- Main
Single-Trial EEG Classification via Orthogonal Wavelet Decomposition-Based Feature Extraction
Published Web Location
https://doi.org/10.3389/fnins.2021.715855Abstract
Achieving high classification performance is challenging due to non-stationarity and low signal-to-noise ratio (low SNR) characteristics of EEG signals. Spatial filtering is commonly used to improve the SNR yet the individual differences in the underlying temporal or frequency information is often ignored. This paper investigates motor imagery signals via orthogonal wavelet decomposition, by which the raw signals are decomposed into multiple unrelated sub-band components. Furthermore, channel-wise spectral filtering via weighting the sub-band components are implemented jointly with spatial filtering to improve the discriminability of EEG signals, with an l 2-norm regularization term embedded in the objective function to address the underlying over-fitting issue. Finally, sparse Bayesian learning with Gaussian prior is applied to the extracted power features, yielding an RVM classifier. The classification performance of SEOWADE is significantly better than those of several competing algorithms (CSP, FBCSP, CSSP, CSSSP, and shallow ConvNet). Moreover, scalp weight maps of the spatial filters optimized by SEOWADE are more neurophysiologically meaningful. In summary, these results demonstrate the effectiveness of SEOWADE in extracting relevant spatio-temporal information for single-trial EEG classification.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-