- Main
Compensation schemes and performance analysis of IQ imbalances in OFDM receivers
Abstract
The implementation of orthogonal frequency division multiplexing (OFDM)-based physical layers suffers from the effect of In-phase and Quadrature-phase (IQ) imbalances in the front-end analog processing. The IQ imbalances can severely limit the achievable operating signal-to-noise ratio (SNR) at the receiver and, consequently, the supported constellation sizes and data rates. In this paper, the effect of IQ imbalances on OFDM receivers is studied, and system-level algorithms to compensate for the distortions are proposed. The algorithms include post-fast Fourier transform (FFT) least-squares and least mean squares (LMS) equalization, as well as pre-FFT correction using adaptive channel/distortion estimation and special pilot tones to enable accurate and fast training. Bounds on the achievable performance of the compensation algorithms are derived and evaluated as a function of the physical distortion parameters. A motivation is included for the physical causes of IQ imbalances and for the implications of the approach presented in this paper on designing and implementing wireless transceivers.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-