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Abstract: A robust extension of normal theory regression is to add an extra parameter to model the 
kurtosis of the error distribution, for example by using the T-family or the power-exponential 
family of distributions. The statistical properties of maximum likelihood estimation schemes fn; 

both families of models are considered. This article extends the work of Lange et al. (1989) in which 
the usefulness of the multivariate T-family for modelling data was demonstrated. The cost of 
adding the extra kurtosis parameter to the standard normal model is considered. This cost is 
measured by comparing the variance of the quantity of interest when the estimation of the extra 
parameter is taken into account and the variance when the estimated value of the extra parameter is 
treated as if it were known. In Lange et al. (1989) it is shown in a general setting that 
asymptotically there is no cost due to the estimation of the extra parameter, where the quantity of 
interest is the location or regression parameters. Whether this finding remains valid in small 
samples for the T and power-exponential families is investigated in this paper using Monte Carlo 
simulations and a real dataset. The efficiency of parameter estimates and coverage rates are also 
considered under three different scenarios: when the extra kurtosis parameter is estimated from the 
data, when the extra parameter is fixed at the true value, and when it is fixed at a wrong value. The 
expected information matrix is used to estimate the confidence intervals, and the comparisons are 
based on asymptotic calculations and Monte Carlo simulations. It is found that for the T-family 
there is very little cost due to estimation of the extra parameter, except for small sample sizes. The 
inflation in variance due to the estimation of the extra parameter increases as the sample size 
decreases. In the Monte Carlo simulations of simple regression settings the inflation in variance is 
found to be at most 14% for the T-family and at most 62% for the power-exponential family. For 
the T-family, there is a considerable loss of efficiency in fitting a normal model when the true 
degrees of freedom is small, but only a small loss of efficiency if a model l:ith a low number of 
degrees of freedom is fit to normal observations. In contrast, the coverage rates of .&iden 3” 
intervals are close to the nominal level if a normal model is fit to the da;a whatever the true + . -- 5 

f freedom, but the coverage rates can be too low if a mode1 with a low number t-f d:br~ *-if 
freedom is fit to normal data. The coverage rates of confidence intervals when tht’ degrc~.s r:? 
freedom is estimated from the data are satisfactory, except at small sample size F%ilar ~~:llts XC 
obtained for the power-exponential family. In addition to the larger int7 man. in V;IIGHKX due to 
estimation of the extra parameter, the power-exponential family is kss Asfactor? then the 
T-family because the extra kurtosis parameter is frequently estimated to be at the L,:undarq cf its 
range in small samples. The findings in this article supFort the noti:;n that :h~ cx’r;t kur)~\:\ 
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parameter should be estimated for large samples and fixed at an appropriate value for small 
samples. 

A’ty*~twds: Power-exponential 
Adaptive estimation. 

family. T-family. Linear regression, Variance inflation. Robustness. 

A variety of methods exist for the analysis of data containing extreme or outlying 
observations. One approach is through identification and elimination of outliers 
followed by standard normal theory methods. Another approach is thiough 
accommodation of the extreme observations using classical robust methods such 
as M-estimation (Huber, 1981). An alternative accommodation approach is 
through modelling the error distribution by using the power-exponential family 
(BOX and Tiao, 1973) or the T-family (Jeffreys (1939), Fraser (1976)). Some 
authors have suggested using a T-model with 4 degrees of freedom (Lange et al, 
1989), whereas others have suggested 6 degrees of freedom. Lange et al (1989) 
illustrate the use of the T-family in a wide variety of settings including linear and 
non-linear regression, repeated measures and pedigree data. This modelling 
approach is similar in spirit to the adaptive robust approach (Hogg, 1974) in 
which. loosely speaking, lthe choice of estimation method is based on the observed 
residual distribution. The usefulness of this adaptive approach has been demon- 
strated in simulation studies (Hogg, 1967, Hogg et al, 1972, Yuh and Hogg, 1988). 

