UCLA

Posters

Title

Personal Data Vault: A Privacy Architecture for Mobile Personal Sensing

Permalink

https://escholarship.org/uc/item/5t09j13j

Authors

Mun, Min Shilton, Katie Guan, Kenny <u>et al.</u>

Publication Date

2009-05-12

Center for Embedded Networked Sensing

Personal Data Vault: a privacy architecture for mobile personal sensing

Min Mun, Katie Shilton, Kenny Guan, Gene Auyeung Nicolai Peterson, Jeff Burke, Deborah Estrin, Mark Hansen, Jerry Kang Center for Embedded Networked Sensing - http://urban.cens.ucla.edu

Introduction: Mobile Personal Sensing, a Platform for Participatory Sensing

Mobile Personal Sensing (MPS) is a platform for participatory sensing with which people use *mobile phones* to *record* and *transmit* sound, images, location, motion data, and web services to aggregate and *Interpret* the assembled information

Problem Description: Continuously Recording Location and Activity is Potentially Invasive

The Data Gathered through MPS is personal, as well as being valuable; it quantifies habits, routines, associations, and is easy to mine

Protecting Individual privacy An Architecture to Support

- Documenting ownership
- Providing visibility of processing

Proposed Solution: Personal Data Vault, A Privacy Architecture for MPS

Application-centric Architecture

- Loss of data ownership, data lock-in
- Inefficient, hard to scale
- Data redundancy
- Conflict of interest

Mobile-centric Architecture

- Limitation of resources
- No data backup

Personal Data Vault Model

- Enables individuals to control and manage their data
- Allows users to make and revoke decision to share filtered or derived data
- 'Professionalizing' data vault operations: Intended to be run by professionals without a commercial interest in mining the data

Basic Services

- Authentication to control accesses
- Authorization to manage data feeds to service providers
- View, delete and update to deal with data

TraceAudit

To foster a market place of trustworthy service providers and provide transparency of processing

is Required.

- All applications should inform the PDV of any activities on the data obtained from PDV
- Suspicious events can be detected by event detector

Adaptive Filter

- Filtering policies adapt to input from users and service providers
- Three methods: Error-tolerant data sampling, mobility anomaly detection, data interpolation

Error-tolerant Data Sampling:

- The high degree of data corruption required to preserve privacy could preclude the altering of application outputs as a means of supporting privacy aware location services.
- Identifies the sampling method that minimize the amount of information shared, while minimizing the perturbation of inferences made by service providers.
- Feedback or processing statistics from users and service providers play an important role.

An Example of Processing Statistics - Precision and Recall Confusion Matrices of The Activity Classifier using Various Sensors

	Being Stationary		Walking		Driving		All	
	Precision	Recall	Precision	Recall	Precision	Recall	Precision	Precision
GSM, Wi-Fi	66.3%	92%	84.2%	66.1%	90%	82.9%	80.2%	80.3%
GSM	76.3%	70.7%	59.4%	71.2%	80.3%	68.8%	72%	70.23%
Wi-Fi	75.9%	60.6%	64.6%	61.4%	70.1%	84.3%	70.20%	68.77%
GPS	81.6%	92.5%	93.5%	91.2%	98.9%	91.3%	91.3%	91.67%

- Mobility Anomaly Detection: Abnormal activities such as unusual route can be detected and reported to service providers with users' permission
- Data Interpolation: It determines positions in-between the samples and quantifies the position uncertainty.

P.(x1, Y1, 12)

Sampling Error using Linear Interpolation

otherwise

for $x^2 + y^2 \le r_1^2 \land (x - s)^2 + y^2 \le r_2^2$

 $P_2(x, y) =$

UCLA – UCR – Caltech – USC – UC Merced