Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Electrostatic field-exposed water in nanotube at constant axial pressure

Published Web Location

https://doi.org/10.1038/srep06596
Abstract

Water confined within nanoscale geometries under external field has many interesting properties which is very important for its application in biological processes and engineering. Using molecular dynamics simulations, we investigate the effect of external fields on polarization and structure as well as phase transformations of water confined within carbon nanotubes. We find that dipoles of water molecules tend to align along external field in nanoscale cylindrical confinement. Such alignment directly leads to the longitudinal electrostriction and cross-sectional dilation of water in nanotube. It also influences the stability of ice structures. As the electrostatic field strengthens, the confined water undergoes phase transitions from a prism structure to a helical one to a single chain as the electrostatic field strengthens. These results imply a rich phase diagram of the confined water due to the presence of external electriostatic field, which can be of importance for the industrial applications in nanopores.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View