In this paper statistical properties of the adaptive modelling approach are 
considered. The efficiency of the estimates and the coverage rates of confidence 
intervals are considered. but the primary focus is on the effect of the adaptive 
stage of the analysis on the variance of quantities of interest. For example in a 
simple regression problem, if the degrees of freedom of the T-family residual 
distribution is estimated to be five, is it appropriate when considering the 
standard error or confidence interval of the slopes to assume that the degree of 
freedom was known and fixed at the value five? Similar issues arise in other 
families of models. In the power transformation family there have been a number 
of recent articles discussing whether or not to treat the transformation parameter 
as if it were fixed after it has been estimated from the data (see Carroll and 
Ruppcrt (1981), Bickel and Doksum (1981), Hinkley and Runger (1984), Box and 
COX, (1982), Taylor, (1986. 1988)). Another similar situation is the extension of 
the logistic probability response curve to other sigmoid shapes through the 
addition of an e%-a parameter (Taylor, 1989). 

This issue is important because statisticians are rightly hesitant to add extra 
parameters to models to improve the fit, because although it may decrease the 
bias, it will also tend to increase the variance. However, if it can be shown to 
increase the variance by only a small amount for the particular model under 
consideration. then this should reduce the reluctance to add the extra parameters. 
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The approach to estimating the cost of the adaptive stage of the analysis 
mimics that used by others in the power transformation family (Bickel and 
Doksum (1981), Carroll and uppert (1981), Taylor, (1986)). The approach is to 
compare the variance of quantities of hicrest when the extra parameter is treated 
as estimated compared to the variance when the extra parameter is treated as 
fixed. 

Section 2 summarizes the asymptotic theory of Lange et al. in the regression 
setting. Further asymptotic results relating to the efficiency and coverage rates of 
confidence intervals under misspecification of the kurtosis parameter are also 
given. Section 3 considers the small sample situation through an example and 
Monte Carlo simulations. 

Throughout this article, the asymptotic and Monte Carlo results are based on 
maximum likelihood estimates. Three possible algorithms to find the estimates 
are described by Lange et al. (1989). 

2. Asymptotic theory 

Consider the linear regression model 

Y=Xd+e, e-f, 

where f is either a T-distribution with density 

f( ) 
&(k+ 1)) 

e = 
JZr( ;k) 

(1+ ( !5j2/kj-j(i- L’, 04550, 

characterized by a shape parameter k (degrees of freedom), or a power-exponen- 
tial distribution. 

f(e) = Gexp{- $i2’1+“], -1 Q& 1. 

characterized by shape parameter k, where D- ’ = r( 1 + (( 1 + k )/2)) 2’ + i(* ? 
Notice that the power-exponential family includes both heavier (k > 0) and 
lighter (k < 0) than lrormal tails (k = 0), whereas the T-family only includes 
heavier (k < ca) than normal tails (k = 00). The T-family and the power-ex- 
ponential family are special cases of elliptically symmetric families of densities. In 
Lange et al. (1989) the score vector and the expected information matrix are 
derived for an arbitrary elliptically symmetric family. The three lemmas below are 
special cases of these results. 

For both the T-family apld the power-exponential familv. 
;Mll~] = 0 and E[3’ log E/Milk] = 0 , where & denotes the likelihood 

from a sample of n otxeruations. 1 
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a This is a result of symmetry of the error distribution. 

The implication of lemma 1 is that functions of the regression parameters 8 are 
asymptotically uncorrelated with the estimated shape parameter, thus at least for 
large samples we expect there to be little or no cost associated with estimating the 
extra parameter. In addition the extra shape parameter can oe treated as fixed for 
inference about 8 even though it is estimated from the observations. 

ma 2. For the T-family model 

_E a*logL 

[ I CM* 
= -$[xrx](S). 

roof. See Lange et al. (1989). 

mma 3. For the power-exponential famiij 

a2 log L 
ae2 1 = $xTx] 2-” 

(l+k) 

oaf. The result follows from lengthy algebra. 

The implications of lemma’s 2 and 3 are that asymptotic standard errors are 
relatively simple to evaluate after the more general model has been fit and the 
extra parameter estimated. 

