3.42e0 5.90e-3 579.7 

pN  L  CPU GPU ratio 

16 4 1.97e0 7.49e-3 263.0 

32 4 7.84e0 1.74e-2 450.6 

64 4 3.13e1 4.84e-2 646.7 

pN  L  CPU GPU ratio 

16 5 1.85e1 7.76e-2 238.4 

32 5 6.75e1 1.45e-1 465.5 

64 5 2.66e2 5.30e-1 501.9 

pN  L  CPU GPU ratio 

16 6 1.43e2 6.38e-1 224.1 

32 6 5.66e2 1.19e0 475.6 

64 6 2.22e3 4.37e0 508.0 

All timing results shown in this section are in seconds. pN  is the average 
number of sources per box on level L . The relation between l and N  is L . 
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side, an NVIDIA GTX480 at 700MHz with 1.5 GB of memory was used. The GPU 

implementation was written and compiled using CUDA Toolkit v3.0 from NVIDIA. 

Both CPU and GPU versions of the code use “on-the-fly” approach and the positions of 

sources and observers are distributed randomly in a cubic computational domain with a 

uniform probability distribution function. 

 It is evident that the speed-up ratios between the GPUs and the CPUs are very 

high, varying between 200 and 650. The speed-ups are higher for larger pN  when the 

enormous number of parallel processors are fully exploited. Taking into account the 

fact that the number of the GPU cores in the considered case is 480 and they are run 

at the clock rate around 4.5 times lower than that of the CPUs, achieving the accelera-

tion ratio above 600 is impressive. Such high rates are obtained not only due to massive 

floating point computing powers and memory bandwidth of GPUs but also faster 

manually handled shared memory on GPUs. 

 A comment should be made on the timing results in Table 1. For fixed number 

of levels, the complexity of the near-field calculation stage scales quadratically since the 

number of near-field evaluations is proportional to 2
pN . The linear complexity of the 

near-field stage is achieved by the increase of number of levels L  with the increase of 

N . Indeed, the computational time behaves as  O N  when the number of level L  is 

properly chosen, balancing the near- and far-field computation time.  

(c) Outward computation from sources to NG samples (Stage 1) 
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 The NG construction stage computes the field values on the NG grid points, 

which is the first step of the upward pass of the algorithm. The core operations in this 

stage are the construction of NGs for each non-empty box at the finest level L  and the 

direct calculation of the field values at these NG samples. The sequential version of this 

stage consists of three nested loops dealing with all pairs of sources and NG samples for 

individual boxes and another loop to account for all boxes at level L .  

 Since the relative positions of NG samples and sources do not change during the 

whole process of IE solver, their interactions coefficients can be calculated beforehand 

in the pre-processing stage and stored for later use (i.e. the interacting matrix filling). 

However, this is only done in our CPU version of code. For GPU, no coefficient matri-

ces are used for the reasons mentioned in previous sections.  

 In the parallel version of this stage, the “one-thread-per-observer” approach 

described in the preprocessing stage is also used, but here the “observers” are in their 

broader definition, referring to NG samples. One or several blocks of threads are allo-

cated for each observation box. For calculation in the low-frequency regime, there are 

generally a moderate number of NG samples per box, so one block of threads would be 

enough to achieve the maximal parallel efficiency. In the high- and mixed-frequency 

regimes, however, the boxes at high-frequency levels may contain many NG samples. 

This requires assigning multiple blocks to each box. Regardless the number of blocks 
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assigned to each box, the “coalesced” memory reading technique is always triggered and 

the global memory accessing is of high efficiency. 

 Computational times of Stage 1 are presented in Table 2 (these results are 

frequency independent for the same N , L , and the number of NG samples per small-

est box). It is evident that the speed-up ratio increases significantly with the increase of 

the number of sources per box.  

 It should be mentioned that, generally, the computational time of stage 1 is 

about 1-5% of the total time. 
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(d) NG upward aggregation (Stage 2) 

Table 2 Computational times and speed-up ratios of the source-to-NG stage 
(stage 1) 

Accuracy require-
ment pN  L  

CPU  
(Xeon X5482) 

GPU  
(GTX 480) Ratio 

3
1  error 1 10L    

for domain size 

/ 2D 
 

16 3 5.89e-3 1.33e-4 44 

32 3 1.55e-2 1.00e-4 155 

64 3 3.16e-2 1.33e-4 238 

pN  L  CPU GPU Ratio 

16 4 5.01e-2 6.31e-4 79 

32 4 1.21e-1 9.28e-4 130 

64 4 2.45e-1 1.66e-3 148 

pN  L  CPU GPU ratio 

16 5 4.74e-1 3.99e-3 119 

32 5 1.16e0 6.73e-3 172 

64 5 2.44e0 1.24e-2 197 

pN  L  CPU GPU ratio 

16 6 5.49e0 2.99e-2 184 

32 6 1.07e1 5.23e-2 205 

64 6 2.14e1 9.78e-2 219 

All timing results shown in this paper are in seconds. pN  is the average number 
of sources per box on the level L . The relation between pN and N  is 

/ 8L
pN N . 
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 In this stage, the field values at the NG samples of the parent boxes at levels 

from 1L  to 2 are computed by interpolation from the NG samples of the correspond-

ing non-empty child boxes. In this paper, we use Lagrange interpolations for phase- and 

amplitude-compensate fields. 

 Similar to other stages, the GPU implementation follows the “one-thread-per-

observer” parallelization, in which one thread handles one observer and threads han-

dling observers in the same box are bundled to form one or more blocks. The 

interpolation process includes calculating coordinates of the NG samples of parent 

boxes, transforming them into the coordinate system of their child boxes, extracting 

coordinates and amplitudes of the nearest grid samples around the observers, calculat-

ing the interpolation coefficients, and finally evaluating the fields. All these operations 

are are implemented in a single kernel to minimize the stress on global memory. This 

seems to be stressful for registers, shared memory and ALUs on the GPUs but the 

actual test runs reveals that the GPUs can handle such computational tasks with ease.  

 Table 3 shows the computational time results of Stage 2 of the low-frequency 

case. Note that the results are not shown for different N  since this stage depends solely 

on grids but not on N  for a fixed L . (We assume all boxes are active, which means at 

least one source/observer is presenting in any boxes.) The speed-up ratios are in the 

same range as those of stage 1 for most problem sizes. It is noted that in the low-

frequency regime, stage 2 takes only less than 2% of the total computational time. 
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 Table 4 shows the computational time of the GPU code in the high-frequency 

regime. The absolute computational time is noticeably larger than that of the low-

frequency case in Table 3 due to larger number of necessary operations. It is noted that 

no CPU results are shown for this case because the increased number of grid points for 

sampling high-frequency fields make the current CPU code consumes way too much 

memory. For the same reason, in this thesis, high-frequency NGIM results for other 

stages are shown for the GPU code only.  

Table 3 Computational times and speed-up ratios of the NG aggregation stage 
(stage 2) in the low-frequency regime 

Accuracy requirement L  CPU (Xeon X5482) GPU (GTX 480) Ratio 

3
1  error 1 10L    for 

domain size / 2D   

3 2.70e-3 1.33e-4 20 

4 2.74e-2 3.96e-4 69 

5 2.25e-1 1.77e-3 127 

6 1.81e0 8.33e-3 217 

All timing results shown in this paper are in seconds. The number of NG samples 
per box is chosen as 64 due to the accuracy requirement. 
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(e)  Evaluation of field values on CG samples (Stage 3) 

 In Stage 3, the field values at the samples of CGs are calculated. This stage can 

conceptually be treated as a two-step process in low-frequency regime as shown in 

Figure 10 but as a one-step process in high-frequency regime. In the two sub-stages in 

low-frequency regime, each of the two origins of fields, as mentioned in Section 4.2.1, 

are accounted. In the high-frequency regime, fields on observers are obtained directly 

via interpolations. In the mixed-frequency regime, the process is a combination of those 

two as described in Ref. [98]. The “one-thread-per-observer” approach is used as the 

“observers” now are CG samples for low-frequency calculations and actual observers for 

high-frequency calculations.  

Table 4 Computational times and speed-up ratios of the NG aggregation stage 
(stage 2) in high-frequency regime  

Accuracy requirement L GPU (GTX 480) 

2
1 5 10L    

3 4.14e-4 

4 2.92e-3 

5 3.59e-2 

6 3.89e-1 

* All timing results shown in this paper are in seconds. No CGs are constructed. 
The number of NG samples per box at level l  is 64 8L l , and the frequency for a 
given L  is chosen as  2D L  . 
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 The sub-stage that evaluates fields at CG samples from NG samples in the 

interacting far-field boxes is the most time consuming part of the entire far-field calcu-

lation. The major reason is the enormous number of operations involved. For each box, 

there are at most 189 boxes in its interaction-list, if the near-field range is defined at 

the closest neighbors of a certain box. This number could go much higher for an in-

creased near-field range. However, there are several other reasons to make this sub-

stage the bottleneck of the calculation as well. To name a few, for a certain observer 

box, the interaction-list boxes are not necessarily situated contiguously in the memory 

which lowers the global memory cache hit-rate.  

 The CG decomposition sub-stage is executed for CG samples in all observer 

boxes at the low-frequency levels after the NG-CG transition sub-stage. On each such 

level, CG samples in the child boxes are obtained from the CGs samples in the parent 

boxes via Lagrange interpolations. This step is similar to the NG-NG aggregation stage 

(Stage 2) but in the opposite direction. Computationally, it is much simpler as no 

CG samples 
at level l

CG samples 
at level l+1

CG samples 
at level l+2

NG samples 
at level l+1

NG samples 
at level l+2

NG samples 
at level l

NG-CG transition stage

CG decomposition stage

 

Figure 10 The relationship of two sub-stages: NG-CG transition stage and CG 
decomposition stage in calculating the field values on CG samples of boxes at 
each computational level in the low-frequency regime. 

 

   



83 

 

spherical-Cartesian coordinate transformations are needed. The total contribution of 

this sub-stage to the overall computational time is low, only about 1-2%. 

 Table 5 shows the computational time of Stage 3 (NG-CG transition stage and 

CG decomposition combined) for different L  in the low-frequency regime. Similar to 

the results in Table 3 (Stage 2), for a fixed number of levels L , the speed of Stage 3 is 

independent of the problem size N  and hence no dependence of N  is shown. The 

obtained computational times depend on the number NG samples and CG samples 

constructed for each box. The speed-up ratio is at least 100, which is in the same order 

to other far-field stages (comparing with significantly lower speed-up for similar stages 

in GPU implementation of MLFMMs from Ref. [41, 62]). The speed-up ratio increases 

for increasing oversampling rates as GPUs use those extra operations to fully saturate 

their thousands of stream processor. In addition, from our tests on different generations 

of GPUs, we found that the Fermi GPUs (GeForce GTX 480) handle kernels with 

access to relatively “random” sets of data much better. This is due to the improved 

architecture with L1 cache and better organized SMs. The result is three-fold computa-

tional time reduction on GeForce GTX 480 as compared to Tesla C1060. This time 

reduction is interesting taking into account that the number of stream processors in 

GTX 480 is only twice as large (480 vs. 240) and with very similar core frequency. 
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Table 5 Computational times and speed-up ratios of field to CG stage (Stage 3) 
in the low-frequency regime 

Accuracy requirement L CPU 
 (Xeon X5482) 

GPU 
(GTX 480) Ratio 

3
1  error 1 10L    for 

domain size / 2D   

3 2.68e-1 2.44e-3 110 

4 3.02e0 2.32e-2 130 

5 2.95e1 2.11e-1 140 

6 2.43e2 1.82e0 134 

 L CPU GPU Ratio 

4
1  error 2.5 10L    for 
domain size / 2D   

3 3.23e0 2.10e-2 154 

4 4.16e1 2.32e-1 179 

5 3.38e2 2.18e0 155 

Times are shown in seconds. 

Table 6 Computational times and speed-up ratios of field to CG stage (Stage 3)  
in the high-frequency regime 

Accuracy requirement L GPU (GTX 480) 

2
1  error 5 10L    

3 3.33e-3 

4 4.79e-2 

5 6.16e-1 

6 6.97e0 

 L GPU 

2
1  error 1.5 10L    

3 2.84e-2 

4 4.39e-1 

5 5.33e0 

The times shown are in seconds. The number of NG samples per box at level l   
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 Table 6 shows the computational times of stage 3 in the high-frequency regime. 

The time increases compared to the low-frequency case in Table 5 but this increase is 

relatively insignificant (on the order of the number of levels L ), which demonstrates 

the efficiency of the code in the high-frequency regime. 

(f) CG grids to observers (Stage 4) 

 In this stage, the fields at actual observers are interpolated from the CG sam-

ples of the finest level L  boxes. This stage is only valid in low- and mixed-frequency 

regime. This stage is conceptually reciprocal to the Stage 1. All critical designing strat-

egies in Stage 1 are followed, including the “one-thread-per-observer”, coalesced loading 

of sources, etc. The computational time of this stage is usually smaller than that of 

stage 1, because the interpolation operations are less demanding than the direct field 

calculations through the Green’s functions. 

 Timing results of Stage 4 are presented in Table 7. The general trend of compu-

tational times is similar to that of Stage 1 (Table 2). The GPU computational times 

are constant for smaller problem sizes and grow up to a saturation point of around 150 

when the problems size increases. We have also tested more cases with increased CG 

oversampling rates. We found that the increase of the CG oversampling rates barely 

affects the computational times on either CPUs or GPUs, even though with more CG 

samples per box, more data has to be loaded before doing the interpolations. For the 

CPUs, the reason might be that the time spent memory loading time is negligible 
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compared with that of calculations, while for the GPUs the memory loading time is 

small due to coalescent access. 

 It should be mentioned that, generally, the computational time of stage 4 is 

below 1% of the total time. Therefore, the influence of this stage is insignificant provid-

ed other stages are implemented efficiently. 
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4.2.3 Overall results 

Table 7 Computational times and speed-up ratios of CG-to-receiver stage (stage 4) 

pN  L  CPU  
(Xeon X5482) 

GPU  
(GTX 480) ratio 

16 3 1.18e-3 1.50e-4 8 

32 3 1.99e-3 1.50e-4 13 

64 3 3.62e-3 1.70e-4 21 

pN  L  CPU GPU ratio 

16 4 9.77e-3 3.30e-4 30 

32 4 1.68e-2 3.30e-4 51 

64 4 3.53e-2 5.06e-4 70 

pN  L  CPU GPU ratio 

16 5 1.03e-1 1.50e-3 69 

32 5 1.84e-1 1.50e-3 123 

64 5 3.51e-1 2.60e-3 135 

pN  L  CPU GPU ratio 

16 6 9.01e-1 9.90e-3 91 

32 6 1.58e0 1.01e-2 156 

64 6 2.95e0 1.79e-2 165 

All time shown in this table is in seconds. There are 64 CG samples per box. pN  is 
the average number of sources per box on the level L . The relation between pN  
and N  is / 8L

pN N . 
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 In this section, we present and analyze the overall performance of the NGIM 

algorithm on CPUs and GPUs for low-, high- and mix-frequency problems. The asymp-

totic time and space complexity of the algorithm are shown to meet the theoretical 

hypothesis. The speed-ups between GPUs and CPUs are astonishingly high and we 

listed several reasons that might contribute.  

(a) Computational time for low frequency problems 

 We present the computational times in the low-frequency regime in this section. 

The overall performance of CPU and GPU implementations of NGIM is shown in 

Figure 11 and Table 8. The GPU implementations have been tested on two generations 

of NVIDIA GPUs: the Tesla C1060 with 4 GB memory (GT200 architecture, with 

CUDA compute capability 1.3) and new generation Geforce GTX 480 with 1.5 GB 

memory (Fermi architecture, CUDA compute capability 2.0). Since the accelerations 

brought by GPUs vary across different stages and are closely related to the problem 

sizes, optimal performances of respective CPU and GPU version are achieved under 

different parameters. As a result, similar to [62], we define “effective” speed-up ratios as 

the ratios between optimal computational times achieved on CPUs and GPUs. 

