Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Soft material perforation via double-bubble laser-induced cavitation microjets

Published Web Location

https://doi.org/10.1063/5.0007164
Abstract

The resulting jet of two interacting laser-induced cavitation bubbles is optimized and studied as a technique for micro-scale targeting of soft materials. High controllability of double-bubble microjets can make such configurations favorable over single bubbles for applications where risk of ablation or thermal damage should be minimized such as in soft biological structures. In this study, double-bubble jets are directed toward an agar gel-based skin phantom to explore the application of micro-scale injection and toward a soft paraffin to quantify the targeting effectiveness of double-bubble over single-bubble jetting. The sharp elongation during the double-bubble process leads to fast, focused jets reaching average magnitudes of Ujet = 87.6 ± 9.9 m/s. When directed to agar, the penetration length and injected volume increase at ∼250 μm and 5 nl per subsequent jets. Such values are achieved without the use of fabricated micro-nozzles seen in existing needle-free laser injection systems. In soft paraffin, double-bubble jetting produces the same penetration length as single-bubble jetting, but with ∼45% reduction in damage area at a 3× greater target distance. Thus, double-bubble jetting can achieve smaller impact areas and greater target distances, potentially reducing collateral thermal damage and effects of strong shockwave pressures.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View