In addition to considering the properties of the parameter estimates when the 
model is known to hold, it is also of interest to consider the situation where the 
model is misspecified. Let t!* be the maximum likelihood estimate of 0 when an 
analysis is carried out with the extra parameter fixed at a value k * when in fact 
k, is the true value of k. The asymptotic variance of &t!?* is given by (Godambe 
and Heyde, 1987) 

A =EO( [ -a*;;; L*]-‘)‘EO[ a ‘OageL’ . a loapsL;]Eo[ 42;;: L*]-‘_ 

In this expression, L, is the likelihood corresponding to k * and it is evaluated at 
V*, a”), which are the values of (0, c) which solve the equations 
E&3 log L&M) = 0 and E&3 log L,/ao) = 0. The expectation, denot?Td by E,, 
is with respect to the true distribution of the observations, the parameters of the 
true distributicu are denoted by (& a,, k,). The values of a, and k, may differ 
from o* and k’ 

The expression (3) can be 
asymptotic variance of 6 

compared with V= E,,[ --a* log L,/M*]-‘. I/ is the 
where &, is the estimate when k is fixed at k,. 
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Thlus, the loss in asymptotic efficiency in using the wrong value of k can be 
assessed. 

The asymptotic coverage rate of confidence intervals can be calculated when 
the model is fit with k fixed at k* and the true distribution has k = k,. if the 
expected information expression (C = E*[ - a2 log L&B?“]-‘) given by equa- 
tions (1) and (2) is used to construct the confidence intervals, then the asymptotic 
coverage rate of a nominal 95% confidence interval is given by P( 12 1 < 1.96R), 
where 2 is a standard normal random variable and R* = C/A. 

In general, the evaluation of A, I/ and R require numerical integration, but the 
special case (k * = CO) is worth considering for the T-family. When k * = 00, then 

-Eo[!_2$L+Eo[a loapeL’* . a ,,,L*] 

= F[X’X] ~A=(u~l;,/(k,--2J)~~~~X]-', 
0 0 

also I/ = ( CJ~( k, + 3)/( k, + l))[ X7X]-‘. Thus the asymptotic variance is in- 
creased by a factor k,( k, + l)/( k, - 2)( k, + 3) if a normal model is fit to the 
observations. It can also be shown that R = 1, so the asymptotic coverage rate 
attains the correct value of 95%. 

The asymptotic results for both the T-family and the power-exponential family 
for specific choices of k, and k, are shown in the tables together with the small 
sample Monte Carlo simulation results. 

3. Small sample properties 

(a) An example 
The data relating the number of traffic fatalities to the number of drivers in each 
state (Draper and Smith, 1981, p. 191) was analyzed using the power-exponential 
model. These data were analyzed using the T-family model in Lange et al. (1989). 
For these data the explanatory variable is log,, (number of drivers in ‘1964) and 
the dependent variable is log,, (number of driving deaths in 1964). A plot of the 
data indicates that a linear fit is appropriate, with 2 possible outliers (Rhode 
Island and Connecticut). 

Table 1 shows the estimates and standard errors from least squares and the 
power-exponential model. The maximum likelihood estimate of the shape param- 
eter of k = 0.56 suggests that the observations are better explained by a model 
with heavier than normal tails. A similar result was found using the T-model 
where the estimated degrees of freedom was 4.6. 

The profile likelihood confidence interval for k is ( - 0.14, 1.0): this wide 
interval indicates that a large sample size is needed to estimate accurately the 
shape of the residual distribution. The table also shows the estimates and 
standard errors of four Bootstrap resampling schemes. In two of the schemes the 
residuals from the best fitting power-exponential fa ly model with k = 0.56 are 
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Table 1 
Parameter estimates and standard errors for Traffic Accident data using Power-exponential model. 