 In Figure 11, the computational time of the direct method, i.e. the evaluation of 

each source-observer pair on CPUs and GPUs, are provided as a reference. The direct 

method has  2O N  complexity. Computational times of the NGIM shown as solid and 

dashed lines, scale as  O N  for both CPU and GPU NGIM when the optimal number 
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of levels is chosen respectively.  It can be observed that each curve actually consists of 

several pieces of curves, each of which corresponds to computational times achieved 

under a certain L . At some points, L  has to be increased in order to balance the near- 

and far-field time. This leads to the overall linear increase of computational time with 

respect to N . We also see that the “cross points” that the optimal L  changes are 

different for GPU and CPU cases. This is due to different acceleration ratios of near- 

and far-field components. 
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Figure 11 Computational times of the direct method and multi-level NGIM on 
CPU and GPU as a function of N in the low frequency regime. The time of all 
necessary memory transfer between the hosts and the GPU devices are included, 
as will be the case for all other timing results in this section. The size of the com-
putational domain is / 2D  . The relative 1L  error is approximately 35 10 . 
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 The GPU code is significantly faster in the entire test range. The largest prob-

lem size N  that GeForce GTX 480 can handle is 28 million (1.5 GB memory) while 

Tesla C1060 can handle 64N M (4 GB memory). As a comparison, the CPU code 

can run up to 16 million with 32 GB of memory. Since the GPUs accelerate the near-

field calculations better than the far-field calculations, the cross points of curves be-

tween neighboring levels all shift towards larger N  on GPUs. It is remarkable that the 

breakeven point of the computational time between the GPU direct code and the 

NGIM CPU code is around 4MN  . The breakeven point between the GPU direct 

code and the NGIM GPU code is approximately 4 KN  . 

 Table 8 shows a detailed list of the computational times. For a problem with 

242N  , the computational time is only 6.36 seconds, which is 392 times faster than 

the CPU version of NGIM, 862 times faster than the GPU direct version, and 7 million 

times faster than the CPU direct version (estimated). The comparison between the 

GPU NGIM code running on Tesla C1060 and GeForce GTX 480 shows around two-

fold speed increase of the latter, which is consistent with the two-fold increase of the 

number of stream processor in GeForce GTX 480 (480 vs. 240). As having been dis-

cussed in the previous paragraphs, the speed-up of GTX 480 compared to Tesla C1060 

of the far-field regime is around 3 times. We attribute this fact to the improved archi-

tecture of Fermi cards, allowing easier handling more complex memory loading and 

thread arrangement required for the far-field calculation. However, for near-field calcu-
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lations, the computation is almost brute force so it is natural to obtain approximately 2 

times of speed-ups between the two generations of cards. 

 

 Table 9 lists the computational time when the NG and CG grids are over-

sampled to improve the accuracy of the calculation. Obviously, the computational time 

increases due to more NG and CG grid samples to be processed in the far-field stages. 

Qualitatively, the performance of the CPU and GPU versions is similar to the low 

oversampling case but GPU code handles the increased computational burdens much 

better. In fact, the “ 1L  error = 22 10 ” case runs at the same speed as “ 1L  error = 

35 10 ” case. This is because our current version of the code uses at least one warp to 

handle one observer box, as explained in Section 4.2.2. In these two cases, NGIM uses 8 

Table 8 Computational times and speed-up ratios of the CPU and GPU NGIM 

# of Unknowns 
N  

142  162  182  202  222  242  262  

CPU Time 1.15e0 4.84e0 2.69e1 9.66e1 3.67e2 2.49e3 N/A 

GPU (GTX480) 5.19e-3 3.09e-2 7.49e-2 3.69e-1 2.33e0 6.36e0 N/A 

Speed-up 222 157 359 262 152 392 N/A 

GPU (C1060) 1.15e-2 5.29e-2 1.53e-1 8.14e-1 3.85e0 1.18e1 8.49e1 

Speed-up 100 90 176 119 95 211 N/A 

The GPU and CPU implementations of the NGIM and the direct method for 
2r a x      . The size of the computational domain is 2D  . The 

relative 1L  error is approximately 35 10 . 
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and 27 CG samples per box, respectively, both less than the warp size 32. Thus the 

computational times are the same. 

 

 

 Finally, the performances of NGIM for surface problems are shown in Table 10. 

The simulation is done in the low-frequency regime and all sources are placed on the 

surface of an “inverse T-structure". For this problem, FFT-based methods that will be 

described in Section 4.3 would need to build a grid enclosing the whole computational 

Table 9 Computational times and speed-up ratios of the GPU and CPU NGIM 
with oversampled grids 

# of Unknowns N  202  232  

1L  error = 22 10  

CPU NG Time (sec) 5.29e1 4.46e2 

GPU NG 
Time (sec) 3.69e-1 3.11e0 

Speed-up 143 143 

1L  error = 35 10  

CPU NG Time (sec) 9.66e1 8.14e2 

GPU NG 
Time (sec) 3.69e-1 3.11e0 

Speed-up 262 262 

1L  error= 31 10  

CPU NG Time (sec) 3.43e2 N/A** 

GPU NG 
Time (sec) 1.02e0 8.87e0 

Speed-up 336 N/A 

** The CPU version of code requires more than 32 GB of RAM. The accuracy of 
each simulation is shown in the first column. The size of the computational do-
main is 2D  . 
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domain, including the vast empty spaces, resulting in excessive computational time and 

memory consumption. As evident from Table 10, the CPU and GPU implementations 

of the NGIM have performance similar to (and even better than) that obtained for the 

source/observer distribution in a box. The GPU-CPU speed-up ratios are high as well. 

 

Table 10 Computational times and speed-up ratios of the GPU and CPU NGIM for 
the surface source-observer distribution of the "inverse-T" structure in Figure 12 

# of Unknowns N  8,192 32,768 131,072 524,288 

CPU NG 
(Xeon X5482) 

Time 
(sec) 4.35e-1 2.03e0 8.34e0 4.41e1 

GPU NG 
(GTX 480) 

Time 
(sec) 2.22e-3 6.33e-3 2.16e-2 1.12e-1 

Speed-up 196 321 386 394 

* The size of the computational domain is / 2D   
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(b) Computational time for high- and mixed-frequency problems 

 Next we show the computational time results of the GPU NGIM code in the 

high- and mixed-frequency regimes. The trend of the computational times is qualita-

tively similar to that in the low-frequency regime and hence many observations and 

conclusions in the low-frequency regime apply here as well. In Figure 11 and Table 12, 

we present a quantitative summary of the results in a format similar to that of Table 8. 

Table 11 shows the computational time in the high-frequency regime for the number of 

sources up to 14millionN   and domain sizes up to 12D  . The trend of the 

computational time is consistent with that in the low-frequency regime, with a reason-

D

D

D

 

Figure 12 Sources distributed on two surfaces forming an “inverted T” structure 
with the lateral length equals D . 
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able increase due to higher grid density. As in the low-frequency case, the speed in-

crease brought by the newer generation GPU is around two-fold.  

 

 Table 12 shows the computational time in the mixed-frequency regime with the 

hybrid NG-CG transformation scheme. Computational times for the same N  are 

noticeably smaller comparing with those in the high-frequency regime. This means that 

the hybrid scheme does save some operations due to constant CG samples in the low-

frequency levels. 

Table 11 The computational time of the NGIM on GPUs in the high-frequency regime 

# of Unknowns N  8K 64K 256K 1M 4M 14M 

/D   1.0 2.0 3.0 5.0 8.0 12.0 

Level L  3 3 3 4 5 5 

GPU Time GTX 480 5.0e-3 2.8e-2 2.0e-1 9.6e-1 4.9e0 2.1e1 

GPU Time TESLA C1060 1.4e-2 6.1e-2 3.8e-1 1.8e0 1.0e1 4.4e1 

The number of sources N  is taken such that there are around 20 sources per a linear 
wavelength. The density of NGs are to keep the 1L  error less than 25 10  for all 
problem sizes. 
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(c) Memory usage 

 Memory usage is a very important factor affecting the applicability of GPU-

accelerated algorithms since GPUs typically have smaller amounts of memory than 

CPUs.  For example, in the Dell Precision T7400 workstation we used to test our 

algorithm, any core of the two Xeon processors can take the entire 32 gigabytes of the 

main RAM. In our GPU platform, NVIDIA GeForce GTX 480 has 1.5 GB global 

memory.  

 In our current version of the code, the memory usage of GPU code is deter-

mined by both L  and N. With 1.5 gigabytes of memory, NVIDIA GeForce GTX 480 

can go up to 6L   and up to 28MN  . The memory consumption of our CPU 

NGIM is significantly larger (while at the same time, much slower). For example, the 

memory required by NGIM CPU implementation for a problem of 8MN   is 18.1 GB  

for the same accuracy requirements. This is almost 50 times more than that of the 

Table 12 Computational times of the NGIM on GPUs in the mixed-frequency regime 

# of Unknowns N  64K 256K 1M 4M 8M 64M* 

Level L  3 4 5 5 6 6 

GPU Time (GTX 480) 2.6e-2 9.2e-2 3.7e-1 1.8e0 3.1e0 N/A 

GPU Time (TESLA C1060) 4.4e-2 1.7e-1 8.6e-1 3.1e0 7.0e0 8.0e1 

The domain size is set to be 2D  . The 1L  error is 6.0e-2 for all cases. For the 
case 64MN  , the optimal level L  should be 7 but due to the memory limitations 
the results are shown for 6L  . 
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GPU code. Most of the CPU memory is used for storing the interpolation coefficient 

matrices, impedance matrices and other grid sample information, which if eliminated, 

would make the CPU code several orders of magnitude slower and completely not 

usable. 

4.2.4 Summary and future directions 

 From this section, it is clear that the NGIM is a very good candidate for mas-

sive parallelization including on GPUs. Furthermore, the high-frequency NGIM method, 

without the CG, would be very easy to scale to multiple nodes on high-performance 

computing clusters. These options will be explored in the next revision of the NGIM 

code.  

 

4.3 Box Adaptive Integral Method (B-AIM) 

 Box Adaptive Integral Method (B-AIM) is one variation of FFT-accelerated fast 

methods that are designed specifically for massively parallel computing architectures. 

Comparing with the other popular variations, B-AIM has the same computational 

complexity but much higher execution efficiency on current and possibly future many-

core computer systems, including GPGPUs.  

 All FFT-based algorithms follow similar philosophy and flow. In these algo-

rithms, two auxiliary sparse uniform grids are created, one interacting with sources, 
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called the source grid and the other interacting with observer, called observer grid. The 

source grid points are used as virtual sources participating in the source-observer field 

calculation through FFT. The observer grid points are used as the virtual observers. 

After the fields on the observe grid points are where the fields on actual observers are 

interpolated from. The process of calculating the amplitudes on those “virtual sources” 

are called “projection” or, as in Ref. [36, 177], “anterpolation” and the reciprocal process 

of obtaining field strengths on actual observers from the “virtual observers” is called 

“interpolation”. The projections and interpolations introduce errors and the errors 

might be unacceptably large when sources and observers are too close to each other. B-

AIM, AIM and pFFT algorithm all have correction mechanisms to neutralize this 

inaccuracy. For each observer, interactions from sources residing within a certain range 

of observers are identified as “near-fields”, and are supposed to be inaccurate. Since 

they are inseparable from other “far-fields” while being calculated through FFT in the 

first pass, they have to be calculated separately again and subtracted. Then, accurate 

near-fields are added through direct superposition. Detailed description of the process 

can be found in Ref. [11, 94, 136]. 

4.3.1 Procedure of B-AIM 

 The B-AIM algorithm presented in this chapter does have similar stages as the 

traditional AIM and pFFT algorithms but it follows a different approach in projections 

and corrections. In the following, we describe the stages of the algorithm. 



99 

 

Preprocessing (Stage 0):  

 The operations described in this stage are only to be done once before the 

iterative solution of fields starts. The computational domain is divided into multiple 

subdomains, called boxes, as shown in Figure 13. The number of boxes can be set by 

the user or by some criteria such as memory usage or computational time requirement. 

Boxes with no sources or observers are excluded from the computations. Two grids are 

constructed for each non-empty box, one for emulating the field generated by actual 

sources, referred to as the source grid and the other for estimating the field resulted on 

actual observers, referred to as the observer grid. In many cases (e.g. for free space 

problems) these two grids can overlap, thus saving half of the storage space, but for 

some specific cases, such as periodic problems, these two grids are shifted to ensure fast 

convergence of the periodic Green’s function [100]. These grids of individual boxes are 

then combined and form two larger grids covering the whole computational domain. 

These two large grids can be expressed as two gN -length vectors, I  and U , respective-

ly.  

 After the grids have been established, the algorithm proceeds as follows 

Projection (Stage 1):  

 The source amplitudes are projected from actual sources to the source grid 

points for them to emulating the influence of the actual sources. Lagrange interpola-
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tions are used. The result of the projection operation can be expressed as an gN N  

matrix V , so that I = VQ .  

Grids interaction calculation (Stage 2):  

 Field generated by the source grid points are calculated at each observer grid 

points via a convolution gridU = G I . This is done by convolving the grid sample 

matrix with the Green’s function matrix via FFT.  

Interpolation (Stage 3):  

 In this stage, the fields at actual observers are found by interpolating from the 

field values of observer grid points. The interpolation operation is the reciprocal opera-

tion of the projection so can be expressed as the transpose of V , so that TF = V U  

where F is an approximation of F . Combining the above equations, this coarse estima-

tion can be summarized as  invFFT{FFT{ } FFT{ }} T
gridF V G VQ . 

Near field correction (Stage 4):  

 The approximation near-field parts of F  are substituted by field values com-

puted directly. This substitution requires a second pass of the previous stages and 

direct calculation of a portion of Z . This process has (1)O  complexity for a single 

observer and ( )O N complexity overall. This correction can be summarized as 



_
T  near grid near near nearF = F V (G (V Q)) Z Q
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4.3.2 The GPU implementation of B-AIM 

 As stated and restated several times in the thesis, implementing any algorithm 

efficiently on GPUs requires it adapting to the hardware architecture. The B-AIM is no 

exception.   

Source

Observer

Far field interaction via grids
Projection / Interpolation

Near field interaction
 

Figure 13 Schematic illustration of B-AIM. Subtraction of inaccurate near-field is 
not shown as they follow the same procedure as the projection stage.  
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(a) “On-the-fly” calculation:  

 In sequential AIM/pFFT implementations, the operations shown in Section 

4.3.1 are usually implemented as several matrix-vector multiplications and the matrices 

are usually pre-filled in the processing stage to save CPUs from calculating the un-

changing matrix elements at very iteration. This is not done in the GPU B-AIM 

because the GPUs are very good at arithmetic calculation and have much less memory 

to store the pre-filled tables. So, GPUs calculate each matrix element right before the 

matrix-vector multiplication is required. This is called the “on-the-fly” mechanism, and 

has been explained in the Section 4.2. This technique inevitably increases the total 

number of arithmetic operations but, with appropriate task arrangement actually 

utilizes GPUs’ extremely wide SIMD SMs well. The final results in Section 4.3.3 shows 

that the “on-the-fly” approach produces incredible speed-ups comparing with the CPU 

AIM/pFFT that uses the prefilling approach.  

(b) Box-level domain decomposition and regulation:  

 Another critical issue in the tradition AIM algorithm that limits its efficiency 

on GPUs is the inhomogeneous computational burden across sources. This happens in 

the projection, interpolation as well as in the near-field correction stage. For example, 

in the near-field correction stage, common implementations of AIM maintain a list of 

near sources for each observer (or basis function). The fields exerted by the sources on 

this list are to be corrected as the corresponding sources are too close to be calculated 
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via FFT. In order to do this, a sparse matrix is formulated with its non-zero elements 

representing the Green’s function between these near-sources and observers. However, 

non-zero entries are highly dependent on the geometrical distribution of sources and 

can be unstructured. Accelerating unstructured sparse matrix-vector multiplication has 

been shown in many research literatures to have relatively limited GPU-CPU speed-ups  

[10, 88]. AIM implementations adopting this approach confirm the conclusion by show-

ing less than 10x speed-ups [51, 133].  

 Our B-AIM solves this problem by grouping close sources and observers into 

boxes and replacing the separate near-source list of each observer by a unified near-

source list shared between observers in the same box. As mentioned in Section 4.3.1, 

the computational domain is divided into subdomains called “boxes”. Sources and 

observers are then associated with their enclosing boxes. The relationship between a 

pair of source and observer is no longer determined by their distance but by the boxes 

they belong, whose relationship is in turn determined by the distance between the 

centers of themselves. 

