Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Scoring protein-protein docked structures based on the balance and tightness of binding

Abstract

One main issue in protein-protein docking is to filter or score the putative docked structures. Unlike many popular scoring functions that are based on geometric and energetic complementarity, we present a set of scoring functions that are based on the consideration of local balance and tightness of binding of the docked structures. These scoring functions include the force and moment acting on one component (ligand) imposed by the other (receptor) and the second order spatial derivatives of protein-protein interaction potential. The scoring functions were applied to the docked structures of 19 test targets including enzyme/inhibitor, antibody/antigen and other classes of protein complexes. The results indicate that these scoring functions are also discriminative for the near-native conformation. For some cases, such as antibody/antigen, they show more discriminative efficiency than some other scoring functions. such as desolvation free energy (DeltaG(des)) based on pail-wise atom-atom contact energy (ACE). The correlation analyses between present scoring functions and the energetic functions also show that there is no clear correlation between them; therefore, the present scoring functions are not essentially the same as energy functions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View