Shape parameter Intercept Slope 

Least squares 

Power-exponential 
model 

Bootstrap residuals 

Bootstrap cases 

0 (fixed) - 2.937 
(0.256) 

0.56 - 2.874 
(0.227) 

0.56 (fixed) - 2.888 
(0.232) 

estimated - 2.885 
(0.250) 

0.56 (fixed) - 2.863 
(0.346) 

estimated - 2.844 
(0.363) 

0.941 

(0.47,) 
0.934 

(0.037) 
0.9136 

(0.039) 
0.936 

(0.042) 
0.932 

(0.057) 
0.928 

(0.059) 

resampled ;And added to the predicted value from the model and in the other two 
schemes the pair of observations are resampled. In addition for each scheme for 
estimating the regression parameters of the model for each Bootstrap sample, k is 
either fixed at the value 0.56 or estimated from each resampled dataset. The two 
most striking features of the results from this example are, firstly that Bootstrap- 
ping residuals gives estimates C-Z variability comparable -with the asymptotic 
theory based on the expected information matrix, whereas Bootstrapping cases 
$/es much larger variability, ai:d secondly it makes very little difference whether 
k is estimated or fixed, supporting the asymptotic results in Section 2 that there is 
no cost associated with estimating the extra parameter. 

In a similar analysis of this and other datasets using the T-family presented in 
Lange et al (1989) qualitatively similar conclusions are reached concerning the 
Bootstrap schemes. 

( b) Monte Carlo simulations 
A small Monte Carlo simulation study was performed to ascertain whether the 
asymptotic results that there is no cost due to estimation of extra parameters 
remains valid for small samples, and in particular how the inflation in variance 
depends on the sample size and-on the error distribution. In addition, the relative 
efficiency and coverage rates of confidence inte:;vals were considered in the study. 

In the simulation 600 datasets of size n( n = 20, 40, 80, 160) were generated 
from the model 

Y=a+bX+e, e-f. 

The design was X = & i, i = I, 2 , . . . , 10;  with an equal number of observations at 
each of the 20 design points. For the T-family error distribution the values of k 
and 0 were either (k=2.5, a=2) or (k=5, u=2) or (k= 00, a=2). For the 
power-exponential family error distribution the values of k and cr were either 
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Table 2 
T family Monte Carlo and asymptotic results: Variance and efficiency considerations. 

Variance Variance Var( k = 2.5. Var( k = 5. Var(k =x. 
ratio for ratio: fixed) + Var fixed) + Var fixed) + Var 
estimating Simulation (true k, (true k. (true k. 
k. Var( k estim) Var( k estim) + fixed) fixed) fixed) 
+ Var( true k ) * Var(asympt) 

Parameter: a * * b ._ a b a b a b u b 

True degrees of freedom (k) = 2.5 

20 1 .O? 1.06 0.91 0.91 - - 1.02 1 .oo 2.16 2.03 
40 1.03 1.06 0.98 0.98 - - 1.04 1.07 2.67 2.52 

II 80 1 .Ol 1.04 0.99 0.99 - - 1.02 1.06 2.96 3.22 
160 1.02 1.02 0.98 0.98 - - 1.07 1.02 2.76 2.59 

asymptotic 1 .OO 1 .oo 1 .oo 1.00 - - 1.05 1.05 3.18 3.18 

True degrees of freedom {kJ = 5 

20 1.10 1.08 1.08 1.12 1 .Ol 1.05 - - 1.28 1.20 
40 1.03 1.05 1.04 1.07 1.05 1.03 - - 1.21 1.24 

11 80 1.03 1.03 0.94 1.09 1 .Ol 1.04 - - 1.41 1.26 
160 1.01 1 .Ol 1.02 1.10 1.01 1.06 - -- 1.23 1.17 

asymptotic 1 .OO 1 .oo 1.00 1 .oo 1.04 1.04 - - 1.25 1.25 

True degrees of freedom (k) = 30 

20 1.10 1.06 0.91 0.93 1.34 1.25 1.13 1.09 - - 
40 1.05 1.04 0.94, 0.89 1.25 1.23 1.11 1.08 - - 

I1 80 1.02 1.03 0.92 0.91 1.24 1.25 1.10 1.11 - - 
160 1.02 1.03 1 .oo 1 .oo 1.24 1.25 1.11 1.11 - - 

asymptotic 1 .OO 1 .oo 1 .oo 1 .oo 1.22 1.22 1.09 1.09 - - 

* Var( .) denotes variance of a^ or 6 under the specified assumption for k. 
* * Linear model. Q = intercept, b = regression coefficient. 