 Using this double-layer mapping scheme, observers that belong to the same box 

always have the same near and far field sources and the same interpolation grid points 

too. In fact, adopting this box-to-box mapping eliminates the near-source lists altogeth-

er because any observer box can find their near boxes using their index numbers alone. 

This not only saves the precious memory resources of GPUs but also dramatically 
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reduces the number of global memory access, which is a critical for improving the 

execution efficiency of the code. 

(c) Pre-sorting:  

 The source information such as the coordinates and amplitudes are pre-sorted in 

the preprocessing stage, after the box decomposition, so that the source information 

belonging to the same box occupies contiguous memory spaces. This increases the data 

locality of the algorithm, so the code would have much higher global memory cache hit 

rate.  

(d) Block-box mapping:  

 Similar to the tactics we adopted in the NGIM, one block of threads are always 

responsible for processing observers that belong to the same box. This intrigues coa-

lesced memory access that are critical for achieving high global memory accessing 

throughput, especially on older architectures like G80 or GT200. This block-box map-

ping techniques also significantly improves the shared memory utilization so that global 

memory access can be further reduced.  

(e) Lagrange projection and interpolation schemes:  

 There are many projection and interpolation schemes to be chosen for AIM or 

pFFT, and comparison studies have been done by researchers [174]. However, tradi-

tionally the selection of schemes rarely considers their computing efficiency on specific 
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hardware architectures. In the B-AIM algorithm, Lagrange interpolation scheme is 

chosen for both projection and interpolation because they can be done on GPUs 

through either hardware texture filtering units using intrinsic commands or through 

Lagrange polynomials evaluations that can take advantage of the very fast constant 

memory. In other schemes, the interpolation coefficients would require enormous 

amount of operations such that they have to be calculated in the preprocessing stage 

and tabulated for future usage, which are ineffective or infeasible for GPUs.  

4.3.3 Computational complexity and result analysis 

 In principle, the user would keep the average number of sources per box to be a 

constant. This means the number of boxes and the total number of grid samples is 

proportional to number of sourcesN . This leads to ( log )q qO N N  computational com-

plexity of the stage 2.  Stages 1, 3, and 4 contain only local operations so they have an 

( )qO N  complexity. The overall asymptotical complexity of the algorithm is ( log )O N N . 

The memory complexity of the algorithm is ( )O N . 

 Computational times of B-AIM are shown in the Table 13 for cubic and linear 

order of interpolations with 1e-4 and 1e-5 average L1 error, respectively. The parallel 

GPU B-AIM using a single NVIDIA Geforce GTX 680 card is compared against serial 

CPU B-AIM using one core of Intel i7-950 CPU. All computational times are obtained 

using optimal settings for CPU and GPU code. We can see that the times of both the 

CPU and GPU codes have close to linear scaling starting from very small problems 
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sizes. The speed-ups between GPU and CPU implementations are around 100-200. For 

example, one field evaluation using GPU B-AIM costs 0.246 secs in cubic settings, for a 

problem of 1 million unknowns, which is 162x and 143x faster than CPU B-AIM and 

GPU direct method, respectively.  

  

 It is interesting to see that the speed-ups between GPUs and CPUs B-AIM far 

exceed the difference of their respective theoretical computing power. The reason is 

two-fold. It happens that the commercial x86 CPUs lacks accessible APIs to exploit the 

massive parallelization opportunities in the B-AIM algorithm. Developers usually rely 

on automatic optimization and vectorization from compilers or directive-based 

OpenMP APIs to utilize the cores on chips. Two x86 CPU vendors, Intel and AMD do 

provide SSE or AVX vectorization commands, but they are at the assembly language 

level so it requires extraordinary efforts to use. The other reason is that GPUs’ onboard 

memory has much higher throughput. Even the slowest “main” memory, which is called 

the global memory in CUDA and OpenCL API, is two generations advanced of the 

Table 13 Computational times of serial B-AIM on CPU and parallel B-AIM on one 
GPU card 

N Direct CPU Direct 
GPU 

B-AIM CPU 
(cubic) 

B-AIM GPU 
(cubic) 

B-AIM GPU 
(linear) 

16K 7.02e-1 3.74e-3 2.65e-1 3.10e-3 2.10e-3 

64K 4.47e1 1.45e-1 2.28e0 8.40e-3 5.70e-3 

256K 7.17e2 2.13e0 9.87e0 3.28e-2 2.05e-2 

1M N/A 3.53e1 3.99e1 1.34e-1 8.89e-2 

4M N/A N/A N/A 5.76e-1 3.90e-1 
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main memory of CPU and has a much wider bus. The shared memory on die provides 

several terabytes per second throughput and can be accessed by tens of SPs at the 

same time. With appropriate accessing patterns, these super-fast memories may provide 

one or two orders of magnitude larger throughput, comparing with the CPUs’ main 

memory. With those being said, we should be aware that any comparison between 

CPUs and GPUs in term of the absolute times should be made with clear explanation 

of the implementation, optimization and execution environment. Obviously, the speed-

ups between CPU and GPU vary a lot among different algorithms [88], and this is due 

to the nature of mathematical operations involved. 

 The memory consumption of B-AIM is shown in Table 14. The asymptotical 

complexity of the memory consumption of B-AIM is  O N . For problems with the 

same size, the cubic interpolation B-AIM uses approximately 6 times more memory due 

to larger grids.  

 

 

4.3.4 Multi-GPU B-AIM 

Table 14 The memory consumption of B-AIM under different interpolation schemes 

N 16K 64K 256K 1M 4M 

Linear 0.8M 3.2M 9M 31M 111M 

Cubic 6.9M 14.9M 43M 163M 673M 
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 The B-AIM algorithm has been further parallelized across multiple GPUs. The 

flow chart of the multi-GPU B-AIM is shown in Figure 14. The main difference be-

tween the multi-GPU version and the single-GPU one is multiple scattering and 

collecting stages between B-AIM stages. This is necessary when only partial data is 

situated on each computing nodes. With the execution being carried by multiple devic-

es, not only the computational time is cut drastically, but also the largest problem sizes 

the algorithm can handle is increased significantly. The largest problem that has been 

tested on the four GeForce GTX 570 GPUs with 1.2 GB memory each is 262N  , and 

the a single field evaluation takes 3.19 seconds to complete. 
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 Computational times of B-AIM on four GeForce GTX 570 GPUs are shown in 

Figure 15, with the times on a single GTX 470 GPU card shown as a reference. It can 

be seen that the blue curve drops below the red one at approximately N=30K. At 

approximately N=1 million, the time indicated by the blue curve is 38% of that of the 

red curve, which corresponds to approximately 65% of parallel efficiency (here, the 

parallel efficiency, in term of strong-scaling, is defined as 1/nnt t  , where n is 

number of nodes the algorithm is running on, nt is execution time on n GPUs and 1t is 

 

Figure 14 The flow chart of multi-GPU B-AIM. The details of parallel FFT can be 
found in Ref. [33, 42].  
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the execution time on the single GPU).  The parallel efficiency of the near-field calcula-

tion is extremely high since they do not require communication between nodes at all. 

The 65% of efficiency is partly due to element rearranging procedure to transform a 

random scattered set of sources into a sorted one, which is just happened to be neces-

sary at all iterations in our specific solver. The relationship of the computational times 

as a function of the number of GPU cards are shown in Figure 16. 
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Figure 15 shows the computational time as a function of number of nodes used. 
The code has been tested up to 4 GPUs and we could see that the blue line 
deviates further from the 100% efficiency reference line at n=4. This is due to 
suboptimal integration between the solver and the B-AIM, which leads to unnec-
essary rearranging of sources at every field evaluation call.  
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4.3.5 Summary 

It has been shown that the FFT-based fast methods for evaluating convolution in Eq. 

(2.11) and Eq. (2.19) can be accelerated by GPUs effectively. The speed-up ratios 

between parallel GPU code and the sequential CPU code are generally above 100. 

Significant changes are needed in order to adapt the algorithm with GPU’s unique 

architectures. Specifically, we successfully reduced the memory consumption of the B-

AIM algorithm while achieving such high computing throughput. Using less memory 

also makes the code to be able to process much larger problem and we have the algo-

rithm handling problems with hundreds of millions sources using merely 4 Tesla GPUs 

that can be put into a desktop computer case.  
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Figure 16 The parallel efficiency of the B-AIM in terms of strong scalability 
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4.4 General designing guidelines for algorithms running on GPUs 

 In this section, we summarize the general features of algorithms that would be 

favorable for GPUs and present some general strategies for designing algorithms run-

ning on GPUs. Most of the materials presented here can be found in Ref. [126] and 

various other documents from NVIDIA or third-party tutorials. Programmers using 

AMD GPUs would also be benefited from these guidelines [2]. Here we list only those 

that are related to common algorithms met in computational electromagnetics, compu-

tational micromagnetics and other areas that use iterative linear equation solvers. 

 Designing and optimizing a specific algorithm would definitely require much 

more efforts than just following the points listed below. Sometimes critical decisions 

have to be made when trade-offs are inevitable. The algorithms described in this chap-

ter are designed, implemented and tuned from scratch by the author so to achieve 

encouraging performance in terms of both time and memory consumption. In general, 

we believe, as stated in Section 1.4, that adapting algorithms to appropriate hardware 

architectures at relatively low-level is necessary for extracting computing performance 

out of any computing systems. 

4.4.1 Massive parallelism 
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 One of the major differences between GPUs and CPUs are the scale of parallel-

ism and threading model. Although CPUs are drastically increasing the number of 

cores they contain in the recent years, they are not at all comparable to the number of 

cores per chip on GPUs. In desktop computing systems, the highest-end CPU systems 

may have 8 or 10 cores per die. Meanwhile, a single high-end GPU card, like Geforce 

GTX 680, consists of 1536 cores. Therefore, one critical factor determining the execu-

tion efficiency of an algorithm on GPUs is the available parallelism. 

 Many algorithms have massive parallelization opportunities, such as the matri-

ces multiplication example shown in the Ref. [127]. This category of algorithms is 

generally very suitable for GPUs and the GPU-CPU speed-up ratio could reach up to 

several thousands. However, there are many other algorithms that are intrinsically 

sequential, such as the Gaussian elimination for solving linear equation systems. These 

algorithms are harder to accelerate by GPUs. Therefore, GPUs are not the panacea but 

a specific dose of medicine under appropriate situations where hundreds of thousands of 

concurrent threads can be launched to solve a compute intensive problem.  

 In our micromagnetic solver, the number of discretized magnetization elements 

and other intermediate data points can be in the range from several thousands to 

multiple millions. It is rather common to launch a few million threads to process these 

elements and the GPU can generally achieve full utilization in these simulations. 

4.4.2 Memory exchange between host and device   
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 The peak global memory bandwidth of GPU is extremely high (192.2 GB/s for 

GTX 680 card) but the memory transfer bandwidth between GPUs and CPUs are 

through much slower PCI Express bus. Hence, to achieve the fastest execution efficien-

cy, it is critical to minimize the data transfer between CPUs and GPUs. 

 Taking it as a general principle, the complexity of a certain algorithm or part of 

it should be high enough to compensate the extra time spent on moving data back and 

forth to and from the devices. Ideally, that part of the algorithm suitable for GPUs 

should contain large amount arithmetic operations that can be handled in parallel 

fashion. Once the programmer decides to process this part on the GPUs, one should 

keep the same data on the device as long as possible. This sometimes requires redesign-

ing the algorithm to increase the temporal locality of the data accessing. For example, 

in our micromagnetic solver, all the components of the effective field are computed on 

GPUs though we gain almost nothing from lightweight kernels for calculating the 

Zeeman field. If possible, the entire algorithm should be run on the GPUs. For example, 

in our future micromagnetic solvers, an efficient ODE time integrator is being ported to 

GPUs so that no CPU-GPU memory transfers are required at every time integration 

step. 

4.4.3 Floating point intensive and memory intensive applications 

 Memory operations and arithmetic operations are two most commonly met 

types of operations in many scientific computing applications. These two types of 
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operations follows very different execution path, from the hardware architecture per-

spective. GPUs indeed offer high global memory bandwidth but they possess much 

more arithmetic computing power. Generally speaking, memory access initiated by 

GPUs requires very special accessing patterns, called “coalesced access”, to hide the 

intrinsic latency of GDDR RAM and this latency cannot be eliminated by adding more 

SPs. On the contrary, the arithmetic operations usually executed on registers that have 

no latency and can be accomplished in a few cycles. Furthermore, the floating point 

number computing power of GPUs can be scaled further by adding more SPs. There-

fore, massively parallel processors like GPUs prefer higher arithmetic intensity 

operations. In our electromagnetic solver, the Green’s function evaluation kernel has 

very high arithmetic intensity. The Helmholtz-type potentials need more than 30 

floating point number operations (FLOPS) to process a single source-observer pair, 

with only 4 global memory loading and storing operations.  

4.4.4 Using shared memory to avoid global memory access 

 The shared memory is a type of on-chip and extremely fast memory with sever-

al unique features. The shared memory can serve as the scratch pad for threads to 

share the intermediate results, relieve the register pressure and also reduce the global 

memory access. The shared memory has extremely low latency and can be read and 

written by all threads within a block at the same time, providing they are not accessing 

the address in the same bank. Using shared memory could significantly improve the 
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data readiness for parallel processors, as mentioned in the Chapter 1 when the memory 

wall problem is discussed. In our solver, shared memory is actively used due to our box-

level decomposition of the domain, after which, multiple observers within the same box 

would have exactly the same sources to be interacted with. In this case, threads pro-

cessing these observers would have same execution paths and be able to share same set 

of information through the shared memory. 

4.4.5 Coalesced access to global memory 

 When global memory accesses are unavoidable, coalesced memory accesses 

would be the most important performance consideration. Coalesced memory access 

combines the memory loading operations by threads of the same warp into a single 

transaction when necessary conditions are met. For NVIDIA GPUs with compute 

capability of greater than 2.0, the coalesced memory access happens when a warp of 

threads access a single 128-byte contiguous memory piece in the global memory, mean-

ing each thread handling a single 4-byte floating point number. Our simulator employs 

this access pattern wherever possible. Pre-sorting of the coordinates of sources into 

boxes means when a block of threads could load these coordinates into shared memory, 

they always follows the box boundaries and are guaranteed to load a significant chunk 

of data in contiguous memory locations.  

4.4.6 Occupancy 
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 Occupancy is also an important concept in understanding how hardware actual-

ly process multi-million parallel tasks. As we known from the Chapter 3, a warp of 

threads are always mapped to a single SM. But in order for a SM to hide the latencies 

of certain operations, it holds multiple warps simultaneously and switches to other 

execution-ready warps when the currently active warp is temporarily stalled. The 

number of warps that can be simultaneously situated on a SM is limited by available 

resources, particularly speaking the registers, the shared memory and the number of 

different blocks each SM can have. The way to calculate the occupancy can be found in 

Ref. [127] or using occupancy calculator provided with the CUDA compiler. Higher 

occupancy does not guarantee higher performance [167], but in general, it can provide 

better chance for the SM’s warp scheduler to hide the latencies resulting from memory 

operations or register dependencies. 

4.4.7 Branching and divergence 

 The flow control instructions in kernels significantly affect the instruction 

throughput if divergent branches happen within a warp. If this happens, different 

execution paths would be serialized and threads not participating in a certain path are 

disabled temporarily for their turns. If the algorithm has extremely fine parallelized 

tasks, it might be hard to deploy a warp of 32 threads without branching among them. 

However, our solvers do not have this problem as long as most of the boxes contain 
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more than 32 sources or observers. The boxes make the whole computational domain 

parallelized adequately but not too finely. 

 

4.5 Summary 

 The GPU-accelerated fast methods for IE solvers can achieve extremely high 

performance in both the computational time and memory consumption but non-trivial 

efforts have to be made before “porting” any existing algorithms to GPUs. The unique 

architecture of GPUs requires rethinking of the fundamental data-structures and execu-

tion paths of algorithms. Various techniques has to be used to achieve high efficiency, 

such as ordering the data in a way that GPUs can access with minimal latencies and 

homogenize the computational tasks that handles by a single SM. The outcomes are 

encouraging. Over 100x or more speed-ups are achieved for problems of a wide range of 

sizes comparing with a highly efficient sequential version of the same algorithms run-

ning on a high-end CPU.  
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5 Fast Methods for Periodic Boundary Problems 

 Periodic structures are widely used in microwave engineering and optics, and 

their efficient computational analysis is important in a multitude of applications. In 

many cases, a periodic structure can be considered as an infinite array of unit cells and 

the fields are solved for only in a single unit cell.  

