Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Memory-Based Prediction Deficits and Dorsolateral Prefrontal Dysfunction in Schizophrenia

Abstract

Background

Theories suggest that people with schizophrenia (SZ) have problems generating predictions based on past experiences. The dorsolateral prefrontal cortex (DLPFC) and hippocampus participate in memory-based prediction. We used functional magnetic resonance imaging to investigate DLPFC and hippocampal function in healthy control (HC) subjects and people with SZ during memory-based prediction.

Methods

Prior to scanning, HC subjects (n = 54) and people with SZ (n = 31) learned 5-object sequences presented in fixed or random orders on each repetition. During scanning, participants made semantic decisions (e.g., "Can this object fit in a shoebox?") on a continuous stream of objects from fixed and random sequences. Sequence prediction was demonstrated by faster semantic decisions for objects in fixed versus random sequences because memory could be used to anticipate and more efficiently process semantic information about upcoming objects in fixed sequences. Representational similarity analyses were used to determine how each sequence type was represented in the posterior hippocampus and DLPFC.

Results

Sequence predictions were reduced in individuals with SZ relative to HC subjects. Representational similarity analyses revealed stronger memory-based predictions in the DLPFC of HC subjects than people with SZ, and DLPFC representations correlated with more successful predictions in HC subjects only. For the posterior hippocampus, voxel pattern similarity was increased for fixed versus random sequences in HC subjects only, but no significant between-group differences or correlations with prediction success were observed.

Conclusions

Individuals with SZ are capable of learning temporal sequences; however, they are impaired using memory to predict upcoming events as efficiently as HC subjects. This deficit appears related to disrupted neural representation of sequence information in the DLPFC.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View