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1 Introduction
A stream of fluid flowing down a partially wetting inclined plane usually mean-
ders, unless the volume flow rate is maintained at a uniformly constant value,
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producing a recently discovered [16, 19] braiding pattern. However, fluctuations
in the flow rate are inevitable in naturally occurring flows. Previous studies have
conjectured that for some surfaces the meandering of a stream is an inherent in-
stability [5, 22, 3, 4, 21, 24, 20, 13, 6]. In this paper we show that by using
acrylic plate we can completely eliminate the meandering by reducing the per-
turbations entering the flow. By re-introducing fluctuations into our experiment,
we then demonstrate that these perturbations are indeed responsible for the onset
of the meandering. Another factor contributing to the meandering behaviour is
the presence of isolated fluid droplets, left by the fluid stream, which maintains
the meandering. If the flow rate fluctuations are eliminated, the flow universally
re-establishes the non-meandering pattern, although the relaxation time is on the
order of hours. We derive a mathematical model for the stream shape from first
principles, which includes stream dynamics and forcing by external noise. While
the deviation h(x), from a straight linear stream, h(x) = 0, shows considerable
variability as a function of downstream distance x, when an ensamble average
is computed, averaging power spectrum S(k) as a function of wavenumber k for
several different times t, we obtain the power-law scaling S(k) ∼ k−5/2. In ad-
dition, the growth of the area A(x) swept by the stream at the distance x grows
as A(x) ∼ x1.75. These experimental results are in excellent agreement with our
theory and with recent results on turbulent flow in rivers [1] and landsurface evo-
lutions [2].

Meanderings of a stream of fluid on a partially wetting surface (e.g., acrylic)
and meanderings of rivers are visually strikingly similar, in spite of the differences
in the physical nature of these two phenomena. River meanderings are affected by
many effects which are both highly complex and beyond our control: turbulence
in the water, erosion of the soil on the bottom, unevenness of the soil consistency
and its rheological properties, variations in flow rates due to the seasons, etc. It
is not clear at present what phenomenon contributes most to the river meandering
since all the effects we mentioned are highly intertwined. Two approaches to
modelling of river meandering are dynamical (derivations of dynamical equations
based on first principles [17, 15, 18]) and stochastic (with noise simulating the
effects of turbulence and landscape variations [1, 2]). While a detailed model of
the meanderings of all rivers may be a long way off, we believe that combining
both stochastic and dynamic approaches to river meandering is valid.

Stream meanderings on a partially wetting surface (glass or specially fabri-
cated plastics-(Mylar, or polyethylene terephthalate)) have attracted much atten-
tion in recent literature [5, 22, 3, 4, 21, 24, 20, 13, 6]. All studies have concen-
trated on the dynamical approach to this problem, treating this phenomenon as an
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inherent instability of the fluid rivulet. The development of a consistent theory was
hampered by the fact that a dynamic model would necessarily incorporate detailed
assumptions about the evolution and hysteresis of contact angle. This is the an-
gle that the cross-sectional surface of the liquid, perpendicular to the downstream
direction, makes with the plate. However, the theory of contact angle is currently
in the initial stages of development [6]. The stochastic approach to this problem
has not been considered before. In this paper, we show that stream meandering
on an acrylic plate (that is different from surfaces considered by previous authors
[5, 22, 3, 4, 21, 24, 20, 13, 6]) is purely noise driven and the shapes of the stream
can be explained completely by a model that combines a dynamic approach with
effect of noise. No assumptions on the nature of contact angle have to be made.