 Integral equation (IE) solvers are often used to analyze such periodic unit cell 

problems [135]. When solved iteratively, IE solvers require evaluating spatial convolu-

tions between a source distribution within the unit cell and the periodic Green’s 

function (PGF) accounting for the presence of an infinite number of unit cells. Periodic 

convolutions may be also required in micromagnetic solvers when a single unit cell of 

an array of magnetic elements is of interest. Evaluating such convolutions is similar to 

that described in Chapter 4 except for the evaluation of free space Green’s functions 

being replaced by the evaluation of PGFs. The Green’s functions need to be computed 

2( )O N times to fill up an IE impedance matrix for directly implemented IEs, where N  

is the number of sources and observers. Then, the fields are found by convoluting the 

PGF results and the source amplitudes. 

 In this chapter, we present a fast periodic interpolation method (FPIM) for 

computing fields generated by N  sources and observed at N  observers in a unit cell of 

an infinitely periodic problem at a small ( ( )O N  or ( log )O N N ) number of operations 

in the low-, high-, and mixed-frequency regimes. This method is based on separating 



122 

 

the PGFs into its near- and far-field components and analyzing them separately. The 

near-field component may be analyzed using any conventional fast methods for a finite 

distribution of sources and observers such as NGIM and B-AIM, presented in the 

previous chapter. The far-field component has slow variations thus may be solved on a 

sparse grid and then followed by interpolation to the source and observer locations. 

This would save a great number of PGF evaluations, reducing the computational cost. 

The FPIM is kernel independent and can handle different periodic problem types, 

including arrays of different dimensionality in free-space, metallic waveguides, and 

layered media. More importantly, FPIM allows using any available methods for evalu-

ating the PGF, including simple Floquet summations. Practically achievable 

computational times can match those of conventional non-periodic fast methods that 

have ( )O N  or ( log )O N N  complexity [100]. 

 

5.1 Problem formulation 

 The periodic boundary problems are slightly different from free space problems 

presented in Chapter 2 and 4. Using a slightly different set of terminology, we present 

their definition in this section before starting to describe the procedures of the FPIM.  

Consider an infinite periodic array of unit cells residing in free space. Each unit cell of 

the array comprises N  scalar point sources, labeled nq , located at the source locations 
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nr , and the same number of coinciding observers. The sources can be distributed on a 

surface or in a volume of a linear size D . The array can be one-, two-, or three dimen-

sional (1D, 2D, or 3D) and it resides in an infinite homogeneous 3D space. The array’s 

periodicity is , ,x y zL L L  in the three possible ( , ,x y z ) periodicity directions (with 

{ , , }x y zD L L L  ). There is a linear phase shift with wavenumbers 0 0 0, ,x y zk k k  in the 

three dimensions, between the sources and fields in the unit cells. Compared to the 

wavelength  , the domain size can be small , (i.e. D  ), moderate ( ~D  ), or 

large (i.e. D  ). 

 The scalar field in the prime unit cell is given by  

          
1

( ) ( , )
N

m p m n n
n

u G q


 r r r      (5.1) 

where pG , the PGF describing the periodic array, is found by summing up the Green’s 

function of a single source over all unit cells in a periodic array. 

    0( , 0) ( , )tj
pG e G

  


  ik r
ii

r r r     (5.2) 

 Here, 0( , )G ir r  is the free-space Green’s function, given by 
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    (5.3) 

 The vector ir  is the coordinate of the source in the thi  unit cell, and the wave 

vector  0 0 0( , , )t x y zk k kk  with generally complex components describes a linear phase 

shift between the source amplitudes and field in the unit cells. The index i  is under-
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stood in a general form and it can be referred to 1D, 2D, and 3D arrays. A more de-

tailed description of this index as well as spatial and Floquet (spectral) summations for 

the 1D, 2D, and 3D cases are given in Appendix B.  For arrays in free-space, ( , )pG r r  

is shift invariant, i.e. ( , ) ( , 0)p pG G  r r r r . Although the formulation presented here 

is for 3D free-space environments, the method is kernel independent, so a number of 

other environments can be handled in a similar manner.  

 Solving Eq. (5.1) is an essential step for iterative IE methods. As presented in 

Section 2.2, in mixed-potential electric field IE solvers the summation in Eq. (2.16) can 

be used directly. In this case, the summation is computed four times, for the scalar 

potential  and the three components of the vector potential A . Computationally 

inexpensive local corrections are used to account for the impedance matrix correspond-

ing to overlapping basis functions. For magnetic field IEs, the task of solving Eq. (5.1) 

can be modified to include PGFs with a gradient. In addition, vector fields generated 

by vector current sources can be found with dyadic PGFs, which can be important e.g. 

in discrete dipole approximation approaches. The problem in Eq. (5.1) is also im-

portant in various physics and chemistry problems involving interactions between 

collections of particles. 

 The computational cost of computing ( )mu r  at N  observers due to N  sources 

using direct evaluation of Eq. (5.1) scales as 2( )O N . It requires 2N  evaluations of the 

PGF to fill the impedance matrix. For iterative IE solvers, the conventional approach 
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is to build an impedance matrix with tabulated impedance values in a preprocessing 

stage and used merely matrix-vector multiplication for all subsequent iterations. This 

approach requires 2( )O N  memory consumption and 2( )O N  floating point operations 

for computation.  

 This quadratic computational cost is very high even for a small problem size N  

and even higher is the matrix-filling stage in which PGFs are evaluated. To allow 

analyzing complex periodic unit cell problems, the summation in Eq. (5.1) needs to be 

calculated rapidly with a reduced number of PGF evaluations. FPIM is designed to 

reduce this high computational cost. 

 

5.2 Fast Periodic Interpolation Method (FPIM) 
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 The idea of FPIM is based on splitting the PGF and field into the near- and 

far-field components (see Figure 17). The PGF can be represented in the following form: 

    near far( , 0) ( , 0) ( , 0)p p
pG G G r r r    (5.4) 

where near( , 0)pG r  and far( , 0)pG r are the near- and far-field components of the PGF given 

by  

    near 0

far near

( , 0) ( , ),

( , 0) ( , 0) ( , 0)

d t

d

i jp
i

p p p

G e G

G G G

 




 

 ik r
ii

r r r

r r r
    (5.5) 

 Here, near( , 0)pG r  is given as a summation of the simple Green’s functions 

0( , )G ir r  around the prime unit cell, which is similar to the expression in Eq. (5.2) but 

with a finite summation over a limited range determined by di ( 1di   can be chosen 

 
Figure 17 An example periodic structure comprising an infinite 2D periodic array in 
free space. 1D and 3D arrays in 3D space are also considered. The method is also 
applicable to many other periodic structures for which a PGF can be computed and a 
far-field PGF with smooth behavior can be defined.   
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for most cases). The far-field component of PGF, far( , 0)pG r , is given as the sum of 

contributions from the infinite number of remaining unit cells.  

 Based on the PGF decomposition, the field is also decomposed as 

       near far( ) ( ) ( )m m mu u u r r r      (5.6) 

in terms of its near- and far-field components 

        far far
1,

( ) ( , )
N
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m m n n

n
n m

u G q



 r r r     (5.7) 

       near near
1,

( ) ( , )
N

p
m m n n

n
n m

u G q



 r r r     (5.8) 

 The task of evaluating the near-field field nearu  is mostly identical to that of 

evaluating the field in non-periodic structures using B-AIM or NGIM; some minor 

modifications that may be required for the summation for nearu  as in Eq. (5.8) are 

outlined in Section 5.3.  The rapid evaluation of the far-field faru  as in Eq. (5.7) is a 

more complicated task for general problems, which will be addressed in Section 5.4. 

 

5.3 Evaluation of the near-field periodic field in FPIM 

 To evaluate the near-field nearu  as in Eq. (5.6) with the near-field PGF compo-

nent in Eq. (5.5), nearu  can be recast in an alternative form as 
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d d
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n m n m

u G q e G q 

  
 

   ik r

i

r r r r r    (5.9) 

 Here, the first summation is for N  sources in (2 1)di
  units cells including the 

unit cell of interest and its surrounding unit cells, where   is the dimensionality of the 

array ( 1,2, 3   for 1D, 2D, 3D arrays). The second summation in Eq. (5.9) is over an 

extended index running over all (2 1)d dN i N   sources in the (2 1)di
  (prime and 

adjacent) unit cells with the sources exp( )t
n n tq q j   ik r  defined to include the phase 

shift between the unit cells.  

 The evaluation of the second summation in Eq. (5.9) for free-space problems is 

a standard task that can be handled using any available fast methods, such ones pre-

sented in this thesis. For instance, if we use NGIM described in Section 4.2, the 

computational domain (comprising (2 1)di
  cells) for computing nearu  will be divided 

into a multilevel hierarchy of levels of boxes. Interactions between “well separated” 

boxes are accounted via spatial interpolations, whereas the interactions between the 

neighboring boxes containing a small number of source-observer points are accounted 

for via direct superposition. This results in a computational cost of ( )O N  or 

( log )O N N , depending on the frequency domains of the calculation. Other methods are 

extensively documented in literatures (see e.g. [35]) and therefore no further details are 

provided.  
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5.4 Evaluation of the far-field periodic field in FPIM 

 The far-field component of the PGF far
pG  and the field faru  observed in the 

prime unit cell are generated by sources residing outside of the di -th unit cells. The far-

field PGF and the field itself have bounded spatial variations within the prime periodic 

unit cell. This means that far
pG  and faru  at the observers can be calculated by interpo-

lation from a set of relatively sparse samples, called observer grid. Due to reciprocity, 

the far-field PGF far
pG  has bounded variations with respect to the source coordinates, 

which can also be computed at the source locations by interpolating from a sparse 

source grid. The sampling rates for the grids are determined by the Nyquist criterion, 

which requires the grid step sizes x , y , and z  to be less than 2  (in Cartesian 

coordinates). To account for different electrical sizes of the cells, the step sizes are 

chosen as min{ 2, }D  , where 1   is an oversampling ratio. Based on this un-

derstanding, the proposed FPIM is accomplished in three stages. 

5.4.1 Stage 1: Evaluating  p
farG  at source and observer grids  

 In this stage, the far-field PGF far
pG  is evaluated at in the grid points of the 

prime periodic unit cell (Figure 17). Let the grid 1{ ( , , )} gNs s s s
n n n n nx y z r  be the source 

grid and 1{ ( , , )} gNo o o o
m m m m mx y z r  be the observation grid.  

 In our FPIM implementation, we choose uniform Cartesian lattices (Figure 18) 

because we will later use FFT to accelerate the calculation, as being done in B-AIM 
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discussed in Section 4.3. The number of grid points for both grids in the x , y , and z  

directions is y
gN , x

gN , and y
gN , respectively, and the total number of possible grid 

points is x y z
g g g gN N N N . The source and observation grid coordinates are staggered by 

about half of the interval in all dimensions, so the relationship between the coordinates 

is represented as ( ) 2o s
n n x y z      r r x y z . This choice of grids assures a rapid 

convergence of the PGF from the source grid points to the observation grid points via 

simple Floquet summations [135], thus allowing using the latter with FPIM efficiently. 

 For free-space problems with translation invariant PGFs, there are only ( )gO N  

different values of o s
m n r r , which leads to  ( )gO N  evaluations of PGF (Figure 18). 

Moreover, far
pG  need to be evaluated only at the number g gN N   of grid points 

around the sources and observers (gray samples in Figure 18). Here, due to the Nyquist 

criterion, the number of relevant grid points is  2max{2 ,1}gN O D    or gN    

 3max{2 ,1}O D  for surface or volume charge distributions, respectively. 
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 The PGF between grid points, far( , )p o s
m nG r r , can be evaluated using any available 

methods, including various acceleration techniques [13, 27, 83, 120, 162, 164]. However, 

even simple spectral Floquet mode expansions can be very efficient for field calculations 

(see Floquet expansions for arrays in free space in Appendix B). This is possible due to 

both the grids and the interpolation procedure can be set up to avoid specific source-

observer arrangements for which the Floquet series convergence is slow. Additional 

details are given in Section 5.5.  

 The computational cost of this stage scales as PGF gc N  , where PGFc  is the cost 

of evaluating a single PGF far
pG . The evaluation of far

pG  at the grids depends only on 

Observer grid

Observer

Source

Source grid
 

 

Figure 18 The schematic illustration of the source and observer grids. The grids are 
chosen as shifted Cartesian lattices to allow for using simple Floquet summations for 
PGFs. The choice of grids, however, is flexible and other grid types can be used. The 
grey dots represent the grid points around the computational domain for which PGFs 
need to be computed. 
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the unit cell parameters and wavelength, and not on the source distribution. In the 

framework of IE iterative methods, the far-field PGF on at the grids is therefore re-

quired to be tabulated only once.  

5.4.2 Stage 2: Evaluating faru  at the observation grid  

 In this stage, the field far( )o
mu r  is evaluated at the observation grid points. Two 

approaches can be followed.  

Approach 1:  

 The calculation of the field far( )o
mu r  can be accomplished in two steps. First, the 

far-field component of the PGF far( , )p o
m nG r r  from the actual source locations nr  to the 

observation grid points o
mr  is calculated by locally interpolating from the source grid 

points s
nr   

    far far
1

( , ) ( , ) ( , )
qN

p o s s p o s
m n n n m n

n

G w G 


 r r r r r r     (5.10) 

where ( , )s s
n nw r r  are interpolation coefficients and q gN N  is the number of grid 

points used for interpolation. For example, 3( 1)qN q   for Lagrange interpolation of 

order q .  Other interpolation approaches can be also used, including Chebychev or 

simplex interpolations. Once far( , )p o
m nG r r  is found, the far-field field far( )o

mu r  at the 

observation grid is found via the summation similar to that in Eq. (5.1) 

     far far
1

( ) ( , )
N

o p o
m m n n

n

u G q


 r r r       (5.11) 
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 The resulting computational cost is  1 2 3q q g gc N c N N c N N    with constants 

1,2,3c , which includes the cost of ( )qO N N  for the interpolation coefficients ( , )s s
n nw r r  in 

Eq. (5.10) (to be executed only once for an iterative IE solver), ( )q gO N N N  cost of 

evaluating the far-field PGF far( , )p o
m nG r r  in Eq.  at required observer grid points from 

all source points (to be executed only once), and ( )gO N N  cost of calculating far( )o
mu r  in 

Eq. (5.11) (to be executed in each iteration for an iterative IE solver). Conceptually, 

this procedure is similar to the evaluation of the local fields in the framework of the 

NGIM in the Section 4.2. The computation cost in the above procedure is of ( )gO N N , 

which can be much smaller than the cost of the direct approach but potentially still 

may be significant. This cost can be further reduced as described next. 

Approach 2:  

 An alternative procedure for calculating the field far( )o
mu r  is by combining Eq. 

(5.10) and Eq. (5.11) and extending the 'n  summation to all possible gN  source grid 

points for the chosen uniform grid. The result is the following representation  

    far far
1

1

( ) ( , ) ,

( , )

gN
o p o s
m m n n

n
N s s

n n n nn

u G Q

Q q w
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
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    (5.12) 

 Here, each nQ   has the meaning of the surrounding  qN  sources projected onto 

a sparse grid point at s
nr  via the second expression in Eq. (5.12). This projection fol-

lows the same logic and operation as in B-AIM, described in Section 4.3. These 
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projected sources are obtained by superimposing the original sources weighted with the 

interpolation coefficients ( , )s s
n nw r r  to gN   grid points (with qN  grid points for each 

source nr ) and zero padding to the remaining g gN N   grid points. Using uniform 

grids and defining the summation in Eq. (5.12) for all gN  grid points, this summation 

can be calculated via FFT, which significantly reduces the computational cost. The 

resulting cost of computing far( )o
mu r  via Eq. (5.12) is 1 2 logq g gc N N c N N  (for every 

iteration of an IE solver), including the cost of  ( )qO N N  for computing nQ   and 

( log )g gO N N  for computing far( )o
mu r . So, conceptually, the whole approach in Eq. (5.12) 

is similar to the B-AIM, but it allows using much sparser grids whose density can be 

independent of the density of the source distribution. Furthermore, the interpolation 

coefficients for projections are available in closed form, which reduces the computation-

al cost and memory requirements. 

