- Main
Synthetically Reversible, Proton-Mediated Nitrite N-O Bond Cleavage at a Dicopper Site.
Published Web Location
https://doi.org/10.1021/jacs.4c14642Abstract
A monocationic dicopper(I,I) nitrite complex [Cu2(μ-κ1:κ1-O2N)DPFN][NTf2] (2) (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine, NTf2- = N(SO2CF3)2-), was synthesized by treatment of a dicopper acetonitrile complex, [Cu2(μ-MeCN)DPFN][NTf2]2 (1), with tetrabutylammonium nitrite ([nBu4N][NO2]). DFT calculations indicate that 2 is one of three linkage isomers that are close in energy and presumably accessible in solution. Reaction of the μ-κ1:κ1-O2N complex with p-TolSH produces nitrous acid (HONO) and the corresponding dicopper thiolate species via an acid-base exchange reaction. Notably, treatment of 2 with HNTf2 results in N-O bond cleavage in the putative, HONO-ligated complex to form the more thermodynamically favorable nitrosyl-bridged dicopper complex [Cu2(μ-NO)(μ-OH)DPFN][NTf2]2 (4). This scission can be reversed via deprotonation of the hydroxy ligand with KOtBu. X-ray diffraction studies confirmed the solid-state molecular structures of 2 and 4. DFT calculations were used to construct a reaction coordinate diagram detailing formation of the μ-NO complex and to describe its electronic structure. The nitrosyl ligand in 4 is chemically labile, as demonstrated by its ready displacement in reactions with CO or NO2-.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-