Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Phasor-based hyperspectral snapshot microscopy allows fast imaging of live, three-dimensional tissues for biomedical applications

Abstract

Hyperspectral imaging is highly sought after in many fields including mineralogy and geology, environment and agriculture, astronomy and, importantly, biomedical imaging and biological fluorescence. We developed ultrafast phasor-based hyperspectral snapshot microscopy based on sine/cosine interference filters for biomedical imaging not feasible with conventional hyperspectral detection methods. Current approaches rely on slow spatial or spectral scanning limiting their application in living biological tissues, while faster snapshot methods such as image mapping spectrometry and multispectral interferometry are limited in spatial and/or spectral resolution, are computationally demanding, and imaging devices are very expensive to manufacture. Leveraging light sheet microscopy, phasor-based hyperspectral snapshot microscopy improved imaging speed 10-100 fold which, combined with minimal light exposure and high detection efficiency, enabled hyperspectral metabolic imaging of live, three-dimensional mouse tissues not feasible with other methods. As a fit-free method that does not require any a priori information often unavailable in complex and evolving biological systems, the rule of linear combinations of the phasor could spectrally resolve subtle differences between cell types in the developing zebrafish retina and spectrally separate and track multiple organelles in 3D cultured cells over time. The sine/cosine snapshot method is adaptable to any microscope or imaging device thus making hyperspectral imaging and fit-free analysis based on linear combinations broadly available to researchers and the public.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View