- Main
Integration of amorphous ferromagnetic oxides with multiferroic materials for room temperature magnetoelectric spintronics
Published Web Location
https://doi.org/10.1038/s41598-020-58592-5Abstract
A room temperature amorphous ferromagnetic oxide semiconductor can substantially reduce the cost and complexity associated with utilizing crystalline materials for spintronic devices. We report a new material (Fe0.66Dy0.24Tb0.1)3O7-x (FDTO), which shows semiconducting behavior with reasonable electrical conductivity (~500 mOhm-cm), an optical band-gap (2.4 eV), and a large enough magnetic moment (~200 emu/cc), all of which can be tuned by varying the oxygen content during deposition. Magnetoelectric devices were made by integrating ultrathin FDTO with multiferroic BiFeO3. A strong enhancement in the magnetic coercive field of FDTO grown on BiFeO3 validated a large exchange coupling between them. Additionally, FDTO served as an excellent top electrode for ferroelectric switching in BiFeO3 with no sign of degradation after ~1010 switching cycles. RT magneto-electric coupling was demonstrated by modulating the resistance states of spin-valve structures using electric fields.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-