- Main
DCG++: A data-driven metric for geometric pattern recognition.
- Guan, Jiahui;
- Hsieh, Fushing;
- Koehl, Patrice
- Editor(s): Kestler, Hans A
Abstract
Clustering large and complex data sets whose partitions may adopt arbitrary shapes remains a difficult challenge. Part of this challenge comes from the difficulty in defining a similarity measure between the data points that captures the underlying geometry of those data points. In this paper, we propose an algorithm, DCG++ that generates such a similarity measure that is data-driven and ultrametric. DCG++ uses Markov Chain Random Walks to capture the intrinsic geometry of data, scans possible scales, and combines all this information using a simple procedure that is shown to generate an ultrametric. We validate the effectiveness of this similarity measure within the context of clustering on synthetic data with complex geometry, on a real-world data set containing segmented audio records of frog calls described by mel-frequency cepstral coefficients, as well as on an image segmentation problem. The experimental results show a significant improvement on performance with the DCG-based ultrametric compared to using an empirical distance measure.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-