Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Integrative Analysis of Glucometabolic Traits, Adipose Tissue DNA Methylation and Gene Expression Identifies Epigenetic Regulatory Mechanisms of Insulin Resistance and Obesity in African Americans

Published Web Location

https://doi.org/10.2337/db20-0117
Abstract

Decline in insulin sensitivity due to dysfunction of adipose tissue (AT) is one of the earliest pathogenic events in type 2 diabetes. We hypothesize that differential DNA methylation (DNAm) controls insulin sensitivity and obesity by modulating transcript expression in AT. Integrating AT DNAm profiles with transcript profile data measured in a cohort of 230 African Americans (AAs) from the African American Genetics of Metabolism and Expression cohort, we performed cis-expression quantitative trait methylation (cis-eQTM) analysis to identify epigenetic regulatory loci for glucometabolic trait-associated transcripts. We identified significantly associated cytosine-guanine dinucleotide regions for 82 transcripts (false discovery rate [FDR]-P < 0.05). The strongest eQTM locus was observed for the proopiomelanocortin (POMC; ρ = -0.632, P = 4.70 × 10-27) gene. Epigenome-wide association studies (EWAS) further identified 155, 46, and 168 cytosine-guanine dinucleotide regions associated (FDR-P < 0.05) with the Matsuda index, SI, and BMI, respectively. Intersection of EWAS, transcript level to trait association, and eQTM results, followed by causal inference test identified significant eQTM loci for 23 genes that were also associated with Matsuda index, SI, and/or BMI in EWAS. These associated genes include FERMT3, ITGAM, ITGAX, and POMC In summary, applying an integrative multiomics approach, our study provides evidence for DNAm-mediated regulation of gene expression at both previously identified and novel loci for many key AT transcripts influencing insulin resistance and obesity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View