a = 0.  
with k 

( k = 0.0, a=2) or (k=OS, CT= 2). The values of Q and b were fixed at 
b = 1. For each simulated data set the parameters a and b were estimated 
fixed at the true value, k fixed at a wrong value or k e_stimated. In addition49z% 
confidence intervals were calculated using L? &- 1.96 SE( a^) and h + 1.96 SE( 6); 

where Sk< 8) is the estimate of the standard error of a^ obtained from the 
expected information matrix. That is, equations (1) and (2) were used with k 

chosen as either the estimated value when it was estimated or as the fixed value 
assumed in fitting the model when it was fixed. Whether or not this confidence 
interval contained the true value was noted. The computations were performed 
using a Newton-Raphson algorithm on an IBM 3090. 

Table 2 shows the results for the T-family model. The variance ratio for 
estimating k is the Monte Carlo Variance of the parameter when k is estimated 
divided by the Monte Carlo Variance of the parameter when k is fixed. Notice 
that this variance ratio is close to 1 for all situations, however there is a trend for 
the variance ratio to increase as the sample size decreases. The second cohm of 

the table shows the ratio of the onte Carlo variance of the parameter estimate 
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Table 3 
7’ family Monte Carlo and asymptotic results; Coverage rates (nominal rate = 95%). 

k estimated k = 2.5, fixed k = 5. fixed X: = 00, fixed 

Parameter: a* b a b a b ;I b 

True degrees of freedom (k) = 2.5 
20 87 87 
40 93 93 

I1 80 94 93 
160 94 96 

asymptotic 95 95 

True degrees of freedom (k) = 5 
20 90 88 
40 93 92 

n 80 96 94 
160 95 94 

asymptotic 95 95 

True degrees of freedom (k) = CQ 
20 92 91 
40 93 95 

n 80 95 95 
160 94 96 

asymptotic 95 95 

90 91 93 94 94 95 
94 94 95 96 94 94 
95 93 96 96 97 95 
94 96 95 97 95 96 
95 95 96 96 95 95 

92 90 94 92 93 92 
92 91 95 93 95 93 
94 92 96 95 95 95 
94 93 95 95 95 95 
93 93 95 95 95 95 

90 88 92 91 94 94 
91 92 93 94 94 96 
91 94 94 95 96 96 
90 91 93 95 96 96 
91 91 94 94 95 95 

* Linear model, a = intercept, b = regression coefficiet. 

to the asymptotic variance calculated using the known values of the parameters. 
Notice that the ratio is close to one except for n = 20. The table also shows the 
expected result that fitting a normal model to heavy tailed data is very inefficient, 
but that fitting a T- de1 with a low number of degrees of freedom to normal 
data gives a much aller loss in efficiency. The results for the asymptotic 
efficiency loss are in reasonable, but not perfect, agreement with the results for 
small samples. 

The coverage rates of confidence intervals are given in Table 3. The coverage 
rates of the confidence intervals when k is fixed at the correct value are 
reasonably close to 0. 5, except possibly when n = 20. When k is estimated from 
the data the confidence intervals are somewhat optimistic, although they might be 
considered satisfactory for all values of n except for n = 20. When k is fixed at 
too small a value, the coverage rates are slightly too low even in large s;lmples. In 
contrast, if a normal model is ii-r, the coverage rates are adequate for all sample 
sizes. 

Tables 4 and 5 show the results for the power-exponential family. The 
conclusions are qualitatively similar to those from the T-family. The main 
differences are that the variance ratios are bigger, although probably acceptably 
close to 1 except for n = 20, and the coverage rates are worse when k is estimated 
and would not be considered satisfactory for n = 20, or 40. 
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Table 4 
Power exponential family Monte Carlo results; Variance and efficiency considerations. 

