Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Interlaboratory Reproducibility of Contour Method Data Analysis and Residual Stress Calculation

Abstract

Background: While the contour method for residual stress assessment has developed rapidly, no published study documents its interlaboratory reproducibility. Objective: Here we report an initial reproducibility experiment focused on contour method data analysis and residual stress calculation. Methods: The experiment uses surface topography data from a physical process simulation of elastic-plastic beam bending. The simulation provides surface topography, for input to the contour method data analysis, as well as a known residual stress field with 130 MPa peak magnitude. To increase realism, noise and specific artifacts are added to the topography data. A group of participants received the topography data (without the known residual stress), independently analyzed the data, and submitted results as a two-dimensional residual stress field. Results: Analysis of submissions provides a group average residual stress field and the spatial distribution of reproducibility standard deviation. The group average residual stress agrees with the known stress in magnitude and spatial trend. The reproducibility standard deviation ranges from 2 to 54 MPa over the measurement plane, with an average of 5.4 MPa. Reproducibility standard deviation is smaller in the cross-section interior (≤ 5 MPa), modest near local extrema in the stress field (5 to 10 MPa), and larger near the cross-section boundaries (10 to 30 MPa). The largest values of reproducibility standard deviation (up to 54 MPa) occur in limited areas where artifacts had been added to the topography data; while some participants identified and removed these artifacts, some did not, leading to systematic differences that elevated the standard deviation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View