 Approach 1 is more efficient for very small N . However, for most practical 

cases Approach 2 is more efficient and it is therefore implemented in the rest of the 

paper.  

5.4.3 Stage 3: Evaluating faru  at the actual observers  

 The far-field field far( )mu r  at all N  observers mr  is obtained by interpolating 

from the field far( )o
mu r  at the observation grid:  

         
far far

1

( ) ( , ) ( )
qN

o o o
m m m m

m

u w u 


 r r r r     (5.13) 
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where ( , )o o
m mw r r  are interpolations coefficients similar to those for the source grid. The 

computational cost of this stage scales as  qO N N .  

 The choice of uniform Cartesian (source and observation) grids (see Figure 18) 

allows using FFT to accelerate computations in both low- and high-frequency regimes. 

The choice of uniform grids still allows for a seamless handling of non-uniform source-

observer distributions (e.g. ,n nq r  in Eq. (5.12) and mr  in (5.13) can have any distribu-

tion).  

 

5.5 Computational complexity 

 The computational complexity of FPIM can be split into the cost of the prepro-

cessing, to be evaluated only once for an iterative solution of fields, and the cost of the 

field evaluation, to be done at every iteration. The preprocessing cost is given by 

interpPGF gc N c N , where interpc  is the cost of evaluating the interpolation coefficients 

for a single source or observer. The cost of interpc  scales as  (1)O  (assuming (1)q O ), 

whereas the cost of PGFc  scales differently in the low- and high-frequency regimes. The 

cost of field evaluation is dominated by the cost of Stage 2, which is given by 

1 2 logq g gc N N c N N , where 1,2c  are constants of (1)O . 

 Below we detail the computational cost of FPIM for the low- and moderate-

frequency regime (D   or ~D  ), high-frequency regime (D  ), and mixed-



136 

 

frequency regime. The low- and moderate-frequency regimes are met in the majority of 

applications of periodic structures related to radiation, scattering, and propagation. 

High- and mixed-frequency regimes may be important for certain antenna array prob-

lems and random problems, e.g. where periodic continuations can be used instead of 

truncating the domain of interest. 

5.5.1 Low- and moderate-frequency regime 

 For the low-frequency regime the PGF and field vary slowly and the grids can 

be very sparse with , , (1)q g gN N N O  , resulting in the computation cost of ( )O N . The 

total number of grid points gN  and the number of required grid points gN   can be 

chosen to be the same.  

 The far-field Green’s function far( , )p o s
m nG r r  at the sparse grids can be evaluated 

using any available methods including simple spectral Floquet mode expansions (see 

Appendix B) or any accelerated techniques. The Floquet mode expansions can be 

efficient because the grids are chosen such that all the source-observer pair has suffi-

cient separation, under which Floquet expansions become rapidly convergent. For 

example, the choice of the shifted Cartesian grids as in Fig. 2 assures that the minimal 

transverse separation between the source and observation grid points is 

min{ , , } 2x y z   . As a result, the far-field PGF far( , )p o s
m nG r r  can be evaluated effi-

ciently with ( )xO L x  terms in the Floquet summation for the case of 1D arrays and 

 ( ) ( )x yO L L x y   terms for 2D and 3D arrays. For the low-frequency regime, x
gN , 
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y
gN , z

gN  are of (1)O , resulting in the minimal source-observation grid points separation 

of ( )xO L . This separation means the cost of evaluating the PGF using simple Floquet 

expansions will be a constant. 

 Summarizing, the preprocessing cost in the low-frequency regime scales as (1)O  

and the computation cost scales as ( )O N . Because of the simplicity of operations, the 

total absolute cost is very low as shown in Section 5.6. This cost remains unchanged for 

any source-observer distribution, including volumetric and surface uniform and non-

uniform distributions.  

5.5.2 High-frequency regime 

 The high-frequency regime is typically defined such that the computational 

domain size is electrically large, i.e. , ,, x y zD L  , and the source distribution is 

smooth so that the number of source-observer points is 2(( ) )N O D   or 

3(( ) )N O D   for surface and volumetric distributions respectively. For such high-

frequency problems, , , 2x y z      according to the Nyquist criterion and the 

number of the grid points at which the PGF is computed is ( )gN O N  . The prepro-

cessing cost is dominated by the PGF tabulation, which scales as ( )PGFO c N . The 

evaluation of PGF for the high-frequency case may be time consuming. Using the 

Floquet summation approach in Appendix B, it can be shown that ( )PGFc O D   for 

1D arrays and 2(( ) )PGFc O D   for 2D and 3D arrays. Taking into account the 

relation between N , gN  , and D  , this preprocessing cost is significantly higher than 
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that of the low-frequency regime. Currently there are no available methods that can 

reduce this cost. (Other available approaches either cannot be used for the high-

frequency regime or lead to the same or even higher cost.) 

 The computation cost of the high-frequency regime is dominated by the first 

summation in Eq. (5.12), which can be evaluated via FFT. The use of FFT requires 

extending the grids to cover the entire volume around the structure, which results in 

different computational costs for volumetric and general surface source distributions. 

The resulting computation cost scales as ( log )O N N  for volumetric and quasi-planar 

surface problems and it scales as 3 2
( log )O N N  for general surface problems. 

 As clear from the above discussion, the preprocessing and computation times of 

FPIM in the high-frequency regime are higher than those in the low-frequency regime. 

However, these times are still much smaller than those required for direct evaluation of 

Eq. (5.1).  

5.5.3 Mixed-frequency regime 

 In the mixed-frequency regime, the source distribution is electrically large, i.e. 

, ,, x y zD L  , but the distribution also is dense in at least some parts of the domain. 

The FPIM procedure remains unchanged. The grid density is chosen as in the high-

frequency regime such that , , 2x y z     , resulting in 2(( ) )gN O D    or 

3(( ) )gN O D    grid points at which the PGF is computed for surface or volumetric 
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source distributions, respectively. The number of grid points for a single interpolation is 

(1)qN O .  

 The preprocessing and computation costs can be obtained based on the costs 

derived for the low- and high-frequency regimes. Specifically, the preprocessing cost 

scales as ( )O N D   for 1D arrays and 2( ( ) )O N D   for 2D and 3D arrays. The compu-

tation cost scales as 3(( ) log( ) )qO D D N N    for all array types. These costs are 

much lower than those for the direct field evaluation, and are significantly lower than 

the cost of B-AIM. In particular, FPIM makes the low-frequency part of a mixed-

frequency problem much faster. 

 

5.6 Results 

5.6.1 Computational times in various frequency regimes 

 FPIM was implemented in FORTRAN, compiled with Intel Fortran v11.1 at –

O3 optimization, and run on a desktop with Intel i7-920 2.66GHz CPU on a single core. 

The source and observer grids are shifted Cartesian grids as shown in Fig. 2. The 

interpolation was chosen to be Lagrange type with the order ranging from linear to 

sixth. The parameter di  in Eq. (5.5) was chosen as 1di  . 

 We start by considering a 1D periodic array in free 3D space in the low- and 

moderate-frequency regime. The periodicity of the array is 2xL   and the phase 
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shift wave number is 0 (1.2 0.01 )xk j k  . The sources are distributed randomly in a 

cube of edge length xD L . The results in Figure 19 (as well as Figure 20 and Figure 

21) are similar for various arrays and source distributions, including surface distribu-

tions and other highly non-uniform distributions, as further demonstrated in Table 15. 

 For the 1D array, we have implemented two methods to compute the PGF. The 

first method uses the simple Floquet mode expansion given in Appendix B (the first 

equation in Eq. (8.3)) while the other uses the fast hybrid spatial-spectral representa-

tion introduced in [164]. The Floquet summation method is efficient only for 

sufficiently large source-observer separations transverse to the array axis. For small 

transverse source-observer separations it converges very slowly, and it diverges on the 

array’s axis for 1D arrays. As a result, the Floquet expansion method is unacceptable 

for directly computing the summation in Eq. (5.1). However, it can be used efficiently 

in FPIM as the minimal off-axis separation between the grid points is fixed. The alter-

native PGF representation of [164] is applicable to virtually any source-observer 

separations near the array axis with very robust performance. Both approaches for 

obtaining the PGFs are used and compared with each other. It is demonstrated that 

FPIM is very efficient even with the simple Floquet summation, with computational 

times comparable to those of finite (non-periodic) electromagnetic N-body problems. 

 Figure 19 shows the time for computing the far field component faru  using 

FPIM and the direct superposition of Eq. (5.1) in the low-frequency regime. The times 
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are shown separately for the pre-processing and the computational stages. The pre-

processing stage is to be executed only once in an IE code, consisting of tabulating the 

PGF at the sparse grids (Stage 1 in Section 5.4.1) and calculating the interpolation 

coefficients (Stage 2 in Section 5.4.2). The computation stage consists of computing the 

field at the sparse grid via Approach 2 of Stage 2 as in Section 5.4.2 and calculating the 

field at the observers in Stage 3 as in Section 5.4.3. This stage is to be executed at 

every iteration step for an IE solver. The number of source and observer grid points 

was 512o sN N   and cubic (Lagrange) interpolation was used resulting in an RMS 

error at the level of 310 .  

 The computation time of the direct summation (dashed curve) and fast FPIM 

(solid curve) scale as 2( )O N  and ( )O N , respectively. The absolute time of the FPIM is 

significantly smaller than that of the direct summation for all considered problem sizes. 

For example, for 64N  , the speed-up is 87x and for 2N   million the computa-

tional time of the FPIM is 13 seconds and the speed-up is 1.9e7 (with the time of the 

direct approach extrapolated to this large N ). Practically, the obtained computational 

time for the far-field is comparable to the time of evaluating the field for a conventional 

non-periodic problem of the same size.  

 The preprocessing times shown in Figure 19 for small N  saturate at the lower 

end due to constant time of tabulating the PGF on the sparse grids (Stage 1 in Sec. 

5.4.1). As expected, this saturation time is smaller for the faster alternative PGF 
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calculation approach of [164] (dotted curve). However, even for the conventional and 

simple Floquet summation approach (dash-dotted curve), this saturation time is very 

small. For larger N  the times are nearly the same for both approaches since the pre-

processing stage is dominated by the construction of the interpolation coefficients of 

Stage 2 in Sec. 3.C, which is unrelated to the PGF evaluations. The preprocessing time 

is smaller than the direct time at 80N   for the PGF computed as in [164] and 

200N   for the PGF computed via Eq. (8.3) . The computational time is much 

smaller for larger N . Moreover, there is no significant benefits of using faster methods 

for the PGF when N  is greater than only a few hundreds. Therefore, FPIM is very 

efficient, even with simple Floquet mode summations for evaluating PGFs.  
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 Figure 20 shows the preprocessing and computation time for a linear array in 

the high-frequency regime. As in Figure 3, the sources are distributed in a cube of 

linear size xD L . However, the number of sources N  scales with the electrical size of 

the computational domain as 3(16 )N D  , i.e. there are 16 sources per wavelength. 

For D  in the range from 0.5  to 8  the number of sources N  is in the range from 

512 to 2 million.  
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Figure 19 The preprocessing and computational times vs. N  in the low-frequency 
regime for a linear (1D) array with  0 1.2 0.01xk j k  . The sources are distributed 
randomly in a cube of linear size / 2xD L   . The times for two different methods 
for the PGF are shown, including the Floquet summation in Eq. (8.3) and the alterna-
tive (faster) approach of [164] . The number of grid points is 38gN   and the cubic 
interpolation is used. The RMS error is 31 10 . 
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 To account for the variation of high-frequency fields, the number of the grid 

points gN  also scales with the domain size, as 3(12 )gN D  . The increased number 

of the grid points leads to a noticeable increase of the preprocessing time as compared 

to that in the low-frequency regime in Figure 19. While being slower in the high-

frequency regime as compared to the low-frequency regime, FPIM is still significantly 

faster than the direct method for all practical problem sizes. For example, the speed-

ups in Figure 20 are in the range from 24 for 4096N   to 2000 for 2N   million. 
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Figure 20 The preprocessing and computational times vs. N  in the high-frequency 
regime for a linear array with 0 (1.2 0.01 )xk j k  . The size of the computational do-
main varies from 2  to 8  and 3(16 )N D  . The number of grid points is chosen as 

3(12 )gN D  . The PGF is computed via the Floquet expansion in Eq. The cubic 
interpolation is used. The RMS error is 33 10 . 
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 Figure 21 shows the computation time in the mixed-frequency regime for a 1D 

array on the x  axis with a quasi-planar computational domain. As described in Section 

5.5.3, in the mixed-frequency regime the size of computational domain is large but at 

least a part of the domain contains a dense source distribution. In our simulations, the 

computational domain size is 8 8 0.1     with 8xL   and the number of grid 

points is 96 96 4gN    . Lagrange cubic interpolation is used in all dimensions. The 

preprocessing time is almost a constant since the number of grid points is relatively 

large and is determined by the large electrical size of the computational domain. The 

computation times are nearly identical to those of the low-frequency regime in Figure 

19.  
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 The results in Figure 19, Figure 20 and Figure 21 show that the FPIM is effi-

cient for problems in a broad range of frequencies.  

5.6.2 Computational times for various kernels 

 Table 15 shows the tabulation time for different kernels, in the low- and high-

frequency regimes.  In the low-frequency regime (second column), the number of the 

grid points is 64gN   and the array parameters are chosen as x y zL L L   and 
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Figure 21 The preprocessing and computational times vs. N  in the mixed-frequency 
regime for a linear array. The array is oriented along the x  axis with 0xk   
(1.2 0.01 )j k  and a quasi-planar source distribution. The size of the computational 
domain is 8 8 0.1    . The sources are arranged in four identical horizontal layers in 
the x y  plane. In each layer, the source distribution is a combination of two set of 
sources, including a number of 128 128 16384   sources, which represent the high-
frequency regime with the uniform source density determined by the source-to-source 
separation of 16 , and a number of ( 65536) 4N   sources, which represent the low-
frequency regime with a density increasing as 1 ( )xy  towards the origin. The number of 
grid points is 24 (12 )gN D    and the cubic interpolation is used. The simple Flo-
quet expansion in Eq. (8.3) is used for the PGF. The RMS error is 33 10 . 
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0 0x yk k  0 0zk  . The sources are distributed randomly in a cube of size xD L  

2 . The 1D PGF is computed via the alternative approach in [164] and via the 

Floquet expansion in Appendix B (the first equation in Eq. (8.3) The 2D and 3D PGFs 

are computed via the Floquet expansion in Appendix B (the second and third equa-

tions in Eq. (8.3) .All results are given for an RMS error at the level of 310 . In this 

low-frequency regime the tabulation time is independent of N  since gN  is a constant 

of (1)O . The obtained times are comparable for all considered PGF cases, and are 

lower than the time of direct evaluation for the 1D case via the fast alternative method 

of [164] for all practical problem sizes (with 100N  ). Any direct methods for the 2D 

and 3D arrays, including those using PGF acceleration techniques such as the Ewald 

approach, will be even slower. FPIM is therefore efficient for all demonstrated kernel 

types. For large N , the tabulation time is small compared to the computation time, 

and the total cost is essentially the same for all kernels. 

 In the high-frequency regime (last column in Table 15), the computational 

domain size is a cube of size 4xD L    and the number of sources is 262,144N  , 

i.e. there 16 sources per wavelength as in Figure 19. The grid density is also as in 

Figure 19. Here, the PGF tabulation time depends on N  as shown in Figure 19; the 

high-frequency results in Table 15 are therefore shown for the specific N . The 1D, 2D, 

and 3D PGF are computed via the Floquet expansions in Appendix B, which in the 

framework of the FPIM in this case are as efficient as (or even more efficient than) 
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other methods for evaluating the PGFs. It is found that the evaluation of the 2D and 

3D PGFs in this high-frequency regime is slower than the evaluation of the 1D PGF. 

The tabulation time for the high-frequency regime is significantly larger for all shown 

kernel types as compared to the low-frequency regime. This is because of the increased 

grid density and increased cost of the PGF evaluation. However, the obtained compu-

tational times for all kernels are much smaller than the times of the direct field 

evaluation.  

 

 

5.6.3 Computational accuracy 

 Figure 22 shows the RMS error and computational time versus the grid density 

for different interpolation orders q  and number of grid points gN  for 2D  . From 

Figure 22 (a), it is evident that the error can be reduced by increasing the grid density 

 

Table 15 The PGF tabulation time of different computational kernels. 

