- Main
Semi-permeable Diffusion Barriers Enhance Patterning Robustness in the C. elegans Germline
Published Web Location
https://doi.org/10.1016/j.devcel.2015.10.027Abstract
Positional information derived from local morphogen concentration plays an important role in patterning. A key question is how morphogen diffusion and gene expression regulation shape positional information into an appropriate profile with suitably low noise. We address this question using a model system--the C. elegans germline--whose regulatory network has been well characterized genetically but whose spatiotemporal dynamics are poorly understood. We show that diffusion within the germline syncytium is a critical control of stem cell differentiation and that semi-permeable diffusion barriers present at key locations make it possible--in combination with a feedback loop in the germline regulatory network--for mitotic zone size to be robust against spatial noise in Notch signaling. Spatial averaging within compartments defined by diffusion barriers is an advantageous patterning strategy, which attenuates noise while still allowing for sharp transitions between compartments. This strategy could apply to other organs.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-