Variance Variance Var( False k, 

Parameter: 

ratio for 
estimating k 
Var( k estim) + 
Var(true k) * 

a ** b 

ratio: 
Simulation 
Var( k estim) + 
Var( asympt) 

a b 

fixed) + 
Var( true k, 
fixed) 

a b 

True shape parameter (k) = 0.5 
20 1.53 
40 1.26 

n 80 1.13 
160 1.05 

asymptotic 1 .oo 

True shape parameter (k) = 0.0 
20 1.54 
40 1.20 

ll 80 1.13 
160 1.04 

asymptotic 1 .oo 

1.62 
1.22 
1.10 
1.06 
1 .oo 

1.37 
1.29 
1.13 
1.05 
I .OO 

1.74 1.98 1.11 1.09 
1.39 1.40 1.02 1.11 
1.25 1.13 1.23 1.17 
1.07 1.19 1.18 1.15 
1 .oo 1 .oo 1.22 1.22 

1.61 1.50 1.24 1.12 
1.30 1.24 1.15 1.17 
1.25 1.24 1.13 1.15 
0.97 1.16 1.18 1.17 
1 .oo 1 .oo 1.16 1.16 

* Var( -) denotes variance of a^ or 6 under the specified assumption for k. 
* * Linear model, a = intercept, b = regression coefficient. 

An additional troublesome feature of maximum likelihood estimates for the 
power-exponential was that for small samples frequently the estimate of k was at 
the boundary of the parameter space. Neither of the associated densities, uniform 
(k= - 1) or double-exponential (k = 1) has an appealing shape for real data. 

Table 5 
Power exponential family Monte Carlo results; Coverage rates (nomina! rate = 95%). 

Parameter: 

k estimated k = 0.5, fixed k = 0.0, fixed 

a* b a b a b 

True shape parameter (k) = 0.5 
20 68 67 90 
40 87 86 92 

n 80 91 93 93 
160 93 94 94 

asymptotic 95 95 95 

True shape parameter (k) = 0.0 
20 60 62 86 
40 81 79 88 

I7 80 89 90 89 
160 96 95 92 

asymptotic 95 95 91 

* Linear model, a = intercept, b = regression coefficient. 

90 91 91 
93 92 94 
95 93 95 
95 94 95 
95 95 95 

86 92 90 
87 91 93 
90 94 94 
91 96 95 
91 95 95 
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Table 6 
Monte Carlo simthation and asymptotic results - T family (4 regwssion parameters). 

True degrees of freedom (k) = 5 

20 
Sample 40 

size 80 
160 

asymptotic 

Variance * ratio for estimating Variance * ratio. 
k: (k estimated/k = 5 fixed) (k estimated/asymptotic) 
1.11 1.12 1.08 1.09 1.21 1.24 1.24 1.27 
1.09 1.05 1.07 l.l(I! 1.16 1.13 1.16 1.07 
1.03 1 .Ol 1.04 1.05 1.10 1.10 1.11 1.05 
1.02 1.02 1 .Ol 1.01 1.02 1.18 1.04 1.13 
1 .oo 1 .oo 1 .oo 1 .OO 1.00 1 .oo 1 .oo 1 .oo 

20 i.i8 1.23 1.21 I.17 
Sample 40 1.19 1.12 1.20 i.29 

size 80 1.20 1.21 1.21 1.16 
160 1.21 1.29 1.23 1.24 

asymptotic 1.25 1.25 1.25 1.25 

20 
Sample 40 

size 80 
160 

asymptotic 

Vark=m 
Relative efficiency * Var k = 5 

Coverage rate (k estimated) 
79 79 78 
90 90 91 
92 92 93 
95 94 95 
95 95 95 

78 
91 
94 
94 
95 

Coverage rate (k = 5. fixed) 

88 90 88 87 
92 93 93 95 
94 94 93 95 
95 94 95 96 
95 95 95 95 

Coverage rate (k = 30. fixed) 
90 91 89 88 
93 94 94 93 
94 93 95 95 
96 93 97 94 
95 95 95 95 

* Variance of the estimated regression parameter under specified assumptions for k. 
* * Linear model, & = intercept, &. &, & = regression coefficient. 