Kernel Time (High-frequency) Time (Low-frequency) 

1D alternative [164] N/A 4.6e-3 

1D Floquet 4.2e2 3.6e-2 

2D Floquet 1.4e3 1.2e-2 

3D Floquet 8.9e3 7.9e-2 

Results are shown for both the low-frequency regime (second column) and high-
frequency regime (last column) for the RMS error below 310 . For the low-frequency 
regime, 2D  , 64gN  ; the tabulation time is a constant for a given accuracy since 
the grid density is fixed for any N . For the high-frequency regime, 4D  , 

110,592gN  , 262,144N  ; the tabulation time increases with N . 
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and/or interpolation order. Such an increase leads to an increase of the computation 

or/and preprocessing times. Figure 22 (b) depicts the computational and preprocessing 

time for the 1D array with the PGF computed via the approach of [164] for 

524,288N  . Increasing q  increases both the preprocessing and computation time, 

while increasing the grid density increases only the preprocessing time. From our nu-

merical experiments, we found that using cubic interpolation is often most beneficial in 

terms of a trade-off between accuracy and computational time, hence the results in are 

given with the cubic interpolation. In particular, cubic interpolation with an over-

sampling ratio   in the range 6 to 8 leads to the RMS error at the level of 310  for all 

the cases in the paper (and for many other practical cases). 
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Figure 22 NGIM performance vs. the interpolation order and number of grid points for 
a linear (1D) array with 0 (1.2 0.01 )xk j k  . The sources are distributed in a cube of 
liner size 2xD L   . (a) Error vs. the number of grid points for different interpola-
tion orders; (b) The preprocessing and computation time vs. the interpolation order for 

524,288N  . The PGF is computed using the approach of [164].  
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5.7 Discussions on extended applications of FPIM  

 The results in Section 5.6 are presented for 1D, 2D, and 3D rectangular arrays 

in 3D free-space. However, due to the separation of PGF evaluation and interpolations, 

the FPIM can handle several other array types, as long as smoothly behaved far-fields 

can be obtained and the PGF can be calculated. Several possible problem types and 

details of the FPIM for them are listed. 

(a) Periodic 1D and 2D arrays in 2D free-space 

 For free-space problems in two dimensions, the elementary sources are line 

sources and the free-space (non-periodic) Green’s function is 0( , ) ( 4)G jir r  

(2)
0 ( | |)H k  ir r , where (2)

0H  is the Hankel function of second kind. FPIM will be 

unchanged as described in Section 5.4, with a difference being that the PGF is defined 

for 2D space and the interpolations are done in 2D. The PGF can be calculated either 

using Floquet expansions or using alternative spectral and spatial representations [164]. 

(b) Periodic 1D and 2D arrays in metal wall waveguides 

 Another type of problem that can be handled involves 1D or 2D arrays in a 

parallel metal plate waveguide as well as 1D arrays along the axis of a metal wall 

rectangular waveguide. Consider a parallel plate waveguide with metallic walls at 

0y   and 2yy L . Inside this waveguide consider a 1D array of periodicity xL  

along the x  direction with a phase shift wavenumber 0xk  or a 2D array of periodicities 
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xL , zL  along the ,x z  directions with phase shift wavenumbers 0xk , 0zk . Assume that 

the boundary conditions for the field u  and the Green’s function pwG  at the walls are 

of Dirichlet type, i.e. 
0, 2 0, 2

0
y y

pwy L y L
u G

 
  . Using the image representation, the 

Green’s function for the waveguide can be given in terms of a superposition of PGFs 

for two arrays 

            , , , 2 'pw p pG G G y  r r' r r' r r' y    (5.14) 

 For the 1D array in the parallel plate waveguide, pG  is the PGF for the 2D 

array in free space as defined in Eq. (5.14) with the phase shift wavenumbers 

0 0, 0x yk k  . For the 2D array in the parallel plate waveguide, pG  is the PGF for the 

3D array in free space with the phase shift wavenumbers 0 0 0, 0,x y zk k k .   

 The representation in Eq. (5.14) can be further extended to the case of a linear 

array along the x  direction that resides in a rectangular waveguide of a cross-sectional 

size of 2 2y zL L  with Dirichlet boundary conditions. For this case, the Green’s 

function of the waveguide is given as  

   
     

    
, , , 2 '

             , 2 ' , 2 ' '
pw p p

p p

G G G y

G z G y z

  

    

r r' r r' r r' y
r r' z r r' y z

   (5.15) 

where pG  is the PGF for the 3D array in free space with the phase shift wavenumbers 

0 0 0, 0, 0x y zk k k  . Similar representations can be given for walls with boundary 

conditions of Neumann type. 
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 From the representations in Eq. (5.14) and Eq. (5.15) it follows that the task of 

evaluating the convolution in Eq. (5.1) for arrays in metallic wall waveguides is accom-

plished by superposing the results for periodic arrays in free space. Therefore, the 

computational time results in Section 5.6 apply here as well (but they need to be 

multiplied by a factor of 2 or 4 for the cases of parallel plate and rectangular cross-

section waveguides, respectively). 

(c) Periodic 1D and 2D arrays in layered media 

 Consider a 1D or 2D periodic array of unit cells above and parallel to a layered 

medium. In this case, the PGF is given similarly to Eq. (5.2) but with 0G  replaced by 

the layered medium Green’s function given via the Sommerfeld integral [36]. FPIM can 

proceed but several modifications may be required. In particular, the layered medium 

Green’s function may need to be regularized to result in slow spatial variations, e.g. by 

extracting its quasi-static components. Further details on such regularizations are given 

in [163]. In addition, the translation invariant property should be defined with respect 

to the image of the unit cell defined relative to the layered medium top interface. Once 

such a Green’s function is obtained, FPIM remains mostly unchanged.  

 The situation is somewhat more complicated for unit cells embedded within a 

multilayered medium, in which case PGF may lose the translation invariant property. 

This may result in a higher computational cost for tabulation and interpolation. These 

requirements are similar to those reported in recent works [163], where interpolations 
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were used to compute PGFs for layered media. Methods developed in these works can 

be used here as well. Further research is required to fully implement these ideas for 

general periodic layered media problems. 

 

5.8 FPIM on GPUs 

 Implementing FPIM on GPUs would be very similar to B-AIM without the 

near-field correction stage. The near-field component of the FPIM can be separated 

accelerated by either B-AIM or NGIM and the far-field component consists of projec-

tion, FFT transformation and interpolation. The computational time and accuracy 

behavior would be very similar to those of B-AIM.   

 The results of GPU FPIM is shown in the Table x, and Figure x. The speed-ups 

are around 150x for sufficiently large problems. This speed-up is similar to what GPU 

B-AIM provides while accelerating the CPU sequential B-AIM. 



154 

 

 

 

 

 

5.9 Summary 

Table 16 Computational time for FPIM on CPUs and GPUs 

N  CPU 
Direct 

CPU Prepro-
cessing 

CPU 
Execution 

GPU Prepro-
cessing 

GPU 
Execution 

Speed-
up 

212 3.54e+02 4.54E-01 2.12E-02 8.90E-01 1.17E-03 18.1 

215 2.26E+04 6.88E-01 1.75E-01 3.07E+00 1.93E-03 90.6 

218 1.45E+06 9.23E+00 1.83E+00 1.19E+01 1.16E-02 157.7 

220 2.32E+07 1.31E+01 7.65E+00 4.83E+01 5.28E-02 144.9 

The time shown in the table is in seconds. The CPU version of FPIM is sequential 
running on a single core of Intel i7-920 CPU. The GPU version runs on NVIDIA 
Geforce GTX 480 GPU. Only far-field computational time is shown in this paper. 
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Figure 23 The computational time of FPIM on CPUs and GPUs. The execution 
times are shown and compared to the CPU direct evaluation time. The asymptotic 
complexity of FPIM decreases from  2O N  to  logO N N  and the speed-ups are 
around 150x for problems larger than approximately 30 K. 
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 We have presented a FPIM for the rapid evaluation of electromagnetic potential 

field at N  observers generated by N  sources in a general periodic unit cell. FPIM is 

based on splitting the field into its near- and far-field components. The near-field 

component represents the field generated by a finite number of sources in and around 

the prime cell. This component can be evaluated rapidly using any hierarchical or FFT-

based method. The far-field component of the field, which has slow spatial variations 

within the unit cell, is found via three steps: tabulating the PGF at sparse source and 

observer grids, using these tabulated PGFs to calculate the field at a sparse observation 

grid, and interpolating from the observation grid to the actual observers. In the low- 

and moderate frequency regimes, i.e. for small and moderate periodicities, FPIM has 

the computational cost of ( )O N  with (1)O  evaluations of PGF. In the high- or mixed-

frequency regimes, i.e. for electrically large computational domains with dense source 

constellation regions, FPIM has the computational cost scales of 

3(( ) log( ) )qO D D N N    with ( )O N  evaluations of the PGF. 

 The innovations brought by FPIM are summarized: 

1) The computational time of FPIM is much smaller than that of the direct evalu-

ation. Significant speed-ups over the direct method are obtained, starting from 

N  as small as 60 and up to any limit determined by the available memory (e.g. 

sizes up to 2N   million are shown in Sec. 5.6). This performance is obtained 
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for a wide range of source-observer distributions, including volumetric and sur-

face distributions that can be uniform and highly non-uniform.  

2) The PGF evaluations in the FPIM can be done via any existing method. In 

many practical cases, simple spectral Floquet expansions can be used. This 

makes implementing complicated acceleration techniques for the PGF evalua-

tion unnecessary.  

3) The method is kernel (i.e. PGF) independent, and the preprocessing and field 

evaluation stages are completely separated. Therefore, FPIM can handle many 

problem types, which a certain type of PGF is available, including arrays in free 

space, metal wall waveguides, and layered media. The reason is that only the 

first step of the algorithm (PGF tabulation) in Section 5.4.1 is kernel dependent. 

Once the PGF is tabulated at a sparse grid, the rest of the algorithm remains 

mostly unchanged. 

4) FPIM is simple to implement and can be incorporated into existing IE solvers, 

provided a conventional fast code for the near-field field evaluation is available.  

5) GPU acceleration of FPIM is very similar to B-AIM and much simpler as the 

most time-consuming near-field correction stages in B-AIM is unnecessary for 

FPIM.  

 FPIM can be used to accelerate IEs for various periodic unit cell problems with 

many applications in the microwave engineering and optics, including frequency-
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selective surfaces, artificial impedance surfaces, periodic leaky wave antennas, periodic 

grating filters and couplers, waveguides, and photonic bandgap structures. 
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6 Electromagnetic and micromagnetic simulators on GPUs 

 

6.1 The micromagnetic simulator (FastMag) 

 The micromagnetic simulator that utilizes the fast methods described in Chap-

ter 4 for field evaluation is called FastMag [31]. FastMag takes various kinds of meshes 

that model the geometries of objects. Meshes may consist of tetrahedrons or hexahe-

drons for general-purpose simulations or various other elements such as Voronoi cells, 

for specialized granular magnetic recording media simulation. The solver is modular, so 

different third-party function units can be added or removed from the solver with ease. 

It uses the CUBIT meshing application for mesh generations, open source CVODE 

package to do the time integration, and Paraview for post-processing and visualizing 

results. The arrangement and relations between components is shown in the Figure 24. 
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 FastMag is distinct in that it has a very high computational performance and it 

can handle complex and realistic magnetic devices and systems. An important compo-

nent enabling the high performance of FastMag is the use of GPUs to overcome a 

number of computational bottlenecks [30, 31].  

 Fastmag has been used to design advanced magnetic recording systems [49] as 

well as investigate complex physical phenomena inside magnetic materials [111-113]. e. 

g. a magnetic recording head meshed to approximately 126 million tetrahedrons could 

be simulated [31]. Here we listed several sample micromagnetic simulations that have 

been run on the platform and performance the solvers achieve.   

6.1.1 Large scale bit patterned media array simulations 

Magnetization M
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• GPU NGIM / GPU B-AIM
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Figure 24 Block diagram of FastMag. The meshing and visualization component 
are third-party open source packages. 
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 Table 17 demonstrates the performance of the FastMag micromagnetic solver 

on bit patterned media array simulations. In this series of simulations, a large number 

of cubic magnetic elements staggered to form a large planar array. Each of the magnet-

ic elements are of single layer with the average saturation magnetiza-

tion 700 emu ccsM  , anisotropy field 25kOeKH  , lateral length 12nmw  . The 

array has inter-element spacing 12b nm and parameter fluctuation of 15%
KH   

and 10%b  . FEM-based solver might have reduced efficiency while tackling this 

kind of problems because because of many surface nodes, whereas finite difference 

based solvers would reduce the efficiency because of the white space between the array 

elements. Moreover, the problem is stiff, so that efficient implicit time integration 

techniques are required. However, since FastMag evaluates long range magnetostatic 

fields using integral equation methods and uses implicit time integration methods, so it 

handles this structure efficiently. 

 

Table 17 The computational times of the bit patterned media array simulation 

Array size Number of tetrahedron 
Time 

(System 1) 

Time 

(System 2) 

20x20 14.4K 5e-3 s 1.1e-2 s 

200x200 1.44M 0.284 s 0.573 s 

300x300 3.24M 0.560 s 1.29 s 

800x800 23.04M N/A 9.35 s 

1600x1600 92.16M N/A 40.8 s 
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 Computational times shown in Table 17 are those required to progress one time 

step in our ODE solver. The system 1 is a workstation with Intel i7-920 CPU and 

NVIDIA Geforce 480 GPU. The system 2 is a workstation with Intel Xeon X5482 CPU 

and NVIDIA TESLA C1060 GPU. The larger graphics memory available on the TES-

LA board extends the capability of our FastMag solver close to problems with 100M 

tetrahedron.  

6.1.2 Magnetic recording head simulations 

 We have also tested our FastMag solver on objects with more complex geomet-

ric shape, such the magnetic recording head. Figure 25 (a) shows a typical structure of 

a magnetic recording write head. It is a very challenging task to simulate the dynamics 

in a recording head as the size of the geometric features varies greatly across different 

parts.   

 Differences in the magnetization dynamics are found using meshes with different 

discretization rate. For example, the maximal recording fields generated by the head 

are shown to be lower than actual field if the coarsest mesh is used. Proper discretiza-

tion is also required to reveal the interaction between the shields (the gray component) 

and the soft under layer (the magenta component) [49]. 
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6.2 The electromagnetic simulator  

 The electromagnetic solver in the author’s research group follows a similar 

structure as other iterative integral equations solvers using the GMRES iterative algo-

rithm. The solver has several revisions, using different basis functions such as RWG 

basis for surface problems or SWG for volumetric problem and may solve for different 

unknown sources, fields or potentials. The electromagnetic solver utilizes the fast meth-

ods discussed in Chapter 4 for field evaluations, so it runs much faster than its 

sequential counterparts on CPUs. The small memory footprint of NGIM also gives the 

5 mµ

3 mµ

5 mµ

31270emu cmsM =

31580emu cmsM =

(a) A typical magnetic write head

(b) Time used to simulate the 
dynamics inside the head with 
different discretization 

Largest 
element

# of 
tetrah.

Time 
per 1 ns

130 nm 130 K 1.75 min

57 nm 1.2 M 17 min

33 nm 4.8 M 107 min

10 nm 126 M ~3 days

 

Figure 25 (a) Model of a state-of-the-art magnetic recording head and its geo-
metrical dimensions. (b) The computational time for 1 nanosecond of simulation 
time using different meshes.   
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solver ability to handle problems with millions of degrees of freedom or problems in 

high-frequency domain on a desktop workstation. This solver can also handle periodic 

problems utilizing the FPIM discussed in Chapter 5. In this section, the author would 

also like to show several example simulations and the performance of the solver. In all 

examples, the simulations were done on the same desktop computer as in Section 6.1, 

with Intel i7-950 CPU, 24 GB of system memory and NVIDIA GeForce GTX 570 GPU 

with 1.2 GB of global memory.  

