Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment

  • Author(s): Matsui, H
  • Koike, M
  • Kondo, Y
  • Takegawa, N
  • Kita, K
  • Miyazaki, Y
  • Hu, M
  • Chang, SY
  • Blake, DR
  • Fast, JD
  • Zaveri, RA
  • Streets, DG
  • Zhang, Q
  • Zhu, T
  • et al.

Regional aerosol model calculations were made using the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in the summer of 2006, when the Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing) intensive campaign was conducted. Model calculations captured temporal variations of primary (such as elemental carbon. (EC)) and secondary (such as sulfate) aerosols observed in and around Beijing. The spatial distributions of aerosol optical depth observed by the MODTS satellite sensors were also reproduced over northeast China. Model calculations showed distinct differences in spatial distributions between primary and secondary aerosols in association with synoptic-scale meteorology. Secondary aerosols increased in air around Beijing on a scale of about 1000 × 1000 km2 under an anticyclonic pressure system. This air mass was transported northward from the high anthropogenic emission area extending south of Beijing with continuous photochemical production. Subsequent cold front passage brought clean air from the north, and polluted air around Beijing was swept to the south of Beijing. This cycle was repeated about once a week and was found to be responsible for observed enhancements/reductions of aerosols at the intensive measurement sites. In contrast to secondary aerosols, the spatial distributions of primary aerosols (EC) reflected those of emissions, resulting in only slight variability despite the changes in synopticscale meteorology. In accordance with these results, source apportionment simulations revealed that primary aerosols around Beijing were controlled by emissions within 100 km around Beijing within the preceding 24 h, while emissions as far as 500 km and within the preceding 3 days were found to affect secondary aerosols. Copyright 2009 by the American Geophysical Union.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View