To investigate whether the number of parameters in the model influenced the 
results a further simulation study was performed. Six hundred datasets of size 
!I( II= 20, 40, 80, 160) were generated from the model 

where the error term e had a T distribution with k = 5 or 00, and (&, &, &, &) 
= (0, 1, 1, 1). For n = 20, X~i = i - 11 if i 5 10 and X~i = i - 10 if i > 10; Xzi = 
-5ifi<5ori>15and X,,=5otherwise;and XJi=-5ifi<5orlO<iI15 
and X3, = 5 otherwise. For the other sample sizes the design was replicated. The 
results are given in Tables 6 and 7. Again the variance ratio for estimating k is 
close to 1 especially for large sample sizes. The coverage rates when k is 
estimated are lower than the values in Table 3 and would probably not be 
considered satisfactory for n = 20 or n = 40. As in Tables 2 and 3 the accuracy of 
the asymptotic calculations does not seem to be affected by whether the true 
k=5ork=m. 

Discussion 
Based on asymptotic theory and some Monte Carlo simulations, it is shown in 
this article that the adaptive stage of fitting an error distribution can as a first 
approximation be ignored in making statistical inferences concerning the regres- 
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Table 7 
Monte Carlo simulation and asymptotic sesults - T family (4 regression parameters). 

True degrees of freedom (k) = x 

20 
Sample 40 

size 80 
160 

asymptotic 

Variance * :atio for estimating 
k; (k estimated/k = QC fixed) 
1.14 1.14 1.13 1.12 
1.02 1.04 1.05 1.02 
1.02 1 .Ol 1.03 1.02 
1 .Ol 1 .Ol 1 .Ol 1.02 
1 .oo 1 .oo 1 .oo 1 .oo 

20 
Sample 40 

size 80 
160 

asymptotic 

20 
Sample 40 

size 80 
160 

asymptotic 

Relal ive Efficiency * zfrr f zi 

1.11 1.10 1.11 1.07 
1.08 1.06 1.08 1.09 
1.09 1.08 1.08 1.07 
1.10 1.09 1.09 1.10 
1.09 1.09 1.09 1.09 

Coverage rate (k estimated) 
83 81 81 83 
90 91 93 91 
93 93 93 94 
94 95 94 94 
95 95 95 95 

Variance * ratio. 
(k estimated/astymptotic) 
1.12 1.19 1.20 1.15 
1.03 1.03 1.05 1.07 
1.04 1.05 1.11 1.12 
1.03 1.09 1.12 1.12 
1 .oo 1 .oo 1 .oo 1 .OO 

Coverage Rate (k = 3~. fixed) 

91 91 88 89 
92 93 94 92 
94 94 94 94 
94 95 95 94 
95 95 95 95 

Coverage rate (k = 5. fixed) 
88 85 86 88 
90 90 92 90 
91 92 92 93 
93 93 92 92 
94 94 94 94 

* Variance of rhe estimated regression parameter under specified assumptions for k. 
* * Linear model, & = intercept, PI. 8,. j& = regression coefficients. 

sion parameters provided the sample size is not small, and particularly if the T 
rather than the power-exponential distribution is used This is a useful result 
which together with their good robustness properties suggest that the adaptive 
robust techniques should have more of a role in practical statistics than they 
cljrrently enjoy. However, caution should be exercised in extending this result to 
si!uations very different than those considered in the Monte Carlo study or to 
&cr more complex situations. For example the variance ratio for finite samples 
may not be so close to one for non-linear, or multivariate models using the 
T-distribution or if the design of the explanatory variables are very irregular. 

