Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework

Published Web Location

https://doi.org/10.1021/ja411627z
Abstract

An isolated metal-monocatecholato moiety has been achieved in a highly robust metal-organic framework (MOF) by two fundamentally different postsynthetic strategies: postsynthetic deprotection (PSD) and postsynthetic exchange (PSE). Compared with PSD, PSE proved to be a more facile and efficient functionalization approach to access MOFs that could not be directly synthesized under solvothermal conditions. Metalation of the catechol functionality residing in the MOFs resulted in unprecedented Fe-monocatecholato and Cr-monocatecholato species, which were characterized by X-ray absorption spectroscopy, X-band electron paramagnetic resonance spectroscopy, and (57)Fe Mössbauer spectroscopy. The resulting materials are among the first examples of Zr(IV)-based UiO MOFs (UiO = University of Oslo) with coordinatively unsaturated active metal centers. Importantly, the Cr-metalated MOFs are active and efficient catalysts for the oxidation of alcohols to ketones using a wide range of substrates. Catalysis could be achieved with very low metal loadings (0.5-1 mol %). Unlike zeolite-supported, Cr-exchange oxidation catalysts, the MOF-based catalysts reported here are completely recyclable and reusable, which may make them attractive catalysts for 'green' chemistry processes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View