2 The Experiment
A stream of fluid flowing down an inclined plane in the laboratory is highly con-
trollable. Our experimental apparatus consists of 2.4 meter long acrylic plate
(supported by metal beams to eliminate bending) that can be inclined with re-
spect to the horizontal at angles up to 50 degrees. We use either pure water or a
water-glycerin mixture to investigate different viscosity and flux regimes. A high
precision peristhaltic pump recirculates fluid running down the plate in a 2 meter
tall and 10 cm narrow container positioned above the inclined plane. That con-
tainer is an essential factor in efficient damping of disturbances of the flow. The
water then runs from the container onto the inclined plate through a 2mm diame-
ter tube. After the disturbances have been eliminated, after initial set-up time the
rivulet assumes straight shape for all flow regimes investigated (Fig. 1b) over all
downstream distance available in the experiment (2.4 meters).

To investigate the meandering flow regime, we added an electronically oper-
ated valve to our original flow system, inducing an artificial fluctuation to the flow
rate. With this arrangement, we can eliminate the meandering and re-introduce it
in the flow at will at any flow rate (Fig. 1c). When the valve is switched off, the
stream always assumes a straight shape, although the relaxation time can be large
(up to 3 hours) for small flow rates. In the few cases we observed a meandering
pattern become stationary without straightening out. This is called stationary me-
andering in previous literature [13]. However, in our case this effect could always
be attributed to the sedimentation of dirt and dust particles on the surface. If the
surface is cleaned and the flow restarted with exactly the same flow parameters as
before, in the absence of disturbances in the flow rate, we inevitably get a straight
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Figure 1: Natural (a) and laboratory (b,c) flows, viewed from above, flow direc-
tion in (b,c) is from top to bottom. a, Flow of Mississippi river south of Memphis.
b, Non-meandering flow (constant flow rate) of a 50%-50% water-glycerine mix.
c, Meandering flow of the same fluid with the same mean flow rate, where fluctu-
ations in the flow rate are induced by a pulsed electromagnetically operated valve.
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stream, whereas when the disturbances in the flow are present the stream seems to
meander indefinitely.

Figure 2: Power spectra of the deviations of the stream from the centerline. • -
experimental results, ◦ - results predicted by the model. Solid line represents a =
−5/2 power law. The amplitude of the noise in the model (a universal constant
for all experiments) is fixed to achieve agreement at small wavenumbers k. The
agreement persists over all the values k having physical relevance.

We believe the discrepancy between our findings and previous literature is due
to the difference in the surface wetting properties. It was noted in [13] that surface
properties play a crucial role in this phenomenon. We believe that use of readily
available acrylic is advantageous since all experimental results can be explained
using a rather simple and consistent theory because, as is explained below, the
sources responsible for meandering can be readily understood.

First, the onset of the stream meandering is caused entirely by disturbances in
the flow rate. To check this assumption, we tried alternative ways of introducing
fluctuations in the stream. We have applied periodic oscillation to the position of
the nozzle or single-tone acoustic forcing to the stream. Even with the nozzle posi-
tion oscillating, the flow stabilizes downstream. Alternatively, an acoustic forcing
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Figure 3: Area enclosed between the stream and the centerline as function of
downstream distance. See inset for explanation. • - experimental results, ◦ -
results predicted by the model. Solid line represents power law with exponent
7/4 = 1.75. The same amplitude for the noise as in Fig.2 is fixed in the model.
The deviation of the model from experiment is observed for distances comparable
to the width of noise forcing, equal to the diameter of the stream.
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of the jet with a constant frequency also has a limited effect [1, 2]. On the other
hand, a disturbance consisting of ’spikes’ (short interruptions of fluid flow rate) or
acoustic forcing with repeatedly changing frequency causes the meandering. As
long as this forcing is applied, the meandering will persist. When the forcing is
removed, the meandering will die out after some transition time. Second, after
the onset of meandering, the amplitude of transverse oscillations downstream is
amplified by droplets which are left by the moving stream. We believe that is the
fundamental property of acrylic sheet that allows for construction of a simple and
successful theory. When the stream is moving, it re-encounters the droplets (seen
in Fig. 1b,c), which act as transverse random forcing. This mechanism appears to
be strongly affected by surface properties, which are different in our experiment
from other recent meandering studies [13].

