Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

IκBε Is a Key Regulator of B Cell Expansion by Providing Negative Feedback on cRel and RelA in a Stimulus-Specific Manner

Abstract

The transcription factor NF-κB is a regulator of inflammatory and adaptive immune responses, yet only IκBα was shown to limit NF-κB activation and inflammatory responses. We investigated another negative feedback regulator, IκBε, in the regulation of B cell proliferation and survival. Loss of IκBε resulted in increased B cell proliferation and survival in response to both antigenic and innate stimulation. NF-κB activity was elevated during late-phase activation, but the dimer composition was stimulus specific. In response to IgM, cRel dimers were elevated in IκBε-deficient cells, yet in response to LPS, RelA dimers also were elevated. The corresponding dimer-specific sequences were found in the promoters of hyperactivated genes. Using a mathematical model of the NF-κB-signaling system in B cells, we demonstrated that kinetic considerations of IκB kinase-signaling input and IκBε's interactions with RelA- and cRel-specific dimers could account for this stimulus specificity. cRel is known to be the key regulator of B cell expansion. We found that the RelA-specific phenotype in LPS-stimulated cells was physiologically relevant: unbiased transcriptome profiling revealed that the inflammatory cytokine IL-6 was hyperactivated in IκBε(-/-) B cells. When IL-6R was blocked, LPS-responsive IκBε(-/-) B cell proliferation was reduced to near wild-type levels. Our results provide novel evidence for a critical role for immune-response functions of IκBε in B cells; it regulates proliferative capacity via at least two mechanisms involving cRel- and RelA-containing NF-κB dimers. This study illustrates the importance of kinetic considerations in understanding the functional specificity of negative-feedback regulators.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View