Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Functional connectome fingerprinting using shallow feedforward neural networks

Abstract

Although individual subjects can be identified with high accuracy using correlation matrices computed from resting-state functional MRI (rsfMRI) data, the performance significantly degrades as the scan duration is decreased. Recurrent neural networks can achieve high accuracy with short-duration (72 s) data segments but are designed to use temporal features not present in the correlation matrices. Here we show that shallow feedforward neural networks that rely solely on the information in rsfMRI correlation matrices can achieve state-of-the-art identification accuracies ([Formula: see text]) with data segments as short as 20 s and across a range of input data size combinations when the total number of data points (number of regions × number of time points) is on the order of [Formula: see text].

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View