Our quantitative analysis of the stream behaviour is based on 105 pictures of
the stream acquired with a high-resolution computer-controlled digital camera.
The random time intervals between the pictures were sufficiently large for the
flow patterns to be statistically independent. From each of these images, we can
extract the deviation h of the stream from the centerline as the function of down-
stream distance x, see Fig. 1c. From the h(x) data produced by the analysis of
each picture, we computed power spectra S(k), where k = 2/l is the wavenumber
corresponding to a spatial wavelength l. While the power spectra based on sin-
gle images are rather noisy, the spectrum produced by averaging over all the h(x)
realizations manifests a smooth graph (Fig. 2) with apparent power-law scaling
S(k) ∼ k−5/2 over the span of about two decades. Deviation from this scaling is
noticeable only for k ≥ kmax = 5cm−1, corresponding to physical scales smaller
than the characteristic stream width (1cm). The largest physical scale we can
acquire (and thus the smallest wavenumber) is constrained by the size of our ex-
perimental arrangement, (2.4m) with the inclined plane being 2.4 m long. It is also
noteworthy that, while the graph presented in Fig. 2 is based on all realizations of
h(x), averaging as few as 30 realizations produces a similar smooth spectrum with
the same power-law scaling with the same exponent a = −5/2. The latter is a
persistent feature of all our experiments, representing a universal characteristic of
the problem of the flow down a partially wetting incline. A model of experiment
incorporating surface tension, fluid friction with the surface as well as friction in-
side the fluid and surface tension can be derived (see next section). The model
incorporates the effect of noise forcing on the stream from the residual droplets
on the surface and includes the noise strength as the sole fitting parameter.

As another test of our theory, in Fig. 3, we plot the area enclosed between the
meandering stream and its centerline as the function of the downstream distance.
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The deviation of the model from the power law is likely due to the length scale
associated with the forcing (characteristic droplet size about 1-5 mm). The area
grows as x7/4 = x1.75 with the distance, consistent with the power law k−5/2 of
the spectrum. Thus we can conclude that the behaviour of a stream meandering
down an inclined plane is dominated by the effects of the stream interacting with
droplets on the plane, which can be modelled with including appropriate random
forcing into the governing equations.

A compelling argument base on [2] indicates that this last result is connected
to Hack’s law [14] which says that the length ` of a main river in a river basin
scales as a power of the area of the basin ` ∼ A

1
1.75 = A0.58, see conclusions be-

low. It indicates that our experimental river shares at least some properties with
real rivers. Assuming uniform drainage density, Hack’s exponent (0.58) and the
meandering exponent, or the fractal dimension of the river, determine all the other
exponents of all the known scaling laws for landsurfaces, see [11, 7, 8, 9, 10].

3 The Theoretical Model
The derivation of the model is as follows. We assume that the stream is sufficiently
thin so that its properties at the downstream distance x and time t can be described
by three variables: downstream velocity u, transverse velocity v and deviation
from the centreline h ≡ 0. The equations for the velocities (u,v) are obtained by
balancing the forces (inertia, viscosity, gravity and surface tension) acting in the
downstream and perpendicular to the downstream direction: Consider the equa-
tions for the flow down the plate

∂tu+u∂xu =−λu+nuuxx + γ/d
hxx√
1+h2

x
sinφ+η(x, t)sinφ+gcosα

∂tv+u∂xv =−λv+nuvxx + γ/d
hxx√
1+h2

x
cosφ+η(x, t)cosφ

where Q is the volume flux, ν is the kinematic viscosity, γ is the coefficient of
surface tension, d is the stream thickness, α is the inclination of the plane with
respect to vertical, φ is the angle between the stream and downward direction
x and λ is the lubrication friction coefficient λ = 3νu/Q. The equation for the
deviation from the linear river h is given by the fact that that for given values of
velocities (u,v) the instantaneous rate of change of h is given by

∂th+u∂xh = v
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The important part of the model is the nature of the noise η, that is modeling
the effect of the stationary random distributed droplets with the stream. An impor-
tant thing to keep in mind here is that at a given time, the stream encounters only
very few droplets. Thus, η cannot be modeled by white noise distributed over all
the length of the stream. Instead, we use point forcing at random positions of the
stream at random times; the results do not change for all noise models we tried as
long as the noisy forcing is applied locally at any given time. The amplitude of
the random noise is the only fitting parameter we have in the model. Interestingly
enough, that fitting parameter is universal for all experimental realizations.

