Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

The Negative Impact of Transition Metal Migration on Oxygen Redox Activity of Layered Cathode Materials for Na-Ion Batteries

Abstract

Rechargeable sodium ion batteries with high energy density are a promising technology to address the demand for grid storage. Cathode materials with oxygen redox activity exhibit higher energy density than expected from Na-ion removal and charge compensation solely by transition metal redox. One strategy to enable oxygen redox in materials is to alter the oxygen environment through transition metal layer ordering. In this work, we report the investigation of oxygen redox activity induced by transition metal ordering in P2-type Na0.8Li0.12Ni0.22Mn0.66O2 cathode synthesized by carbonate co-precipitation. Irreversible oxygen activity was observed and correlated with Ni migration that resulted in the loss of transition metal ordering in the structure. Calculated density of states shows that after Ni migration, the number of unoccupied states of O above Fermi level decreases, inhibiting the reduction of oxygen during sodiation. This paper provides insights on how Ni migration has a detrimental effect on transition metal ordering and reversibility of oxygen redox at high voltage.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View