Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Long-range energy transport in photosystem II

Published Web Location

https://doi.org/10.1063/1.4953243
Abstract

We simulate the long-range inter-complex electronic energy transfer in photosystem II-from the antenna complex, via a core complex, to the reaction center-using a non-Markovian (ZOFE) quantum master equation description that allows the electronic coherence involved in the energy transfer to be explicitly included at all length scales. This allows us to identify all locations where coherence is manifested and to further identify the pathways of the energy transfer in the full network of coupled chromophores using a description based on excitation probability currents. We investigate how the energy transfer depends on the initial excitation-localized, coherent initial excitation versus delocalized, incoherent initial excitation-and find that the overall energy transfer is remarkably robust with respect to such strong variations of the initial condition. To explore the importance of vibrationally enhanced transfer and to address the question of optimization in the system parameters, we systematically vary the strength of the coupling between the electronic and the vibrational degrees of freedom. We find that the natural parameters lie in a (broad) region that enables optimal transfer efficiency and that the overall long-range energy transfer on a ns time scale appears to be very robust with respect to variations in the vibronic coupling of up to an order of magnitude. Nevertheless, vibrationally enhanced transfer appears to be crucial to obtain a high transfer efficiency, with the latter falling sharply for couplings outside the optimal range. Comparison of our full quantum simulations to results obtained with a "classical" rate equation based on a modified-Redfield/generalized-Förster description previously used to simulate energy transfer dynamics in the entire photosystem II complex shows good agreement for the overall time scales of excitation energy transport.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View