6.2.1 Scattering from free-standing spheres 

 Figure 26 shows the radar cross-section (RCS) of a free-standing sphere of 

diameter D  and permittivity 14 8j  at the wavelength / 3.8D  . RCS obtained 

via the Mie scattering approach and via the volumetric integral equations accelerated 

by GPUs using B-AIM are shown and compared. The number of Mie series terms was 

chosen to achieve a full convergence. The number of SWG basis functions was 

1,320,198. The process of solution contains 174 iterations with a 1e-2 RMS convergence 

error. The preprocessing time was 9 seconds and the solution time was 36.7 minutes. 
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6.2.2 Scattering from human upper body 

 Figure 27 demonstrates the performance of the solver on human body scattering 

problem. In Figure 27, current density is shown on a highly detailed human body being 

exposed to incident EM waves. The permittivity of human tissue is 15 10j . The 

mesh resolution in the left sub-figure is 4 mm which leads to 1.3M tetrahedrons and the 

right sub-figure has 2 mm resolution leading to 8.4 tetrahedrons. The incident wave is a 

plane wave coming from the top with a wavelength of 0.2 m. The figure shows the real 
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Figure 26 The RCS of a free-standing sphere. The red curves are generated using 
the IE solver with GPU accelerated fast methods. 
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part of the x-component of the current. The results were compared against those from 

other EM solvers with different basis functions and variables. The simulation involves 

around 100 iterations. The smaller problem takes about 10 minutes and the larger 

problem takes about 48 minutes.  

 

 

6.2.3 Scattering from periodic meta-materials 

 The volume integral equation solver shown above also works for problems with 

periodic boundary conditions using appropriate Green’s function and acceleration 

schemes.  

Mesh 1: Num of tetrahedra: 1.3M
4mm resolution
λ = 1.67m, εr = 41.4 – j18

Mesh 2: Num of tetrahedra: 8.4M
2mm resolution
λ = 1.25m, εr = 41.4 – j18

|Jx| |Jx|

Credit : Human meshes provided by Prof. Ali Yilmaz, 
http://web2.corral.tacc.utexas.edu/AustinManEMVoxels/

inc. wave
x polarization

inc. wave
x polarization

xy

z

 

Figure 27 Electrical current distributions along x axis on human body excited by 
an incident wave above the head. 
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 Figure 28 shows the reflection coefficients of a doubly periodic array consists of 

dielectric cubes, illuminated by a normal incident wave along the z-axis. Each unit cell 

comprises a cube of size 1mm and is made of material of the permittivity 4. The total 

number of basis functions for this structure is 309,741.  From the figure we can observ-

er an obvious resonant behavior around / 1.07xd  , which is a typical Wood 

anomaly property of periodic gratings [173]. The total computation time of the VIE 

solver was 50 min per data point using 450 iterations plus the preprocessing.  

 

 

 Finally, Figure 29 shows a larger scale simulation of a doubly periodic structure 

with a complex unit cell comprising multiple split ring resonators; such structure can 

0.9 0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t

λ/dx

 

 

VIE-PGF

2.5mm

2.5mm 1mm

x
y

z
…

 

Figure 28 The normal reflection coefficient of a doubly periodic array. The Wood 
anomaly is achieved around / 1.07xd   
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be used as an isotropic negative index meta-material. It has a permittivity of 

4.06 2.48j  , which is a very popular topic in both academic and industrial world 

nowadays. The number of iterations required to generate a single data point in this 

figure is around 11. The total time to generate a data point is about 6 minutes with the 

preprocessing time included. Again a resonant behavior is observed in agreement with 

anticipated behavior. 
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Figure 29 The reflections coefficient of a doubly periodic metamaterial structure 
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7 Micromagnetic simulations of advanced magnetic record-

ing media and systems  

 In this chapter, we show several important simulations done using our micro-

magnetic solvers. In Section 7.1, simulations are used to investigate physical 

phenomena within a newly proposed bit patterned media (BPM) configuration, called 

the capped bit patterned media (CBPM). CBPM is thought to have multiple ad-

vantages over BPM with fully uncoupled elements and are being investigated by both 

simulations and experiment [25, 58, 112, 113]. In Section 7.2, a proposed new recording 

system that uses ferromagnetic resonance to switch magnetic recording materials with 

high anisotropy is proposed and investigated. This magnetic recording system is called 

microwave-assisted magnetic recording (MAMR) and it is considered as one of the 

energy-assisted recording schemes that can extend the limit of aerial recording [19, 95, 

97, 170, 171, 181]. 

 

7.1 High density capped bit patterned media 

7.1.1 Introduction 

 Bit patterned media (BPM) comprise arrays of separated magnetic islands. 

They are expected to provide solutions to the superparamagentic effect [159, 169] that 

physically limits the magnetic recording density of modern hard disk drives. The array 
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elements of BPM can be made of different materials and in different geometric shapes. 

For example, exchange-coupled (composite) elements may be used to achieve reduced 

reversal fields while keep the energy barrier the same [151, 156]. However, this array of 

closely situated discrete islands made of magnetic material inevitable introduces signifi-

cant stray field, which increases the switching field distribution (SFD) across the 

islands. These distributions lead to bit-errors and can significantly limit the BPM 

recording densities [1, 72, 142]. In addition, the stray fields lead to a significant loss of 

the thermal stability. 

 In this section, we describes a BPM configuration that consists of an array of 

hard elements and a continuous soft layer, referred to as a “cap layer”, which is placed 

at the bottom of the array and is ferromagnetically coupled to the array’s elements 

through their common interfaces (Figure 30) [58, 96]. The motivation to introduce this 

structure is to use the exchange interaction in the soft cap layer to counter the magne-

tostatic interaction between the hard elements thus reducing the distributions of the 

switching fields as well as improving thermal stability. This concept is conceptually 

similar to coupled continuous-granular (CGC) perpendicular recording media [122, 153].  

7.1.2 Structure configuration 

 The CBPM comprises hard elements that are arranged into an array and are 

coupled to a continuous soft layer with a surface energy sJ  through the common 

interfaces.  The hard elements have a vertical uniaxial anisotropy of energy density hK , 
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length xa , width ya , and thickness ht . The cap layer has thickness st  and is assumed 

to be perfectly soft.  All materials have a damping constant , saturation magnetiza-

tion sM , and exchange length . ex sl A M w  . with A  the exchange constant. The 

spacing between the hard elements in the BPM array is B . The geometric structure is 

shown in Figure 30 

 

 The switching behavior of the media is simulated with an applied field ex-

pressed as   2 / cos sinext aH H erf t     y x  . This field is applied with an 

angle  to the vertical axis to simulate the field off the edge of a recording head pole. 

The reversal field rH is defined as the threshold field that switches magnetization in the 

hard elements from the initial y to the -y  direction.  

 

ax

ay

B Js Ms, Kh
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ts

 

Figure 30 The geometrical structure of CBPM. The structure is shown as a two-
dimensional periodic structures.  
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 The switching fields of the CBPM structure are studied by numerically solving 

the Landau-Lifshitz-Gilbert equation with discretization chosen to obtain convergence. 

In all simulations, 
31250 emu/cmsM   and 611.25 10s hJ t  , 0.1ns  , 

60 kOeKH  . The damping constant varies in the range between 1   and 0.1  , 

which with a chosen field rise time   corresponds to damping and precessional reversal 

regime, respectively [104, 105]. To exemplify the operation of the proposed structure, 

we considered an array of three hard elements arranged into a linear array and coupled 

to continuous cap layer.  

7.1.3 Switching field distributions 

 We did a series of simulations to test our hypothesis that the continuous cap 

layer can compensate the magnetostatic interaction. Figure 31 shows the switching field 

as a function of inter-element spacing for three different types of BPM. The solid line is 

obtained when the initial magnetization in three hard elements is set to be in the same 

direction (i.e. parallel configuration) and the dash line is obtained when the initial 

magnetization of the center element is opposite to the neighboring elements.  

 As expected, due to magnetostatic interactions, the reversal fields are smaller 

for the parallel configuration and the gap between the reversal fields in the two scenar-

ios decreases with increasing element separation. This gap can be significant for smaller 

separations between the elements and restrict the achievable recording densities due to 
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the resulting reversal field distributions and inability to provide a proper writing win-

dow.  

However, the reversal field behavior is very different for the CBPM. From Figure 31 (c), 

it can be seen that for this specific setting, rH  is larger under the opposite configura-

tion when the separation is small. This behavior, which is opposite to that seen in 

Figure 31 (a) and (b), is a manifestation of the influence of exchange interactions 

through the cap layer. The exchange field tends to align nearby spins in the same 

direction and transfers this influence to the hard elements via their ferromagnetically 

coupled common interfaces. This exchange influence reduces with increasing separations 

and a balancing point can be found where there is no distribution of the reversal field is 

present. For the scenario shown in Figure 31 (c), this is achieved at ( ) / 1B w w  . 

For larger separations, some distribution is present, but this distribution is much 

smaller than that of the disconnected (homogeneous and composite) arrays.  
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 The behavior of the reversal curves, the balancing point, and the distributions 

of the reversal field can be tuned by carefully choosing the structure parameters. In 

addition to the coupling strengths and layer thickness, and we have also considered the 
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Figure 31 Normalized reversal field /r kH H vs. the hard element spacing 

  /B w w  for three BPM structures and two magnetization configurations for 
each structure.  
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influence of a finite anisotropy in the soft capping layer. The details can be found in 

Ref. [96] and the obtained behavior was qualitatively similar with some quantitative 

differences. In addition, we studied the CBPM in the regime of precessional reversal, 

which is obtained for under sufficiently short (but practical for the composite elements) 

rise times [96]. Similar compensation phenomena were obtained apart from an addi-

tional reduction of the reversal field associated with precessional mechanisms. Again, 

there are only quantitative differences. So as summary, for all consider CBPM, availa-

ble “knobs” for tuning the balancing point includes sJ , st  and the anisotropy of the 

capping layer. 

7.1.4 Readback process 

 In addition to altering the writing process the introduction of the capping layer 

is also expected to affect the readback signal.  The readback signal was calculated using 

reciprocity and approximate expressions for the head field [96]. We find pronounced 

differences for CBPM with the capping layer on the top and at the bottom of the hard 

element array and for different bit separations.   

 Figure 32 shows the readback voltage of a interleaved bit pattern of six ele-

ments for a conventional composite (dual-layer) media, CBPM with capping layer on 

top, and capped media with capping layer at the bottom (“reverse cap”). For conven-

tional composite media, the readback signal is nearly insensitive to whether the soft 

section on the top or at the bottom.  
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Figure 32 The readback signal of an interleaved bit pattern from a double shielded 
reading head (shown in inset), for three different material structures: conventional 
patterned media, the “cap” media and the “inverse cap” media. The spacing between 
the elements in (a) is the same of the hard element width; (b) 60% of the hard 
element width. The parameters of the read head defined in the inset are hd t , 

0.4 ht t ,  1.5 hg t  
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 For bit spacing greater than 2B w  ( 2B w  in Figure 32 (a)), the readback 

signals for all considered cases are similar with some differences at the left and right 

edges. For smaller spacing between the elements ( 1.6B w  in Figure 32 (b)), the 

readback signal decreases noticeably for the CBPM with the capping layer on top. This 

is due to the broadening of signal by the soft layer. For the inverse cap media, the 

readback signal slightly increases with the approximately the same transition width. 

Putting the soft layer away from the head might increase the minimal switching field 

so optimal medium parameters should be found as a trade-off between read-and write-

field requirements.  

 Finally, it should be mentioned that the capping layer does not directly intro-

duce transitional noise as in conventional granular media since it is assumed to be 

made of perfectly soft continuous material. However, noise can be introduced by distri-

butions of the hard elements’ position, material properties, and shape as in 

conventional BPM.   

7.1.5 Summary 

 In this section we introduce a CBPM configuration that comprises an array of 

hard elements coupled to a continuous soft layer. There are three benefits brought by 

this additional layer of soft material. While it substantially lowers the switching field, it 

also provides a mechanism of to compensate the effects of magnetostatic field interac-

tions between the array elements. Optimal structure parameters can be chosen to 
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minimize the distributions of switching field brought by the different magnetization 

states in a BPM array. This can allow for lower bit-error rates and can improve the 

BPM performance. The readback signal is not noticeably degraded compared to con-

ventional media.  

 

7.2 Microwave assisted magnetic recording 

7.2.1 Introduction 

 A major limitation to the continued evolution of high-density magnetic record-

ing is the superparamagnetic effect, which leads to spontaneous reversal when magnetic 

particles become too small [159, 169]. Overcoming the superparamagnetic effect requires 

using materials with increase thermal stability which is often achieved through in-

creased anisotropy. However, high anisotropy often translates into excessively high 

reversal fields, which are hard to achieve using a traditional recording head. Several 

methods including heat-, precessional-, and microwave-assisted magnetic recording 

schemes have been proposed to solve this writability problem [105, 115, 145, 158, 181]. 

Microwave-assisted magnetic reversal (MAMR) significantly reduces the reversal field 

when the microwave field frequency matches the ferromagnetic resonance (FMR) 

frequency of the media elements [149, 157]. Applying this MAMR scheme on ECC 

media would further pushes the limit of anisotropy of materials that we can write to. In 
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addition to solving the writability and thermal stability problems, exploiting the reso-

nant properties of the reversal fields may also suggest novel approaches for high density 

magnetic recording. 

 In this section, we show result for MAMR in composite media comprising 

magnetic elements composed of soft and hard sections coupled ferromagnetcally. Such 

composite elements have been recently shown to be attractive for magnetic recording 

due to their reversal and thermal stability properties [53, 156, 166]. We show that 

composite elements have several unique properties important for MAMR. Composite 

elements with high anisotropy hard sections can be reversed with relatively low reversal 

fields, microwave fields, and microwave frequencies. We demonstrate that reversal field 

dependences in composite elements are completely different in the regimes of coherent 

and incoherent (domain wall) reversal and reversal dynamics may exhibit surprising 

behaviors. In addition, we show that fluctuations of the reversal fields caused by fluc-

tuations of the hard layer anisotropy field are substantially reduced compared to those 

for homogeneous elements. Finally, we also show that MAMR schemes can be used for 

multilevel recording, in which each layer has a distinct FMR frequency and is ad-

dressed by tuning the microwave frequency. 

7.2.2 Experiment configuration 

 The elements investigated comprise exchange-coupled soft (top) and hard 

(bottom) sections (see the inset in Figure 33). The (bottom) hard section is of size 
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, , hw w d  in the , ,x y z dimensions, with vertical uniaxial anisotropy energy density hK . 

The (top) soft section is of size , , sw w d  with vanishing anisotropy. Both sections have a 

damping constant 0.1  , saturation magnetization sM , and exchange length 

ex sl A M  where A  is the exchange constant. For all presented results in the 

following sections, 610 erg cmA  , 0.1  , 31250 emu/cmsM   and 0.1ns  . 

The sections are coupled ferromagnetically over their common interface with surface 

energy sJ . An external magnetic field simultaneously comprises a switching field and a 

microwave field. The switching field is applied with an angle o45  to the vertical (z ) 

axis in the x z  plane and it has the time dependence  erf 2rH t  , where rH  is the 

reversal field and   is the switching field rise time. The microwave field is applied 

along the x  axis and it has an amplitude mwH  and frequency mwf . For given mwH  and 

mwf , there is a minimal bias field amplitude, referred to as reversal field rH , that leads 

to the reversal of the element over a reversal time rt .  

 All results are obtained by numerically solving the Landau-Lifshitz-Gilbert 

equation as described in Section 2 with discretization chosen to obtain full convergence. 

More simulations with a wide range of  ,  ,  and sJ  were also done but leads to very 

similar results so are not shown in this thesis. For example, a bit patterned media with 

pitch of 8nm and 5nmhw d   results in a recording density of 210Tbit in  with 

thermal stability above 70 Bk T  with the Bolztman constant Bk  and temperature 
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400T K . The chosen parameters are representative of practical materials for high-

density recording, such as FePt. 

7.2.3 Reversal mechanism for homogeneous and composite media 

 First, we compare rH , mwH , and mwf  for homogenous elements and composite 

elements with different thickness of the soft layer. Figure 33 depicts rH  vs. mwf  for 

different type of BPM dots with the same hard layer ( 60kOeKH  , 1.5ht w ) but 

different soft layer. The reversal field dependences for all elements exhibit deep minima. 