Another way of expressing this is to say that the noise is quenched, or colored,
just as in turbulence. This implies that both u and v scale as the solutions of
the noise-driven Navier-Stokes equation in one-dimensional turbulence, see [1].
A typical Reynolds number of the experiment is around R = 4500 but it it can
possibly be as low as 500 (1mm layer of water and glyserin) or as high as 18,000
(2mm layer of water only).

The equation
∂th+u∂xh = v

can be solved in the following manner. Let

h = h(x−Uot,εt)

where Uo is the mean velocity in the downstream direction. This solution is a
slowly modulated traveling wave. Then

ht =−Uoh′, hx = h′

and

ht +uhx = (−Uo +u)h′ =
(Uo−u)

Uo
ht = v

ignoring terms of order ε.
The equation

ht =
Uo

Uo−u
v

can be solved by integration in t

h = Uo

Z t

0

v(x,s)
(Uo−u(x,s))

ds
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since h(0) = 0. Now if ` is a lag variable, then

h(x+ `, t)−h(x, t) =

Uo
R t

0

(
v(x+`,s)

Uo−u(x+`,s) −
v(x,s)

Uo−u(x,s)

)
ds =

Uo
R t

0

(
v(x+`,s)−v(x,s)

Uo−u(x+`,s) −
u(x+`,s)−u(x,s)

(Uo−u(x+`,s))(Uo−u(x,s))

)
ds

Thus R 1
0 |h(x+ `, t)−h(x, t)|2dx≤

C
R 1

0 |v(x+ `, t)− v(x, t)|2dx+
R 1

0 |u(x+ `, t)−u(x, t)|2dx

or
sh(`, t)≤ sv(`, t)+ su(`, t) (1)

where s f are the second structure functions, see [12], (or width functions, see [2]
squared).

The equation (1) implies that if sv and su scale with the exponent 3/2, see [1],
then sh must also scale with the same exponent. If the scaling exponent 4/3 takes
over this indicates the scaling of u is dominated by turbulent Burgers shocks, see
[23]. Presumably, that is what happens on concave (down) surfaces.

4 Conclusion
In this paper we have shown both experimentally and theoretically that experimen-
tal river meanderings are cause by fluctuation in the flow rate. Left over droplets
on the surface then cause further meanderings whereas an experimental river does
not meander on a drop-free (clean) surface when the flow rate is uniform.

The structure function s2 of the deviation of the meandering from a center line
h(x) are shown to scale to the power 3/2 in a lag variable. This corresponds to the
scaling of the power spectrum S(k) ∼ k−5/2, see for example [12]. We identify
the scaling exponent as the scaling exponent 3/4 of the width function, V 2 = s2
of the velocity of turbulent flow in rivers, see [1].

The scaling of the area under h(x) as x7/4 seems to resolve a puzzle left over
by the scaling of the fluvial surfaces in [2]. How is the spatial roughness χ = 3/4
of a riverbed, caused by turbulent flow eroding the bed, transported to the whole
surface? The scaling of the area which is in accordance with Hack’s [14] law
indicates that the river meanderings cover the whole river basin over time thus
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endowing the surface of the whole basin with the same spatial roughness. It also
seems that in some cases Hack’s exponent determines the meandering exponent.

The overall meandering exponent for river is reported to be 1.1 not 7/4, see
[7, 8, 9, 10]. Thus our result is clearly not the whole story and there is more to the
meandering of real rivers than our experimental ones.
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