Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Electroencephalography Might Improve Diagnosis of Acute Stroke and Large Vessel Occlusion.

Abstract

Background and purpose

Clinical methods have incomplete diagnostic value for early diagnosis of acute stroke and large vessel occlusion (LVO). Electroencephalography is rapidly sensitive to brain ischemia. This study examined the diagnostic utility of electroencephalography for acute stroke/transient ischemic attack (TIA) and for LVO.

Methods

Patients (n=100) with suspected acute stroke in an emergency department underwent clinical exam then electroencephalography using a dry-electrode system. Four models classified patients, first as acute stroke/TIA or not, then as acute stroke with LVO or not: (1) clinical data, (2) electroencephalography data, (3) clinical+electroencephalography data using logistic regression, and (4) clinical+electroencephalography data using a deep learning neural network. Each model used a training set of 60 randomly selected patients, then was validated in an independent cohort of 40 new patients.

Results

Of 100 patients, 63 had a stroke (43 ischemic/7 hemorrhagic) or TIA (13). For classifying patients as stroke/TIA or not, the clinical data model had area under the curve=62.3, whereas clinical+electroencephalography using deep learning neural network model had area under the curve=87.8. Results were comparable for classifying patients as stroke with LVO or not.

Conclusions

Adding electroencephalography data to clinical measures improves diagnosis of acute stroke/TIA and of acute stroke with LVO. Rapid acquisition of dry-lead electroencephalography is feasible in the emergency department and merits prehospital evaluation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View