The homogeneous element and composite element with a thin soft section exhibit a 

typical behavior attributed to MAMR, i.e. resonant curves with deep minima are 

obtained and reversal occurs for any values of aH  greater than the reversal field rH  

(this is visualized by the shadowed areas Figure 33). For the composite element with a 

thicker soft section, the behavior is completely different. For this type of dots, reversal 

is only possible in a certain areas in the a mwH f  plane. Two areas are observed. The 

top area is the same obtained without any microwave field. The bottom (relatively 

small) area only exists under microwave field and exhibits resonant properties. Surpris-

ingly, there is a gap between these two areas in which no reversal occurs.   
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 From the Figure 33, we can also see the reduction of resonance frequency when 

the thickness of the soft layer increases. This is due to the different resonant mecha-

nism in respective types of media.  For homogeneous elements, the FMR frequencies 

are determined mainly by the anisotropy field KH , but for composite elements, the 

FMR frequencies are determined by the properties of the soft layer and the inter-layer 

coupling field, which is smaller than KH , thus leading to FMR frequency reduction. For 

thick composite elements with layers thicker than the domain wall length, the reversal 

in the soft layer is incoherent. The reversal starts in the top part of the soft section and 
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Figure 33 Reversal field vs mwf  for different elements with the coercivity 
60kOeKH  , damping constant 0.1  , exchange field 1.6exl w  and thickness 

of the hard layer 1.5ht w . For the composite elements, in (a) the amplitude of 
microwave 0.05mw KH H , the thickness of the soft layer 1.5st w ; in (b) 

0.07mw KH H , 0.75st w . Gray areas represent the conditions under which the 
reversal occurs.  
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then a domain wall is formed in the soft section. The domain wall propagates though 

the soft and subsequently through the hard section. The resonant frequency in this case 

is mainly determined by the external field with the exchange field. These two fields are 

much smaller than the anisotropy field KH  thus leading to a significant FMR frequen-

cy reduction.  In addition, since the influence of ferromagnetic coupling through 

common interface is weak on the spins in upper part of soft layer, they can be easily 

switched under a weak bias field resulting in a lower reversal field. Time evolution of 

the spins in the two regimes is shown schematically in Figure 34 (a), (b), and (c).  
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7.2.3 Reversal mechanism for homogeneous, composite media 

 The performance of the MAMR system may be restricted not only by the 

limitation on maximally achievable head fields and microwave frequencies but also by 

deviations of the reversal field rH  caused by random distributions of the element 

(a)

(b)

(c)
 

Figure 34 Schematic representation of the spin time evolution in the regime of (a) 
uniform and (b) non-uniform (microwave assisted domain wall) reversal. In (c), the 
thickness of soft layer is too large that the domain wall stops before move into hard 
layer. 
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parameters. Among them, random distributions of the anisotropy field KH  can have a 

crucial influence as they may lead to significant deviations of res
mwf and rH . For homo-

geneous elements, deviations of res
mwf  scale proportionally with deviations of KH  , but 

for composite elements, this deviation of res
mwf with respect to KH  might be alleviated. 

 Figure 35 compares the dependence of rH  versus mwf  and KH  for composite 

elements of different st  and a homogeneous element. For the homogenous element 

(shown in Figure 35(b)), res
mwf  is proportional to KH , e.g. 10% deviations of KH  lead to 

about 10% deviations of res
mwf . Deviations of rH  are substantially more significant, e.g. 

10% deviations of KH  lead to more than 50% deviations of rH . The situation is very 

different for composite elements, where deviations of rH  and res
mwf  are substantially 

reduced and the area of reversal of these two cases overlap with each other for a major 

part on the phase graphs. For the composite element with 1.5st w , deviations of res
mwf  

are only 3% for 10% deviations of KH , which represents a five-fold improvement over 

the homogeneous element. The reduction of the deviations of res
mwf  has a physical source 

similar to that leading to the reduction of res
mwf  itself, i.e. res

mwf  are significantly affected 

by the soft section where the field is mostly given by the external and exchange fields 

but not by KH . This significant improvement correlates with results obtained for 

conventional domain wall assisted reversal. Due to the potential improvements to bit 

error rates, this insensitivity to the anisotropy field distribution is a crucial advantage 

of composite elements over homogeneous elements.  



186 

 

 

 It is important to mention that the advantages of the composite elements are 

obtained without compromising the thermal stability. The maximally achievable energy 

barrier for the given cross-section is determined by the hard section height ht  related to 
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Figure 35 Reversal field vs. mwf  for different KH  for composite and homogeneous 
elements. The damping constant   is always 0.1. In (a) 3kOemwH  , the thickness 
of the soft layer is 1.5st w ; In (b), the right curves are homogeneous element with 

1.5t w , under the microwave strength 8.4kOemwH  , and the left curves are 
composite elements with 0.75st w , 1.5ht w , under the microwave strength 

4.2kOeH  . 
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the domain wall length dwt . The horizontal domain wall length and energy in the hard 

sections is given by 4 4 2dw h ex s Kt A K l M H   and 2 24dw h dw hE w AK t w K  ., 

respectively. For the elements used to generate in Figure 1, 6.5nm 1.3dwt w  , 

which means that the maximal barrier is obtained for approximately ht w . For this 

height, the energy barrier is estimated as 88dw BE k T (with 400T K ) and this 

value approximately matches that obtained numerically via the elastic band method 

[46]. Further increase of ht  in the composite or homogeneous elements has minor effect 

on the barrier. 

7.2.4 MAMR for multilevel recording  

 From the results shown in Figure 36, it is clear that the FMR frequencies can 

be tuned in a wide range by either changing the anisotropy field in the case of homoge-

neous elements or by changing the anisotropy field, coupling, and geometrical 

parameters in the case of composite elements. The possibility to tune the FMR and 

reduce the reversal field near this frequency suggests a novel multilevel recording 

scheme.  
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 The proposed media comprise several layers, where each layer has a different 

FMR frequency (Figure 36 (a)). The microwave field is used to assist reversing ele-

ments in different levels by tuning the microwave frequency to the FMR frequency of 

the layer being recorded. This method is anticipated to lead to a reliable multilevel 
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Figure 36 (a) Schematic representation of a multi-layer microwave-assisted magnetic 
recording system; (b) A reversal pattern of double layer recording system. Four 
different areas represent different magnetization states of in a two-layer structure 
comprising homogeneous elements for different microwave frequencies. Area I corre-
sponds to no-switching of any layer. Area II corresponds to switching of both layers. 
Area III corresponds to switching of the lower layer only. Area IV corresponds to 
switching of the upper layer only.  
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recording scheme with a number of advantages over currently considered multilevel 

recording methods. For example, there expected to be no need in multi-pass recording 

since every level can be addressed independently. This scheme does not require address-

ing the elements in different layers by different strength of the reversal field and can 

allow for a smaller separation between the layers. In addition, a recording system that 

can generate microwave fields at several frequencies potentially can address several 

levels simultaneously thus increasing the recording speed. 

 To demonstrate the possibility of recording elements with different FMR fre-

quencies independently, we consider an example of a two-level system comprised of 

homogeneous elements (Figure 36 (a)). In this system, the element in Layer 1 and 

Layer 2 have anisotropy 1 15KOeKH  and. 2 12KOeKH  ., respectively. All elements 

are of size w w w   with 10nmw   and have 3500 emu/cmsM  . The separation 

between the layers is w . The microwave and bias fields are applied simultaneously to 

both layers. Figure 36 (b) shows the final magnetization states in the two layers as a 

function of microwave frequency and the bias field.  Area I and II respectively repre-

sent regimes of non-reversal and reversal of both layers. Area III and Area IV 

respectively represent regimes where Layer 1 and Layer 2 can be reversed individually. 

In practical systems, due to the gradient of head fields, the field is weaker on the layer 

farther from the head pole and it is reasonable to put the layer with lower anisotropy 

farther than the layer with higher anisotropy. From Figure 36, it is shown that the 
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field and element parameters can be found that lead to individual switching of the 

layers with different resonant frequency. Various media elements can be used. As for 

the generation of local microwave fields with sufficiently high frequency and strength 

generated, devices such as the spin-torque driven oscillators might fulfill the require-

ment. Combined with a conventional recording head, they can result in a system that 

generates both switching fields and assisting local microwave fields.  

7.2.5 Summary 

 In this section, we investigated reversal properties of homogenous hard magnetic 

elements and exchange-coupled composite elements with different soft layer thickness 

under the influence of a local microwave field. Composite elements allow for a signifi-

cant reduction of the reversal field, the microwave field, and the FMR frequency as 

compared to homogeneous elements. MAMR behavior in composite and homogeneous is 

found to be completely different due to the phenomena associated with domain wall 

formation and propagation. In addition, the reversal field for composite elements can be 

much less sensitive to the element anisotropy field distributions than for homogeneous 

elements, which is crucial to allow reducing bit error rates. However, there are also 

several obstacles that may complicate practical implementations of MAMR schemes 

and the most critical one is the microwave source. High anisotropy materials may 

require microwave field strength and frequency may be very high. Such strong fields 
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and high frequencies are hard to achieve in practical recording systems even using spin-

torque driven devices [76, 134, 180].  
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8 Summary and future directions 

 

8.1 Summary  

 The contributions of this thesis are mostly in three different areas: a) the devel-

opment of fast methods for field evaluations in computational electromagnetics and 

micromagnetics on massively parallel GPU architectures; b) highly efficient micromag-

netic and electromagnetic solvers built up on those fast methods; c) analysis and design 

of complex magnetic systems using the fast solvers.  

 The thesis reviewed the current status of newly emerged massively parallel 

processors and their impacts on scientific computing. Massively parallel processors, 

GPGPUs being one of such type, are serious contenders in the field of high performance 

computing recently. Though different in architecture and slightly more difficult to 

program than traditional CPUs, they provide extremely high computational and 

memory access throughput. GPUs also have higher performance-power ratio and lower 

cost. As many real world phenomena are intrinsically parallel, most scientific models 

are adaptable to these highly parallel processor architectures. 

 Several fast algorithms for field evaluations in the computational electromagnet-

ic and micromagnetic simulations, targeting the GPGPUs are described and analyzed. 

Though built based on similar mathematical principles, the GPU version of these 
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algorithms adopt different approaches for data arrangement as well as the flow of the 

operations. After a substantial effort of redesigning, redistributing and rerouting the 

computational tasks, the achieved speed-ups over sequential versions are significant. 

Over 100x of speed-ups are common for all three algorithms, namely NGIM, B-AIM 

and FPIM, for problems started from several thousand of degrees of freedom. Moreover, 

the memory usage is merely 1% to 2% of the sequential version.  

 Built on the fast methods described in Chapter 4, a high-performance micro-

magnetic solver, FastMag are developed as a collaborative work. FastMag significantly 

extends the range of micromagnetic problems that researchers can solver using regular 

desktop computers. Ultra-large magnetic systems such as a complete recording head 

uniformly discretized are simulated, showing unobserved physical phenomena that 

might affect the future head design. FastMag is currently used by many internal and 

external users to simulate highly complex magnetic systems.  

 In chapter 7, two novel magnetic recording mechanisms are discussed. They aim 

at helping the next generation ultra-high density magnetic recording systems. The 

capped bit pattered media (CBPM) is thought to have better switching field distribu-

tion properties as well as lower reversal field and these hypotheses have been proven by 

simulations and further by follow-up experiments from other research groups. The 

microwave-assisted magnetic recording (MAMR) is a potentially revolutionary magnet-

ic recording method. It is found, by computer simulations, that many factors, including 
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the geometric design of the media and the coupling strength might affect the reversal 

mechanism inside the recording media while exposed to high frequency microwaves.  

 

8.2 Future directions 

8.2.1 Further development of NGIM 

 The NGIM algorithm described in the Section 4.2 is highly efficient in handling 

scalar as well as vector fields generated by a randomly distributed set of sources. How-

ever, it still has room to be improved to meet the theoretically efficiency on handling 

extremely non-uniform source/observer distribution. Unbalanced tree structures are 

required to accelerate the computation of fields generated by highly non-uniform 

sources. This task might be more feasible on GPUs when the next generation NVIDIA’s 

Kepler GK110 GPUs become available. The new “dynamic parallelism” technology is 

proposed to make the GPU handle multiple layers of parallelism in more efficient 

manner. 

8.2.2 FastMag on GPUs 

 Even though the field evaluation, which is the most time consuming part of 

FastMag, has been successfully implemented on GPUs, currently FastMag still relies on 

CPUs to handle several essential tasks such as the time integration. Those once negli-

gible computational processes now cost significant portion of overall time as the 
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original bottlenecks are already removed by GPUs. According to the famous Amdahl's 

Law [75], even if only 10% of the original sequential code are not efficiently parallelized, 

the upper limit of overall acceleration would be less than 10x. Therefore, porting as 

many operations as possible to GPUs is critical for further improvement of the efficien-

cy of the FastMag simulator. 

8.2.3 Parallelization across multiple computing nodes 

 The computational results presented in the thesis are obtained on a single 

computing node with single or multiple GPUs. Though NGIM and B-AIM are designed 

to be easily scalable to multiple computing nodes with multi-million or even billions of 

threads, multi-node parallel versions are still under development. One significant chal-

lenge that can be anticipated is the adverse impact of the much slower inter-node 

communication. Under these circumstances, exploring the opportunities of overlapping 

the communication and computation would be critical for further scaling the fast 

algorithms as well as the solvers as a whole. 

 NGIM is particularly attractive for multi-GPU systems, especially for high-

frequency problems when only outgoing NG grids are contracted and each such grid is 

independent of each other at the same level. Moreover, the memory consumption is of 

 O N  as only two levels are needed to be kept in memory at any moment. These 

properties can eliminate the need for any data exchange between different GPUs in a 

multi-node computing cluster, which is crucial for achieving high-performance. 



196 

 

 The B-AIM is generally harder to be extended to multi-GPU systems. This is 

because the FFT used in B-AIM has relative low arithmetic density and are prone to 

slow inter-node communication. 
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Appendix A The big-O notation  

 The big-O notation is usually used in the computer science and specifically the 

algorithm design and analysis field to indicate the asymptotic behavior of a computer 

algorithm when the problem size grows large. The big-O notation is called the “asymp-

totic upper bound” and is defined as follows: [40] 

 For a given function  g n , we denote by     f x O g n  if and only if there 

is a positive constant c such that for all sufficiently large values of x  that  f x   

 c g x . 

 There are several points that worth mentioning for using this big-O notation.  

 a) The big-O notation does not tell the exact running time of any given algo-

rithm. It only shows how the running time of a given algorithm, with all other 

conditions kept the same, responds to the change of the problem size 

 b) When write equation     f x O g n to reflect the statement “  f x is 

  O g n ”, we should be aware that it is an abuse of notation and this equation cannot 

be swapped. One simple example is that    2O x O x  is true, but    2O x O x
 
is 

not. 

 c) The asymptotic complexity of an algorithm is determined by the most “com-

plex” part of it. For example, if a function  f n that represents the number of 

operations required to accomplish a certain task can be express as  
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       3
0 1 2 logf n C n C n C n n    ,     (8.1)

The “big-O” of  f n  would be    3f n O n . 

 There are several other related but different notations that are commonly used 

by people to describe the complexity of an algorithm, such as the theta-notation and 

the omega-notation. They are used to represent the asymptotically tight bound and 

asymptotic lower bound of functions. Detailed explanation can be found in Ref. [40]. 
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Appendix B Periodic Green’s function 

 The PGFs for 1D, 2D, and 3D infinite arrays residing in free-space can be 

calculated via single, double, and triple spatial summations, respectively, over the 

integers xi , yi , and zi , which represent the general index i  in Section 5.2: 
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 Alternatively, the PGF’s may be found via the following Floquet mode expan-

sions 
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    (8.3) 

where xmk   0 2 /x xk m L , ymk   0 2 /y yk n L , mk    1/22 2
xmk k , and zmnk  

 1/22 2 2
xm ymk k k   . The square root for mk  and zmnk  is defined with 

 Im ,m zmnk k  0  on the top Riemann sheet of the complex 0xk  plane for most m ; 

however, a certain (typically small) number of square roots can be defined on the lower 

Riemann sheet with  Im 0mk  . The expression for the 3D PGF is obtained from 
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that for the 2D PGF using 03 2( , 0) ( , ) z z z

z

jk i LD D
z z
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



 r r z
 
with 2DG   found by 

Floquet expansion. 

 These expressions are rapidly convergent provided z  is not too small. Specifi-

cally, the number of terms required to achieve a prescribed error of   is estimated as 

1log( ) (2 )xL z   for 1D arrays and 
22 1log ( ) (2 )x yL L z   for 2D and 3D arrays (for 

the case x y zL L L  ).  
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