Comparison cf the results in Table 6 and 7 and Tables 2 and 3 suggests that 
for correct statistical inference in small samples the addition of extra regression 
parameters is of as much concern as is the inclusion of an extra parametp: to 
model the kurtosis. From the tables it can be seen that the coverage rates when A- 
is fixed and known are lower when 4 regression parameters are estimated 
compared to when 2 regression parameters are estimated. Thus the inadequacy of 
the coverage rates when n = 20 in Tables 6 and 7 is a result of both the 
estimation of the extra kurtosis parameter (k) and the estimation of the extra 
regression parameters. 
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A similar type of simulation study was performed by Hogg et al. (1972). They 
considered an adaptive scheme for estimating a location parameter from a single 
sample. The adaptive scheme considered is a decision rule followed by either the 
mean, the median or the mid range. The decision rule is a modified version of the 
maximum likelihood rule for selecting between the normal, the double-exponen- 
tial and the uniform distribution. They found that if the true distribution was 
normal, the ratio of the Monte Carlo variance of the adaptive scheme compared 
to that of the mean is 1.12. If the true distribution was double-exponential the 
variance ratio of the adaptive scheme to the median is 1.21. If the true distribu- 
tion was uniform the variance ratio of the adaptive scheme to the mid-range is 
2.06. The values for the normal and the double-exponential are similar to those in 
Table 4 and encouragingly small. The variance ratio for the uniform is signifi- 
cantly larger than 1, however for practical situations it is maybe not that relevant 
because such short tailed distributions as the uniform are usually not considered 
likely (or of serious consequence) for real data. 

In later work, Hogg et al. (1988) and Yuh and Hogg (1988) compared a variety 
of adaptive and non-adaptive robust estimates. One of the adaptive schemes, 
which had arguably the best properties, was based on the T-distribution. In this 
scheme, depending on the value of a selector statistic which measures peakedness 
of the distribution either a Tri or a T3 model was used. In addition, these authors 
use a one-step approximation to the maximum likelihood estimates of the 
regression parameters. 

A significant difference between the adaptive scheme of Hogg et al. 
(1978,1988), and Yuh and Hogg (1988) and the model based scheme used in this 
paper, is that these authors allow only a finite number of possible estimates of the 
location parameter, whereas in this paper there are essentially an infinite nurnbyr 
of possible estimators depending on the estimates of k. 

One interesting finding from this study is that the inflation in variance due to 
the estimation of the extra shape parameter in small samples is 1~s for the 
T-family than for the power-exponential family. The probably reason for this is 
that the T-family covers a narrower range of distributions not including any with 
lighter than normal tails. 

The coverage properties of the confidence intervals were encouraging especially 
for the T-family, except for small samp_les. One improvement for small samples 
would be to use the interval a^ f c. SE( a^) where c is a critical point of the t 
distribution with N-P degrees of freedom and P is the number of regression 
parameters, rather than the interval a^ + 1.96 SE( a^). This value of c would be the 
natural choice in small samples for the normal model. The coverage rates of such 
confidence intervals were evaluated for the simulations presented in Tables 6 and 
7. For n = 20 it was found that the coverage rate increased by approximately 3 
percentage points, and for n = 40 the coverage rate increased by about 1 
percentage point. SO although the coverage properties of confidence intervals are 
improved by this adjustment, they are still inadequate for n = 20. 

Another possible improvement is to base the estimate of the standard error on 
the observed information matrix rather than the expected information matrix. Su 
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(1988) has shown that when using the multivariate T distribution with missing 
data and known degree s of freedom the expected information tends to give 
slightly optimistic confidence intervals. whereas the confidence intervals based on 
the observed information tend to have better coverage rates. The arguments in 
Efron and Hinkley (1978) would also support this view. Alternatively, an estimate 
of the standard error could be based on empirical approximations to the expres- 
sion given in equation (3). 

Boyer and Kolson (1983) and Prescott (1978) have suggested that for larger 
samples a continuous adapting scheme is a useful robust estimator, but for 
smaller samples adapting too closely may not be worth the effort; although it 
could be argued that is really isn’t any more effort to estimate an extra parameter 
than employ a discrete decision rule. The results in Tables 2 to 7 of this paper, for 
both the efficiency considerations and the coverage rates, would support this 
suggestion. For n 2 40, the procedure of fitting a T-model and estimating the 
degrees of freedom has good statistical properties, whereas for IZ = 20, fitting a 7’ 
model with 5 degrees of freedom is a reasonable choice. 
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