Skip to main content
Download PDF
- Main
Temperature Profile Measurement From Radiofrequency Nasal Airway Reshaping Device
Abstract
Objective
Nasal airway obstruction (NAO) is caused by various disorders including nasal valve collapse (NVC). A bipolar radiofrequency (RF) device (VivAer®, Aerin Medical, Sunnyvale, CA) has been used to treat NAO through RF heat generation to the upper lateral cartilage (ULC). The purpose of this study is to measure temperature elevations in nasal tissue, using infrared (IR) radiometry to map the spatial and temporal evolution of temperature.Study design
Experimental and computational.Methods
Composite porcine nasal septum was harvested and sectioned (1 mm and 2 mm). The device was used to heat the cartilage in composite porcine septum. An IR camera (FLIR® ExaminIR, Teledyne, Wilsonville, OR) was used to image temperature on the back surface of the specimen. These data were incorporated into a heat transfer finite element model that also calculated tissue damage using Arrhenius rate process.Results
IR temperature imaging showed peak back surface temperatures of 49.57°C and 42.21°C in 1 and 2 mm thick septums respectively. Temperature maps were generated demonstrating the temporal and spatial evolution of temperature. A finite element model generated temperature profiles with respect to time and depth. Rate process models using Arrhenius coefficients showed 30% chondrocyte death at 1 mm depth after 18 s of RF treatment.Conclusion
The use of this device creates a thermal profile that may result in thermal injury to cartilage. Computational modeling suggests chondrocyte death extending as deep as 1.4 mm below the treatment surface. Further studies should be performed to improve dosimetry and optimize the heating process to reduce potential injury. Laryngoscope, 2023.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%