Skip to main content
eScholarship
Open Access Publications from the University of California

Cooperative Power and Resource Management for Heterogeneous Mobile Architectures

  • Author(s): Hsieh, Chenying
  • Advisor(s): Dutt, Nikil
  • et al.
Abstract

Heterogeneous architectures have been ubiquitous in mobile system-on-chips (SoCs). The demand from different application domains such as games, computer vision and machine learning which requires massive parallelism of computation has driven the integration of more accelerators into mobile SoCs to provide satisfactory performance energy-efficiently. These on-chip computing resources typically have their individual runtime systems including: (1) a software governor: continuously monitors hardware utilization and makes decisions of trade-off between performance and power consumption. (2) software stack: allows application developers to program the hardware for general purpose computation and perform memory management and profiling. As computation of mobile applications may demand all sorts of combinations of computing resources, we identify two problems: (1) individual runtime can often lead to poor performance-power trade-off or inefficient utilization of computing resources. (2) existing approaches fail to schedule subprograms among different computing resources and further lose the opportunity to avoid resource contention to gain better performance.

Main Content
Current View